dc.creatorGeorgin, Jordana
dc.creatorde O. Salomón, Yamil L.
dc.creatorFranco, Dison S.P.
dc.creatorNetto, Matias S.
dc.creatorPiccilli, Daniel G.A.
dc.creatorPerondi, Daniele
dc.creatorSilva, Luis F.O.
dc.creatorFoletto, Edson L.
dc.creatorDotto, Guilherme L.
dc.date2021-06-29T21:40:50Z
dc.date2021-06-29T21:40:50Z
dc.date2021
dc.date.accessioned2023-10-03T19:43:22Z
dc.date.available2023-10-03T19:43:22Z
dc.identifierhttps://hdl.handle.net/11323/8437
dc.identifierhttps://doi.org/10.1016/j.jece.2021.105676
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171769
dc.descriptionIn this work, a high porous activated carbon from Jacaranda mimosifolia was developed and employed for ketoprofen adsorption. After the pyrolysis process at 973.15 K, the material presented cavities with different sizes allocated on the particle surface. The material presented a pH at the point of zero charge of 4.1 with the best adsorption at pH 2. The best adsorbent dosage was 0.72 g L−1, corresponding to a removal of 96%. The system reached the adsorption equilibrium after 120 min and was described by the linear driving force model. The isotherms revealed that the adsorption capacity decreased with the temperature and followed the Langmuir model, with a maximum adsorption capacity of 303.9 mg g−1. This high capacity can be associated with the high surface area (928 m2 g−1) and pore volume (0.521 cm3 g−1) values. The thermodynamic values indicated that the adsorption system is spontaneous and exothermic. The enthalpy value indicates that the interactions between the adsorbent and adsorbate are physical. Regeneration tests showed a decreasing percentage of removal of 7.86% after 5 cycles. Finally, the adsorbent showed efficiency when treating a simulated effluent containing drugs and inorganic salts, showing the removal of 71.43%.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.relationA. Zenker, M.R. Cicero, F. Prestinaci, P. Bottoni, M. Carere Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment J. Environ. Manag., 133 (2014), pp. 378-387, 10.1016/j.jenvman.2013.12.017
dc.relationS. Maldonado-Torres, R. Gurung, H. Rijal, A. Chan, S. Acharya, S. Rogelj, M. Piyasena, G. Rubasinghege Fate, transformation, and toxicological impacts of pharmaceutical and personal care products in surface waters Environ. Health Insights, 12 (2018), pp. 1-4, 10.1177/1178630218795836
dc.relationA.J. Ebele, M. Abou-Elwafa Abdallah, S. Harrad Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment Emerg. Contam., 3 (2017), pp. 1-16, 10.1016/j.emcon.2016.12.004
dc.relationB. Petrie, R. Barden, B. Kasprzyk-Hordern A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring Water Res., 72 (2015), pp. 3-27, 10.1016/j.watres.2014.08.053
dc.relationR. Ocampo-Pérez, R. Leyva-Ramos, M. Sanchez-Polo, J. Rivera-Utrilla Role of pore volume and surface diffusion in the adsorption of aromatic compounds on activated carbon Adsorption, 19 (2013), pp. 945-957, 10.1007/s10450-013-9502-y
dc.relationH.B. Quesada, A.T.A. Baptista, L.F. Cusioli, D. Seibert, C. de Oliveira Bezerra, R. Bergamasco Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: a review Chemosphere, 222 (2019), pp. 766-780, 10.1016/j.chemosphere.2019.02.009
dc.relationJ.C.G. Sousa, A.R. Ribeiro, M.O. Barbosa, M.F.R. Pereira, A.M.T. Silva A review on environmental monitoring of water organic pollutants identified by EU guidelines J. Hazard. Mater., 344 (2018), pp. 146-162, 10.1016/j.jhazmat.2017.09.058
dc.relationM. Gros, M. Petrović, A. Ginebreda, D. Barceló Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes Environ. Int., 36 (2010), pp. 15-26, 10.1016/j.envint.2009.09.002
dc.relationD. Smiljanić, B. de Gennaro, F. Izzo, A. Langella, A. Daković, C. Germinario, G.E. Rottinghaus, M. Spasojević, M. Mercurio Removal of emerging contaminants from water by zeolite-rich composites: a first approach aiming at diclofenac and ketoprofen Microporous Mesoporous Mater., 298 (2020), Article 110057, 10.1016/j.micromeso.2020.110057
dc.relationE.L. Foletto, C.T. Weber, D.S. Paz, M.A. Mazutti, L. Meili, M.M. Bassaco, G.C. Collazzo Adsorption of leather dye onto activated carbon prepared from bottle gourd: equilibrium, kinetic and mechanism studies Water Sci. Technol., 67 (2013), pp. 201-209, 10.2166/wst.2012.555
dc.relationB. Linhares, C.T. Weber, E.L. Foletto, D.S. Paz, M.A. Mazutti, G.C. Collazzo Activated carbon prepared from yerba mate used as a novel adsorbent for removal of tannery dye from aqueous solution Environ. Technol., 34 (2013), pp. 2401-2406, 10.1080/09593330.2013.770562
dc.relationP. Rai, K.P. Singh Valorization of Poly (ethylene) terephthalate (PET) wastes into magnetic carbon for adsorption of antibiotic from water: Characterization and application J. Environ. Manag., 207 (2018), pp. 249-261, 10.1016/j.jenvman.2017.11.047
dc.relationZ. Han, B. Sani, W. Mrozik, M. Obst, B. Beckingham, H.K. Karapanagioti, D. Werner Magnetite impregnation effects on the sorbent properties of activated carbons and biochars Water Res., 70 (2015), pp. 394-403, 10.1016/j.watres.2014.12.016
dc.relationG.L. Dotto, G. McKay Current scenario and challenges in adsorption for water treatment J. Environ. Chem. Eng., 8 (2020), Article 103988, 10.1016/j.jece.2020.103988
dc.relationJ.T.C. Yokoyama, A.L. Cazetta, K.C. Bedin, L. Spessato, J.M. Fonseca, P.S. Carraro, A. Ronix, M.C. Silva, T.L. Silva, V.C. Almeida Stevia residue as new precursor of CO 2 -activated carbon: optimization of preparation condition and adsorption study of triclosan Ecotoxicol. Environ. Saf., 172 (2019), pp. 403-410, 10.1016/j.ecoenv.2019.01.096
dc.relationD.C. Henrique, D.U. Quintela, A.H. Ide, A. Erto, J.L.D.S. Duarte, L. Meili Calcined Mytella falcata shells as alternative adsorbent for efficient removal of rifampicin antibiotic from aqueous solutions J. Environ. Chem. Eng., 8 (2020), Article 103782, 10.1016/j.jece.2020.103782
dc.relationC. de Oliveira Carvalho, D.L. Costa Rodrigues, É.C. Lima, C. Santanna Umpierres, D.F. Caicedo Chaguezac, F. Machado Machado Kinetic, equilibrium, and thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jerivá (Syagrus romanzoffiana) Environ. Sci. Pollut. Res., 26 (2019), pp. 4690-4702, 10.1007/s11356-018-3954-2
dc.relationM.E. Peñafiel, J.M. Matesanz, E. Vanegas, D. Bermejo, R. Mosteo, M.P. Ormad Comparative adsorption of ciprofloxacin on sugarcane bagasse from Ecuador and on commercial powdered activated carbon Sci. Total Environ., 750 (2021), Article 141498, 10.1016/j.scitotenv.2020.141498
dc.relationH. Nourmoradi, K.F. Moghadam, A. Jafari, B. Kamarehie Removal of acetaminophen and ibuprofen from aqueous solutions by activated carbon derived from Quercus brantii (Oak) acorn as a low-cost biosorbent J. Environ. Chem. Eng., 6 (2018), pp. 6807-6815, 10.1016/j.jece.2018.10.047
dc.relationM.S. Gachet, W. Schühly Jacaranda-An ethnopharmacological and phytochemical review J. Ethnopharmacol., 121 (2009), pp. 14-27, 10.1016/j.jep.2008.10.015
dc.relationH. Treviño-Cordero, L.G. Juárez-Aguilar, D.I. Mendoza-Castillo, V. Hernández-Montoya, A. Bonilla-Petriciolet, M.A. Montes-Morán Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water Ind. Crops Prod., 42 (2013), pp. 315-323, 10.1016/j.indcrop.2012.05.029
dc.relationN.K. Mondal, P. Ghosh, K. Sen, A. Mondal, P. Debnath Efficacy of onion peel towards removal of nitrate from aqueous solution and field samples Environ. Nanotechnol., Monit. Manag., 11 (2019), Article 100222, 10.1016/j.enmm.2019.100222
dc.relationS.Y. Lagergren, Zur Theorie der sogenannten Adsorption, 1898. 〈http://books2ebooks.eu/odm/html/nls/en/agb.html〉.
dc.relationH. Freundlich Über die Adsorption in Lösungen Z. Phys. Chem., 57U (1907), 10.1515/zpch-1907-5723
dc.relationM.M. Dubinin, V.A. Astakhov Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents Bull. Acad. Sci. USSR Div. Chem. Sci., 20 (1971), pp. 3-7, 10.1007/BF00849307
dc.relationM. Temkin, V. Pyzhev Kinetics of the synthesis of ammonia on promoted iron catalysts J. Phys. Chem., 13 (1939), pp. 851-867
dc.relationI. Langmuir The adsorption of gases on plane surfaces of glass, mica and platinum J. Am. Chem. Soc., 40 (1918), pp. 1361-1403, 10.1021/ja02242a004
dc.relationE.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption J. Mol. Liq., 273 (2019), pp. 425-434, 10.1016/j.molliq.2018.10.048
dc.relationX. Wang, L. Gu, P. Zhou, N. Zhu, C. Li, H. Tao, H. Wen, D. Zhang Pyrolytic temperature dependent conversion of sewage sludge to carbon catalyst and their performance in persulfate degradation of 2-Naphthol Chem. Eng. J., 324 (2017), pp. 203-215, 10.1016/j.cej.2017.04.101
dc.relationO. Üner Hydrogen storage capacity and methylene blue adsorption performance of activated carbon produced from Arundo donax Mater. Chem. Phys., 237 (2019), Article 121858, 10.1016/j.matchemphys.2019.121858
dc.relationM.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions J. Clean. Prod., 171 (2018), pp. 57-65, 10.1016/j.jclepro.2017.10.007
dc.relationS. Sun, Q. Yu, M. Li, H. Zhao, C. Wu Preparation of coffee-shell activated carbon and its application for water vapor adsorption Renew. Energy, 142 (2019), pp. 11-19, 10.1016/j.renene.2019.04.097
dc.relationX. Li, S. Deng, H. Fu Inhibition of the corrosion of steel in HCl, H 2SO 4 solutions by bamboo leaf extract Corros. Sci., 62 (2012), pp. 163-175, 10.1016/j.corsci.2012.05.008
dc.relationL. Spessato, K.C. Bedin, A.L. Cazetta, I.P.A.F. Souza, V.A. Duarte, L.H.S. Crespo, M.C. Silva, R.M. Pontes, V.C. Almeida KOH-super activated carbon from biomass waste: insights into the paracetamol adsorption mechanism and thermal regeneration cycles J. Hazard. Mater., 371 (2019), pp. 499-505, 10.1016/j.jhazmat.2019.02.102
dc.relationV. Boonamnuayvitaya, S. Sae-Ung, W. Tanthapanichakoon Preparation of activated carbons from coffee residue for the adsorption of formaldehyde Sep. Purif. Technol., 42 (2005), pp. 159-168, 10.1016/j.seppur.2004.07.007
dc.relationK.J.D. Silverstein, R.M. Webster, X. F Spectrometric Identification of Organic Compounds (7th ed.), John Wiley & Sons Inc,, USA (2005)
dc.relationA.N.A. El-Hendawy Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions J. Anal. Appl. Pyrolysis, 75 (2006), pp. 159-166, 10.1016/j.jaap.2005.05.004
dc.relationS. Nanda, P. Mohanty, K.K. Pant, S. Naik, J.A. Kozinski, A.K. Dalai Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels Bioenergy Res., 6 (2013), pp. 663-677, 10.1007/s12155-012-9281-4
dc.relationT. Xiao, H. Yuan, Q. Ma, X. Guo, Y. Wu An approach for in situ qualitative and quantitative analysis of moisture adsorption in nanogram-scaled lignin by using micro-FTIR spectroscopy and partial least squares regression Int. J. Biol. Macromol., 132 (2019), pp. 1106-1111, 10.1016/j.ijbiomac.2019.04.043
dc.relationL. Niazi, A. Lashanizadegan, H. Sharififard Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions J. Clean. Prod., 185 (2018), pp. 554-561, 10.1016/j.jclepro.2018.03.026
dc.relationT.K. Sen, S. Afroze, H.M. Ang Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata Water Air Soil Pollut., 218 (2011), pp. 499-515, 10.1007/s11270-010-0663-y
dc.relationM.M. Hamed, M.M.S. Ali, M. Holiel Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+154Eu: equilibrium, kinetic and thermodynamic studies J. Environ. Radioact., 164 (2016), pp. 113-124, 10.1016/j.jenvrad.2016.07.005
dc.relationK. Munusamy, R.S. Somani, H.C. Bajaj Breakthrough adsorption studies of mixed gases on mango (Mangifera indicaL.) seed shell derived activated carbon extrudes J. Environ. Chem. Eng., 3 (2015), pp. 2750-2759, 10.1016/j.jece.2015.05.010
dc.relationJ. Georgin, G.L. Dotto, M.A. Mazutti, E.L. Foletto Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions J. Environ. Chem. Eng., 4 (2016), pp. 266-275, 10.1016/j.jece.2015.11.018
dc.relationR. Sharma, A. Sarswat, C.U. Pittman, D. Mohan Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods RSC Adv., 7 (2017), pp. 8606-8624, 10.1039/C6RA25295H
dc.relationS.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, T.J. Morgan An overview of the organic and inorganic phase composition of biomass Fuel, 94 (2012), pp. 1-33, 10.1016/j.fuel.2011.09.030
dc.relationA. Ros, M.A. Montes-Moran, E. Fuente, D.M. Nevskaia, M.J. Martin Dried sludges and sludge-based chars for H2S removal at low temperature: Influence of sewage sludge characteristics Environ. Sci. Technol., 40 (2006), pp. 302-309, 10.1021/es050996j
dc.relationG. Crini, P.M. Badot Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature Prog. Polym. Sci., 33 (2008), pp. 399-447, 10.1016/j.progpolymsci.2007.11.001
dc.relationJ. Cheng, J.J. Gu, W. Tao, P. Wang, L. Liu, C.Y. Wang, Y.K. Li, X.H. Feng, G.H. Qiu, F.F. Cao Edible fungus slag derived nitrogen-doped hierarchical porous carbon as a high-performance adsorbent for rapid removal of organic pollutants from water Bioresour. Technol., 294 (2019), Article 122149, 10.1016/j.biortech.2019.122149
dc.relationM.J. Puchana-Rosero, M.A. Adebayo, E.C. Lima, F.M. Machado, P.S. Thue, J.C.P. Vaghetti, C.S. Umpierres, M. Gutterres Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes Colloids Surf. A Physicochem. Eng. Asp., 504 (2016), pp. 105-115, 10.1016/j.colsurfa.2016.05.059
dc.relationM.C. Ribas, M.A. Adebayo, L.D.T. Prola, E.C. Lima, R. Cataluña, L.A. Feris, M.J. Puchana-Rosero, F.M. Machado, F.A. Pavan, T. Calvete Comparison of a homemade cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions Chem. Eng. J., 248 (2014), pp. 315-326, 10.1016/j.cej.2014.03.054
dc.relationA.F.M. Streit, G.C. Collazzo, S.P. Druzian, R.S. Verdi, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry Chemosphere, 262 (2021), Article 128322, 10.1016/j.chemosphere.2020.128322
dc.relationM. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) Pure Appl. Chem., 87 (2015), pp. 1051-1069, 10.1515/pac-2014-1117
dc.relationY. Zhang, D. Shao, J. Yan, X. Jia, Y. Li, P. Yu, T. Zhang The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi Formations, Sichuan Basin, China J. Nat. Gas. Geosci., 1 (2016), pp. 213-220, 10.1016/j.jnggs.2016.08.002
dc.relationD. Guo, Y. Li, B. Cui, M. Hu, S. Luo, B. Ji, Y. Liu Natural adsorption of methylene blue by waste fallen leaves of Magnoliaceae and its repeated thermal regeneration for reuse J. Clean. Prod., 267 (2020), Article 121903, 10.1016/j.jclepro.2020.121903
dc.relationS. Li, K. Han, J. Li, M. Li, C. Lu Preparation and characterization of super activated carbon produced from gulfweed by KOH activation Microporous Mesoporous Mater., 243 (2017), pp. 291-300, 10.1016/j.micromeso.2017.02.052
dc.relationR. Dong, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu Removal of phenol from aqueous solution using acid-modified Pseudomonas putida-sepiolite/ZIF-8 bio-nanocomposites Chemosphere, 239 (2020), Article 124708, 10.1016/j.chemosphere.2019.124708
dc.relationM. Essandoh, D. Wolgemuth, C.U. Pittman, D. Mohan, T. Mlsna Phenoxy Herbicide Removal from Aqueous Solutions Using Fast Pyrolysis Switchgrass Biochar, Elsevier Ltd (2017), 10.1016/j.chemosphere.2017.01.105
dc.relationM. Galhetas, A.S. Mestre, M.L. Pinto, I. Gulyurtlu, H. Lopes, A.P. Carvalho Carbon-based materials prepared from pine gasification residues for acetaminophen adsorption Chem. Eng. J., 240 (2014), pp. 344-351, 10.1016/j.cej.2013.11.067
dc.relationI. Ali, Z.A. Al-Othman, A. Alwarthan, M. Asim, T.A. Khan Removal of arsenic species from water by batch and column operations on bagasse fly ash Environ. Sci. Pollut. Res., 21 (2014), pp. 3218-3229, 10.1007/s11356-013-2235-3
dc.relationE. Worch Adsorption technology in water treatment: fundamentals, processes, and modeling Adsorpt. Technol. Water Treat.: Fundam. Process. Model. (2012), 10.1515/9783110240238
dc.relationM. Suzuki Adsorption Engineering (1st ed.), Elsevier (1990)
dc.relationC.S. Umpierres, P.S. Thue, E.C. Lima, G.S. do. Reis, I.A.S. de Brum, W.S. d Alencar, S.L.P. Dias, G.L. Dotto Microwave-activated carbons from tucumã (Astrocaryum aculeatum) seed for efficient removal of 2-nitrophenol from aqueous solutions Environ. Technol. (U. Kingd.), 39 (2018), pp. 1173-1187, 10.1080/09593330.2017.1323957
dc.relationF.M. Machado, S.A. Carmalin, E.C. Lima, S.L.P. Dias, L.D.T. Prola, C. Saucier, I.M. Jauris, I. Zanella, S.B. Fagan Adsorption of alizarin red S dye by carbon nanotubes: an experimental and theoretical investigation J. Phys. Chem. C, 120 (2016), pp. 18296-18306, 10.1021/acs.jpcc.6b03884
dc.relationM.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang Dye and its removal from aqueous solution by adsorption: a review Adv. Colloid Interface Sci., 209 (2014), pp. 172-184, 10.1016/j.cis.2014.04.002
dc.relationL. Sellaoui, D.S.P. Franco, G.L. Dotto, É.C. Lima, A.B. Lamine Single and binary adsorption of cobalt and methylene blue on modified chitin: application of the Hill and exclusive extended Hill models J. Mol. Liq., 233 (2017), pp. 543-550, 10.1016/j.molliq.2016.10.079
dc.relationA.C. Fröhlich, E.L. Foletto, G.L. Dotto Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions J. Clean. Prod., 229 (2019), pp. 828-837, 10.1016/j.jclepro.2019.05.037
dc.relationN. Yao, C. Li, J. Yu, Q. Xu, S. Wei, Z. Tian, Z. Yang, W. Yang, J. Shen Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water Sep. Purif. Technol., 236 (2020), Article 116278, 10.1016/j.seppur.2019.116278
dc.relationA. Gómez-Avilés, L. Sellaoui, M. Badawi, A. Bonilla-Petriciolet, J. Bedia, C. Belver Simultaneous adsorption of acetaminophen, diclofenac and tetracycline by organo-sepiolite: experiments and statistical physics modelling Chem. Eng. J., 404 (2021), Article 126601, 10.1016/j.cej.2020.126601
dc.relationE.M. Cuerda-Correa, J.R. Domínguez-Vargas, F.J. Olivares-Marín, J.B. de Heredia On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water J. Hazard. Mater., 177 (2010), pp. 1046-1053, 10.1016/j.jhazmat.2010.01.026
dc.relationY. Gao, M.A. Deshusses Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter Environ. Technol., 32 (2011), pp. 1719-1727, 10.1080/09593330.2011.554888
dc.relationR. Baccar, M. Sarrà, J. Bouzid, M. Feki, P. Blánquez Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product Chem. Eng. J., 211–212 (2012), pp. 310-317, 10.1016/j.cej.2012.09.099
dc.relationF.F. Liu, J. Zhao, S. Wang, P. Du, B. Xing Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes Environ. Sci. Technol., 48 (2014), pp. 13197-13206, 10.1021/es5034684
dc.relationI. Ali, Z.A. Al-Othman, A. Alwarthan Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water J. Mol. Liq., 219 (2016), pp. 858-864, 10.1016/j.molliq.2016.04.031
dc.relationY.L.D.O. Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana) J. Environ. Chem. Eng., 9 (2021), Article 104911, 10.1016/j.jece.2020.104911
dc.relationW. Liu, Q. Yang, Z. Yang, W. Wang Adsorption of 2,4-D on magnetic graphene and mechanism study Colloids Surf. A Physicochem. Eng. Asp., 509 (2016), pp. 367-375, 10.1016/j.colsurfa.2016.09.039
dc.relationY. Lu, Y. Li, Y. Gao, B.X. Ai, W. Gao, G. Peng Facile preparation of 3D GO with caffeic acid for efficient adsorption of norfloxacin and ketoprofen Water Sci. Technol., 81 (2020), pp. 1461-1470, 10.2166/wst.2020.193
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceJournal of Environmental Chemical Engineering
dc.sourcehttps://www.sciencedirect.com/science/article/abs/pii/S2213343721006539
dc.subjectActivated carbon
dc.subjectJacaranda mimosifolia
dc.subjectKetoprofen
dc.subjectAdsorption
dc.titleDevelopment of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución