dc.creator | Georgin, Jordana | |
dc.creator | de O. Salomón, Yamil L. | |
dc.creator | Franco, Dison S.P. | |
dc.creator | Netto, Matias S. | |
dc.creator | Piccilli, Daniel G.A. | |
dc.creator | Perondi, Daniele | |
dc.creator | Silva, Luis F.O. | |
dc.creator | Foletto, Edson L. | |
dc.creator | Dotto, Guilherme L. | |
dc.date | 2021-06-29T21:40:50Z | |
dc.date | 2021-06-29T21:40:50Z | |
dc.date | 2021 | |
dc.date.accessioned | 2023-10-03T19:43:22Z | |
dc.date.available | 2023-10-03T19:43:22Z | |
dc.identifier | https://hdl.handle.net/11323/8437 | |
dc.identifier | https://doi.org/10.1016/j.jece.2021.105676 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9171769 | |
dc.description | In this work, a high porous activated carbon from Jacaranda mimosifolia was developed and employed for ketoprofen adsorption. After the pyrolysis process at 973.15 K, the material presented cavities with different sizes allocated on the particle surface. The material presented a pH at the point of zero charge of 4.1 with the best adsorption at pH 2. The best adsorbent dosage was 0.72 g L−1, corresponding to a removal of 96%. The system reached the adsorption equilibrium after 120 min and was described by the linear driving force model. The isotherms revealed that the adsorption capacity decreased with the temperature and followed the Langmuir model, with a maximum adsorption capacity of 303.9 mg g−1. This high capacity can be associated with the high surface area (928 m2 g−1) and pore volume (0.521 cm3 g−1) values. The thermodynamic values indicated that the adsorption system is spontaneous and exothermic. The enthalpy value indicates that the interactions between the adsorbent and adsorbate are physical. Regeneration tests showed a decreasing percentage of removal of 7.86% after 5 cycles. Finally, the adsorbent showed efficiency when treating a simulated effluent containing drugs and inorganic salts, showing the removal of 71.43%. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.relation | A. Zenker, M.R. Cicero, F. Prestinaci, P. Bottoni, M. Carere
Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment
J. Environ. Manag., 133 (2014), pp. 378-387, 10.1016/j.jenvman.2013.12.017 | |
dc.relation | S. Maldonado-Torres, R. Gurung, H. Rijal, A. Chan, S. Acharya, S. Rogelj, M. Piyasena, G. Rubasinghege
Fate, transformation, and toxicological impacts of pharmaceutical and personal care products in surface waters
Environ. Health Insights, 12 (2018), pp. 1-4, 10.1177/1178630218795836 | |
dc.relation | A.J. Ebele, M. Abou-Elwafa Abdallah, S. Harrad
Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment
Emerg. Contam., 3 (2017), pp. 1-16, 10.1016/j.emcon.2016.12.004 | |
dc.relation | B. Petrie, R. Barden, B. Kasprzyk-Hordern
A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring
Water Res., 72 (2015), pp. 3-27, 10.1016/j.watres.2014.08.053 | |
dc.relation | R. Ocampo-Pérez, R. Leyva-Ramos, M. Sanchez-Polo, J. Rivera-Utrilla
Role of pore volume and surface diffusion in the adsorption of aromatic compounds on activated carbon
Adsorption, 19 (2013), pp. 945-957, 10.1007/s10450-013-9502-y | |
dc.relation | H.B. Quesada, A.T.A. Baptista, L.F. Cusioli, D. Seibert, C. de Oliveira Bezerra, R. Bergamasco
Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: a review
Chemosphere, 222 (2019), pp. 766-780, 10.1016/j.chemosphere.2019.02.009 | |
dc.relation | J.C.G. Sousa, A.R. Ribeiro, M.O. Barbosa, M.F.R. Pereira, A.M.T. Silva
A review on environmental monitoring of water organic pollutants identified by EU guidelines
J. Hazard. Mater., 344 (2018), pp. 146-162, 10.1016/j.jhazmat.2017.09.058 | |
dc.relation | M. Gros, M. Petrović, A. Ginebreda, D. Barceló
Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes
Environ. Int., 36 (2010), pp. 15-26, 10.1016/j.envint.2009.09.002 | |
dc.relation | D. Smiljanić, B. de Gennaro, F. Izzo, A. Langella, A. Daković, C. Germinario, G.E. Rottinghaus, M. Spasojević, M. Mercurio
Removal of emerging contaminants from water by zeolite-rich composites: a first approach aiming at diclofenac and ketoprofen
Microporous Mesoporous Mater., 298 (2020), Article 110057, 10.1016/j.micromeso.2020.110057 | |
dc.relation | E.L. Foletto, C.T. Weber, D.S. Paz, M.A. Mazutti, L. Meili, M.M. Bassaco, G.C. Collazzo
Adsorption of leather dye onto activated carbon prepared from bottle gourd: equilibrium, kinetic and mechanism studies
Water Sci. Technol., 67 (2013), pp. 201-209, 10.2166/wst.2012.555 | |
dc.relation | B. Linhares, C.T. Weber, E.L. Foletto, D.S. Paz, M.A. Mazutti, G.C. Collazzo
Activated carbon prepared from yerba mate used as a novel adsorbent for removal of tannery dye from aqueous solution
Environ. Technol., 34 (2013), pp. 2401-2406, 10.1080/09593330.2013.770562 | |
dc.relation | P. Rai, K.P. Singh
Valorization of Poly (ethylene) terephthalate (PET) wastes into magnetic carbon for adsorption of antibiotic from water: Characterization and application
J. Environ. Manag., 207 (2018), pp. 249-261, 10.1016/j.jenvman.2017.11.047 | |
dc.relation | Z. Han, B. Sani, W. Mrozik, M. Obst, B. Beckingham, H.K. Karapanagioti, D. Werner
Magnetite impregnation effects on the sorbent properties of activated carbons and biochars
Water Res., 70 (2015), pp. 394-403, 10.1016/j.watres.2014.12.016 | |
dc.relation | G.L. Dotto, G. McKay
Current scenario and challenges in adsorption for water treatment
J. Environ. Chem. Eng., 8 (2020), Article 103988, 10.1016/j.jece.2020.103988 | |
dc.relation | J.T.C. Yokoyama, A.L. Cazetta, K.C. Bedin, L. Spessato, J.M. Fonseca, P.S. Carraro, A. Ronix, M.C. Silva, T.L. Silva, V.C. Almeida
Stevia residue as new precursor of CO 2 -activated carbon: optimization of preparation condition and adsorption study of triclosan
Ecotoxicol. Environ. Saf., 172 (2019), pp. 403-410, 10.1016/j.ecoenv.2019.01.096 | |
dc.relation | D.C. Henrique, D.U. Quintela, A.H. Ide, A. Erto, J.L.D.S. Duarte, L. Meili
Calcined Mytella falcata shells as alternative adsorbent for efficient removal of rifampicin antibiotic from aqueous solutions
J. Environ. Chem. Eng., 8 (2020), Article 103782, 10.1016/j.jece.2020.103782 | |
dc.relation | C. de Oliveira Carvalho, D.L. Costa Rodrigues, É.C. Lima, C. Santanna Umpierres, D.F. Caicedo Chaguezac, F. Machado Machado
Kinetic, equilibrium, and thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jerivá (Syagrus romanzoffiana)
Environ. Sci. Pollut. Res., 26 (2019), pp. 4690-4702, 10.1007/s11356-018-3954-2 | |
dc.relation | M.E. Peñafiel, J.M. Matesanz, E. Vanegas, D. Bermejo, R. Mosteo, M.P. Ormad
Comparative adsorption of ciprofloxacin on sugarcane bagasse from Ecuador and on commercial powdered activated carbon
Sci. Total Environ., 750 (2021), Article 141498, 10.1016/j.scitotenv.2020.141498 | |
dc.relation | H. Nourmoradi, K.F. Moghadam, A. Jafari, B. Kamarehie
Removal of acetaminophen and ibuprofen from aqueous solutions by activated carbon derived from Quercus brantii (Oak) acorn as a low-cost biosorbent
J. Environ. Chem. Eng., 6 (2018), pp. 6807-6815, 10.1016/j.jece.2018.10.047 | |
dc.relation | M.S. Gachet, W. Schühly
Jacaranda-An ethnopharmacological and phytochemical review
J. Ethnopharmacol., 121 (2009), pp. 14-27, 10.1016/j.jep.2008.10.015 | |
dc.relation | H. Treviño-Cordero, L.G. Juárez-Aguilar, D.I. Mendoza-Castillo, V. Hernández-Montoya, A. Bonilla-Petriciolet, M.A. Montes-Morán
Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water
Ind. Crops Prod., 42 (2013), pp. 315-323, 10.1016/j.indcrop.2012.05.029 | |
dc.relation | N.K. Mondal, P. Ghosh, K. Sen, A. Mondal, P. Debnath
Efficacy of onion peel towards removal of nitrate from aqueous solution and field samples
Environ. Nanotechnol., Monit. Manag., 11 (2019), Article 100222, 10.1016/j.enmm.2019.100222 | |
dc.relation | S.Y. Lagergren, Zur Theorie der sogenannten Adsorption, 1898. 〈http://books2ebooks.eu/odm/html/nls/en/agb.html〉. | |
dc.relation | H. Freundlich
Über die Adsorption in Lösungen
Z. Phys. Chem., 57U (1907), 10.1515/zpch-1907-5723 | |
dc.relation | M.M. Dubinin, V.A. Astakhov
Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents
Bull. Acad. Sci. USSR Div. Chem. Sci., 20 (1971), pp. 3-7, 10.1007/BF00849307 | |
dc.relation | M. Temkin, V. Pyzhev
Kinetics of the synthesis of ammonia on promoted iron catalysts
J. Phys. Chem., 13 (1939), pp. 851-867 | |
dc.relation | I. Langmuir
The adsorption of gases on plane surfaces of glass, mica and platinum
J. Am. Chem. Soc., 40 (1918), pp. 1361-1403, 10.1021/ja02242a004 | |
dc.relation | E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos
A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption
J. Mol. Liq., 273 (2019), pp. 425-434, 10.1016/j.molliq.2018.10.048 | |
dc.relation | X. Wang, L. Gu, P. Zhou, N. Zhu, C. Li, H. Tao, H. Wen, D. Zhang
Pyrolytic temperature dependent conversion of sewage sludge to carbon catalyst and their performance in persulfate degradation of 2-Naphthol
Chem. Eng. J., 324 (2017), pp. 203-215, 10.1016/j.cej.2017.04.101 | |
dc.relation | O. Üner
Hydrogen storage capacity and methylene blue adsorption performance of activated carbon produced from Arundo donax
Mater. Chem. Phys., 237 (2019), Article 121858, 10.1016/j.matchemphys.2019.121858 | |
dc.relation | M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto
New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions
J. Clean. Prod., 171 (2018), pp. 57-65, 10.1016/j.jclepro.2017.10.007 | |
dc.relation | S. Sun, Q. Yu, M. Li, H. Zhao, C. Wu
Preparation of coffee-shell activated carbon and its application for water vapor adsorption
Renew. Energy, 142 (2019), pp. 11-19, 10.1016/j.renene.2019.04.097 | |
dc.relation | X. Li, S. Deng, H. Fu
Inhibition of the corrosion of steel in HCl, H 2SO 4 solutions by bamboo leaf extract
Corros. Sci., 62 (2012), pp. 163-175, 10.1016/j.corsci.2012.05.008 | |
dc.relation | L. Spessato, K.C. Bedin, A.L. Cazetta, I.P.A.F. Souza, V.A. Duarte, L.H.S. Crespo, M.C. Silva, R.M. Pontes, V.C. Almeida
KOH-super activated carbon from biomass waste: insights into the paracetamol adsorption mechanism and thermal regeneration cycles
J. Hazard. Mater., 371 (2019), pp. 499-505, 10.1016/j.jhazmat.2019.02.102 | |
dc.relation | V. Boonamnuayvitaya, S. Sae-Ung, W. Tanthapanichakoon
Preparation of activated carbons from coffee residue for the adsorption of formaldehyde
Sep. Purif. Technol., 42 (2005), pp. 159-168, 10.1016/j.seppur.2004.07.007 | |
dc.relation | K.J.D. Silverstein, R.M. Webster, X. F
Spectrometric Identification of Organic Compounds (7th ed.), John Wiley & Sons Inc,, USA (2005) | |
dc.relation | A.N.A. El-Hendawy
Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions
J. Anal. Appl. Pyrolysis, 75 (2006), pp. 159-166, 10.1016/j.jaap.2005.05.004 | |
dc.relation | S. Nanda, P. Mohanty, K.K. Pant, S. Naik, J.A. Kozinski, A.K. Dalai
Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels
Bioenergy Res., 6 (2013), pp. 663-677, 10.1007/s12155-012-9281-4 | |
dc.relation | T. Xiao, H. Yuan, Q. Ma, X. Guo, Y. Wu
An approach for in situ qualitative and quantitative analysis of moisture adsorption in nanogram-scaled lignin by using micro-FTIR spectroscopy and partial least squares regression
Int. J. Biol. Macromol., 132 (2019), pp. 1106-1111, 10.1016/j.ijbiomac.2019.04.043 | |
dc.relation | L. Niazi, A. Lashanizadegan, H. Sharififard
Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions
J. Clean. Prod., 185 (2018), pp. 554-561, 10.1016/j.jclepro.2018.03.026 | |
dc.relation | T.K. Sen, S. Afroze, H.M. Ang
Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata
Water Air Soil Pollut., 218 (2011), pp. 499-515, 10.1007/s11270-010-0663-y | |
dc.relation | M.M. Hamed, M.M.S. Ali, M. Holiel
Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+154Eu: equilibrium, kinetic and thermodynamic studies
J. Environ. Radioact., 164 (2016), pp. 113-124, 10.1016/j.jenvrad.2016.07.005 | |
dc.relation | K. Munusamy, R.S. Somani, H.C. Bajaj
Breakthrough adsorption studies of mixed gases on mango (Mangifera indicaL.) seed shell derived activated carbon extrudes
J. Environ. Chem. Eng., 3 (2015), pp. 2750-2759, 10.1016/j.jece.2015.05.010 | |
dc.relation | J. Georgin, G.L. Dotto, M.A. Mazutti, E.L. Foletto
Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions
J. Environ. Chem. Eng., 4 (2016), pp. 266-275, 10.1016/j.jece.2015.11.018 | |
dc.relation | R. Sharma, A. Sarswat, C.U. Pittman, D. Mohan
Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods
RSC Adv., 7 (2017), pp. 8606-8624, 10.1039/C6RA25295H | |
dc.relation | S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, T.J. Morgan
An overview of the organic and inorganic phase composition of biomass
Fuel, 94 (2012), pp. 1-33, 10.1016/j.fuel.2011.09.030 | |
dc.relation | A. Ros, M.A. Montes-Moran, E. Fuente, D.M. Nevskaia, M.J. Martin
Dried sludges and sludge-based chars for H2S removal at low temperature: Influence of sewage sludge characteristics
Environ. Sci. Technol., 40 (2006), pp. 302-309, 10.1021/es050996j | |
dc.relation | G. Crini, P.M. Badot
Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature
Prog. Polym. Sci., 33 (2008), pp. 399-447, 10.1016/j.progpolymsci.2007.11.001 | |
dc.relation | J. Cheng, J.J. Gu, W. Tao, P. Wang, L. Liu, C.Y. Wang, Y.K. Li, X.H. Feng, G.H. Qiu, F.F. Cao
Edible fungus slag derived nitrogen-doped hierarchical porous carbon as a high-performance adsorbent for rapid removal of organic pollutants from water
Bioresour. Technol., 294 (2019), Article 122149, 10.1016/j.biortech.2019.122149 | |
dc.relation | M.J. Puchana-Rosero, M.A. Adebayo, E.C. Lima, F.M. Machado, P.S. Thue, J.C.P. Vaghetti, C.S. Umpierres, M. Gutterres
Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes
Colloids Surf. A Physicochem. Eng. Asp., 504 (2016), pp. 105-115, 10.1016/j.colsurfa.2016.05.059 | |
dc.relation | M.C. Ribas, M.A. Adebayo, L.D.T. Prola, E.C. Lima, R. Cataluña, L.A. Feris, M.J. Puchana-Rosero, F.M. Machado, F.A. Pavan, T. Calvete
Comparison of a homemade cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions
Chem. Eng. J., 248 (2014), pp. 315-326, 10.1016/j.cej.2014.03.054 | |
dc.relation | A.F.M. Streit, G.C. Collazzo, S.P. Druzian, R.S. Verdi, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto
Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry
Chemosphere, 262 (2021), Article 128322, 10.1016/j.chemosphere.2020.128322 | |
dc.relation | M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing
Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)
Pure Appl. Chem., 87 (2015), pp. 1051-1069, 10.1515/pac-2014-1117 | |
dc.relation | Y. Zhang, D. Shao, J. Yan, X. Jia, Y. Li, P. Yu, T. Zhang
The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi Formations, Sichuan Basin, China
J. Nat. Gas. Geosci., 1 (2016), pp. 213-220, 10.1016/j.jnggs.2016.08.002 | |
dc.relation | D. Guo, Y. Li, B. Cui, M. Hu, S. Luo, B. Ji, Y. Liu
Natural adsorption of methylene blue by waste fallen leaves of Magnoliaceae and its repeated thermal regeneration for reuse
J. Clean. Prod., 267 (2020), Article 121903, 10.1016/j.jclepro.2020.121903 | |
dc.relation | S. Li, K. Han, J. Li, M. Li, C. Lu
Preparation and characterization of super activated carbon produced from gulfweed by KOH activation
Microporous Mesoporous Mater., 243 (2017), pp. 291-300, 10.1016/j.micromeso.2017.02.052 | |
dc.relation | R. Dong, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu
Removal of phenol from aqueous solution using acid-modified Pseudomonas putida-sepiolite/ZIF-8 bio-nanocomposites
Chemosphere, 239 (2020), Article 124708, 10.1016/j.chemosphere.2019.124708 | |
dc.relation | M. Essandoh, D. Wolgemuth, C.U. Pittman, D. Mohan, T. Mlsna
Phenoxy Herbicide Removal from Aqueous Solutions Using Fast Pyrolysis Switchgrass Biochar, Elsevier Ltd (2017), 10.1016/j.chemosphere.2017.01.105 | |
dc.relation | M. Galhetas, A.S. Mestre, M.L. Pinto, I. Gulyurtlu, H. Lopes, A.P. Carvalho
Carbon-based materials prepared from pine gasification residues for acetaminophen adsorption
Chem. Eng. J., 240 (2014), pp. 344-351, 10.1016/j.cej.2013.11.067 | |
dc.relation | I. Ali, Z.A. Al-Othman, A. Alwarthan, M. Asim, T.A. Khan
Removal of arsenic species from water by batch and column operations on bagasse fly ash
Environ. Sci. Pollut. Res., 21 (2014), pp. 3218-3229, 10.1007/s11356-013-2235-3 | |
dc.relation | E. Worch
Adsorption technology in water treatment: fundamentals, processes, and modeling
Adsorpt. Technol. Water Treat.: Fundam. Process. Model. (2012), 10.1515/9783110240238 | |
dc.relation | M. Suzuki
Adsorption Engineering (1st ed.), Elsevier (1990) | |
dc.relation | C.S. Umpierres, P.S. Thue, E.C. Lima, G.S. do. Reis, I.A.S. de Brum, W.S. d Alencar, S.L.P. Dias, G.L. Dotto
Microwave-activated carbons from tucumã (Astrocaryum aculeatum) seed for efficient removal of 2-nitrophenol from aqueous solutions
Environ. Technol. (U. Kingd.), 39 (2018), pp. 1173-1187, 10.1080/09593330.2017.1323957 | |
dc.relation | F.M. Machado, S.A. Carmalin, E.C. Lima, S.L.P. Dias, L.D.T. Prola, C. Saucier, I.M. Jauris, I. Zanella, S.B. Fagan
Adsorption of alizarin red S dye by carbon nanotubes: an experimental and theoretical investigation
J. Phys. Chem. C, 120 (2016), pp. 18296-18306, 10.1021/acs.jpcc.6b03884 | |
dc.relation | M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang
Dye and its removal from aqueous solution by adsorption: a review
Adv. Colloid Interface Sci., 209 (2014), pp. 172-184, 10.1016/j.cis.2014.04.002 | |
dc.relation | L. Sellaoui, D.S.P. Franco, G.L. Dotto, É.C. Lima, A.B. Lamine
Single and binary adsorption of cobalt and methylene blue on modified chitin: application of the Hill and exclusive extended Hill models
J. Mol. Liq., 233 (2017), pp. 543-550, 10.1016/j.molliq.2016.10.079 | |
dc.relation | A.C. Fröhlich, E.L. Foletto, G.L. Dotto
Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions
J. Clean. Prod., 229 (2019), pp. 828-837, 10.1016/j.jclepro.2019.05.037 | |
dc.relation | N. Yao, C. Li, J. Yu, Q. Xu, S. Wei, Z. Tian, Z. Yang, W. Yang, J. Shen
Insight into adsorption of combined antibiotic-heavy metal contaminants on graphene oxide in water
Sep. Purif. Technol., 236 (2020), Article 116278, 10.1016/j.seppur.2019.116278 | |
dc.relation | A. Gómez-Avilés, L. Sellaoui, M. Badawi, A. Bonilla-Petriciolet, J. Bedia, C. Belver
Simultaneous adsorption of acetaminophen, diclofenac and tetracycline by organo-sepiolite: experiments and statistical physics modelling
Chem. Eng. J., 404 (2021), Article 126601, 10.1016/j.cej.2020.126601 | |
dc.relation | E.M. Cuerda-Correa, J.R. Domínguez-Vargas, F.J. Olivares-Marín, J.B. de Heredia
On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water
J. Hazard. Mater., 177 (2010), pp. 1046-1053, 10.1016/j.jhazmat.2010.01.026 | |
dc.relation | Y. Gao, M.A. Deshusses
Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter
Environ. Technol., 32 (2011), pp. 1719-1727, 10.1080/09593330.2011.554888 | |
dc.relation | R. Baccar, M. Sarrà, J. Bouzid, M. Feki, P. Blánquez
Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product
Chem. Eng. J., 211–212 (2012), pp. 310-317, 10.1016/j.cej.2012.09.099 | |
dc.relation | F.F. Liu, J. Zhao, S. Wang, P. Du, B. Xing
Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes
Environ. Sci. Technol., 48 (2014), pp. 13197-13206, 10.1021/es5034684 | |
dc.relation | I. Ali, Z.A. Al-Othman, A. Alwarthan
Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water
J. Mol. Liq., 219 (2016), pp. 858-864, 10.1016/j.molliq.2016.04.031 | |
dc.relation | Y.L.D.O. Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto
High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana)
J. Environ. Chem. Eng., 9 (2021), Article 104911, 10.1016/j.jece.2020.104911 | |
dc.relation | W. Liu, Q. Yang, Z. Yang, W. Wang
Adsorption of 2,4-D on magnetic graphene and mechanism study
Colloids Surf. A Physicochem. Eng. Asp., 509 (2016), pp. 367-375, 10.1016/j.colsurfa.2016.09.039 | |
dc.relation | Y. Lu, Y. Li, Y. Gao, B.X. Ai, W. Gao, G. Peng
Facile preparation of 3D GO with caffeic acid for efficient adsorption of norfloxacin and ketoprofen
Water Sci. Technol., 81 (2020), pp. 1461-1470, 10.2166/wst.2020.193 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | Journal of Environmental Chemical Engineering | |
dc.source | https://www.sciencedirect.com/science/article/abs/pii/S2213343721006539 | |
dc.subject | Activated carbon | |
dc.subject | Jacaranda mimosifolia | |
dc.subject | Ketoprofen | |
dc.subject | Adsorption | |
dc.title | Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |