dc.creator | Benedetti-Isaac, Juan Carlos | |
dc.creator | Camargo, Loida | |
dc.creator | Cardenas, Fernando P. | |
dc.creator | Lopez, Norman | |
dc.date | 2023-08-23T21:25:50Z | |
dc.date | 2025 | |
dc.date | 2023-08-23T21:25:50Z | |
dc.date | 2023 | |
dc.date.accessioned | 2023-10-03T19:43:13Z | |
dc.date.available | 2023-10-03T19:43:13Z | |
dc.identifier | JuanCarlos Benedetti-Isaac, Loida Camargo, Fernando P. Cardenas, Norman López, Effectiveness of deep brain stimulation in refractory and drug-resistant aggressiveness in autism spectrum disorder, Research in Autism Spectrum Disorders, Volume 102, 2023, 102131, ISSN 1750-9467, https://doi.org/10.1016/j.rasd.2023.102131 | |
dc.identifier | 1750-9467 | |
dc.identifier | https://hdl.handle.net/11323/10402 | |
dc.identifier | 10.1016/j.rasd.2023.102131 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9171742 | |
dc.description | Background. Aggressive behavior, resistant to pharmacological and psychological treatment, is observed in some cases of autism. The main objective of this study is to analyze the efficacy of deep brain stimulation (DBS) for aggressive behavior in severe autism. Method. The effectiveness of DBS was analyzed in a clinical follow-up of 5 autistic patients, with impaired functional activity and refractoriness to psychopharmacological and behavioral treatment. The patients were examined in medical meetings and evaluated by experienced professionals using the Overt Aggressiveness Scale (OAS), before surgical implantation and after 6, 12 and, 18 months of follow-up. Student's t-test analyses were performed to assess changes in aggressiveness scores. The effect size of surgical intervention on patients' OAS performance was estimated. Results. Before the intervention, patients scored very high on the aggressiveness scale. In the subsequent medical controls, a clinically and psychometrically significant decrease in aggressiveness and self-injury symptoms was observed. These data were confirmed by the parents up to 18 months of follow-up. Very large effect sizes were obtained in favor of DBS. Conclusions. In this case series, DBS significantly reduced aggressiveness and self-injury, favoring functionality, social adaptation of the patients, and improving the quality of life of the family. We believe that DBS may be a viable treatment option. | |
dc.format | 10 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Elsevier BV | |
dc.publisher | Netherlands | |
dc.relation | Research in Autism Spectrum Disorders | |
dc.relation | American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders. https://doi.org/10.1176/APPI.BOOKS.9780890425596. | |
dc.relation | Antonacci, D. J., Manuel, C., & Davis, E. (2008). Diagnosis and treatment of aggression in individuals with developmental disabilities. Psychiatric Quarterly, 79(3),
225–247. https://doi.org/10.1007/S11126-008-9080-4 | |
dc.relation | Ashkan, K., Mirza, A. B., Tambirajoo, K., & Furlanetti, L. (2021). Deep brain stimulation in the management of paediatric neuropsychiatric conditions: Current
evidence and future directions. European Journal of Paediatric Neurology, 33, 146–158. https://doi.org/10.1016/J.EJPN.2020.09.004 | |
dc.relation | Benabid, A. L., Koudsi´e, A., Benazzouz, A., Vercueil, L., Fraix, V., Chabardes, S., LeBas, J. F., & Pollak, P. (2001). Deep brain stimulation of the corpus luysi
(subthalamic nucleus) and other targets in Parkinson’s disease. Extension to new indications such as dystonia and epilepsy. Journal of Neurology, 248(3), 37–47.
https://doi.org/10.1007/PL00007825 | |
dc.relation | Benedetti-Isaac, J. C., Camargo, L., Gargiulo, P., & Lopez, ´ N. (2021). Deep brain stimulation in the posteromedial hypothalamic nuclei in refractory aggressiveness:
Post-surgical results of 19 cases. International Journal of Neuropsychopharmacology, 24(12), 977–978. https://doi.org/10.1093/IJNP/PYAB059 | |
dc.relation | Benedetti-Isaac, J. C., Torres-Zambrano, M., Vargas-Toscano, A., Perea-Castro, E., Alcala-Cerra, ´ G., Furlanetti, L. L., Reithmeier, T., Tierney, T. S., Anastasopoulos, C.,
Fonoff, E. T., & Contreras Lopez, W. O. (2015). Seizure frequency reduction after posteromedial hypothalamus deep brain stimulation in drug-resistant epilepsy
associated with intractable aggressive behavior. Epilepsia, 56(7), 1152–1161. https://doi.org/10.1111/EPI.13025 | |
dc.relation | Beszłej, J. A., Wieczorek, T., Kobyłko, A., Piotrowski, P., Siwicki, D., Weiser, A., Fila-Witecka, K., Rymaszewska, J., & Tabakow, P. (2019). Deep brain stimulation: new
possibilities for the treatment of mental disorders. Psychiatria Polska, 53(4), 789–806. https://doi.org/10.12740/PP/ONLINEFIRST/103090 | |
dc.relation | Billstedt, E., Gillberg, C., & Gillberg, C. (2005). Autism after adolescence: Population-based 13- to 22-year follow-up study of 120 individuals with autism diagnosed in
childhood. Journal of Autism and Developmental Disorders, 35(3), 351–360. https://doi.org/10.1007/S10803-005-3302-5 | |
dc.relation | Camacho-Conde, J. A., Gonzalez-Bermudez, M. del R., Carretero-Rey, M., & Khan, Z. U. (2022). Brain stimulation: A therapeutic approach for the treatment of
neurological disorders. CNS Neuroscience & Therapeutics, 28(1), 5–18. https://doi.org/10.1111/CNS.13769 | |
dc.relation | Cartmill, T., Skvarc, D., Bittar, R., McGillivray, J., Berk, M., & Byrne, L. K. (2021). Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: A metaanalysis of mood effects. Neuropsychology Review, 31(3), 385–401. https://doi.org/10.1007/S11065-020-09467-Z | |
dc.relation | Citrome, L., & Volavka, J. (2014). The psychopharmacology of violence: Making sensible decisions. CNS Spectrums, 19(5), 411–418. https://doi.org/10.1017/
S1092852914000054 | |
dc.relation | Cleary, D. R., Ozpinar, A., Raslan, A. M., & Ko, A. L. (2015). Deep brain stimulation for psychiatric disorders: Where we are now. Neurosurgical Focus, 38(6). https://
doi.org/10.3171/2015.3.FOCUS1546 | |
dc.relation | Conen, S., Matthews, J. C., Patel, N. K., Anton-Rodriguez, J., & Talbot, P. S. (2017). Acute and chronic changes in brain activity with deep brain stimulation for
refractory depression. Journal of Psychopharmacology, 32(4), 430–440. https://doi.org/10.1177/0269881117742668 | |
dc.relation | Cordella, R., Carella, F., Franzini, A., Marras, C., Villani, F., Messina, G., Tringali, G., & Broggi, G. (2010). Intraoperative microrecordings in the posterior
hypothalamus of anaesthetized humans with aggressive behaviour. Neurological Sciences, 31(2), 183–188. https://doi.org/10.1007/S10072-010-0217-5 | |
dc.relation | Davis, R. A., Winston, H., Gault, J. M., Kern, D. S., Mikulich-Gilbertson, S. K., & Abosch, A. (2021). Deep brain stimulation for ocd in a patient with comorbidities:
Epilepsy, tics, autism, and major depressive disorder. Journal of Neuropsychiatry and Clinical Neurosciences, 33(2), 167–171. https://doi.org/10.1176/APPI.
NEUROPSYCH.20060153/ASSET/IMAGES/LARGE/APPI.NEUROPSYCH.20060153F1.JPEG | |
dc.relation | De Jesus, O., Fogwe, D. T., Mesfin, F. B., & Das, J. M. (2022). Neuromodulation Surgery For Psychiatric Disorders. StatPearls. StatPearls Publishing. https://www.ncbi.
nlm.nih.gov/books/NBK482366/. | |
dc.relation | Doruk Camsari, D., Kirkovski, M., & Croarkin, P. E. (2018). Therapeutic applications of invasive neuromodulation in children and adolescents. Psychiatric Clinics of
North America, 41(3), 479–483. https://doi.org/10.1016/J.PSC.2018.04.008 | |
dc.relation | Doshi, P. K., Hegde, A., & Desai, A. (2019). Nucleus accumbens deep brain stimulation for obsessive-compulsive disorder and aggression in an autistic patient: A case
report and hypothesis of the role of nucleus accumbens in autism and comorbid symptoms. World Neurosurgery, 125, 387–391. https://doi.org/10.1016/J.
WNEU.2019.02.021 | |
dc.relation | Famitafreshi, H., & Karimian, M. (2018). Overview of the recent advances in pathophysiology and treatment for autism. CNS & Neurological Disorders - Drug Targets, 17
(8), 590–594. https://doi.org/10.2174/1871527317666180706141654 | |
dc.relation | Finisguerra, A., Borgatti, R., & Urgesi, C. (2019). Non-invasive brain stimulation for the rehabilitation of children and adolescents with neurodevelopmental disorders:
A systematic review. Frontiers in Psychology, 10(FEB), 135. https://doi.org/10.3389/FPSYG.2019.00135/BIBTEX | |
dc.relation | Franzini, A., Marras, C., Ferroli, P., Bugiani, O., & Broggi, G. (2005). Stimulation of the posterior hypothalamus for medically intractable impulsive and violent
behavior. Stereotactic and Functional Neurosurgery, 83(2–3), 63–66. https://doi.org/10.1159/000086675 | |
dc.relation | Franzini, A., Broggi, G., Cordella, R., Dones, I., & Messina, G. (2013). Deep-brain stimulation for aggressive and disruptive behavior. World Neurosurgery, 80(3–4), S29.
e11–S29.e14. https://doi.org/10.1016/J.WNEU.2012.06.038 | |
dc.relation | Freire, R. C., Cabrera-Abreu, C., & Milev, R. (2020). Neurostimulation in anxiety disorders, post-traumatic stress disorder, and obsessive-compulsive disorder.
Advances in Experimental Medicine and Biology, 1191, 331–346. https://doi.org/10.1007/978-981-32-9705-0_18/COVER | |
dc.relation | Gaitanis, J. (2016). Deep brain stimulation for autism spectrum disorders. Neurosurgical Focus, 41(1), Article E12. https://doi.org/10.3171/2016.1.FOCUS15603 | |
dc.relation | Ghashghaei, H. T., & Barbas, H. (2002). Pathways for emotion: Interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey.
Neuroscience, 115(4), 1261–1279. https://doi.org/10.1016/S0306-4522(02)00446-3 | |
dc.relation | Ghashghaei, H. T., Hilgetag, C. C., & Barbas, H. (2007). Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex
and amygdala. NeuroImage, 34(3), 905. https://doi.org/10.1016/J.NEUROIMAGE.2006.09.046 | |
dc.relation | Gialloreti, L. E., & Curatolo, P. (2018). Autism spectrum disorder: Why do we know so little? Frontiers in Neurology, 9(AUG), 670. https://doi.org/10.3389/
FNEUR.2018.00670/BIBTEX | |
dc.relation | Gillberg, C., & Schaumann, H. (1982). Infantile autism and puberty. Journal of Autism and Developmental Disorders, 11(4), 365–371. https://doi.org/10.1007/
BF01531612 | |
dc.relation | Gouveia, F. V., Germann, J., Devenyi, G. A., Fonoff, E. T., Morais, R. M. C. B., Brentani, H., Chakravarty, M. M., & Martinez, R. C. R. (2021). Bilateral amygdala radiofrequency ablation for refractory aggressive behavior alters local cortical thickness to a pattern found in non-refractory patients. Frontiers in Human Neuroscience,
15, 276. https://doi.org/10.3389/FNHUM.2021.653631/BIBTEX | |
dc.relation | Gouveia, F. V., Hamani, C., Fonoff, E. T., Brentani, H., Alho, E. J. L., de Morais, R. M. C. B., de Souza, A. L., Rigonatti, S. P., & Martinez, R. C. R. (2019). Amygdala and
hypothalamus: Historical overview with focus on aggression. Clinical Neurosurgery, 85(1), 11–30. https://doi.org/10.1093/NEUROS/NYY635 | |
dc.relation | Graat, I., Figee, M., & Denys, D. (2017). The application of deep brain stimulation in the treatment of psychiatric disorders. International Review of Psychiatry, 29,
178–190. https://doi.org/10.1080/09540261.2017.1282439 | |
dc.relation | Graat, I., Balke, S., Prinssen, J., de Koning, P., Vulink, N., Mocking, R., van Rooijen, G., Munckhof, P., van den, Schuurman, R., & Denys, D. (2022). Effectiveness and safety of deep brain stimulation for patients with refractory obsessive compulsive disorder and comorbid autism spectrum disorder; A case series. Journal of
Affective Disorders, 299, 492–497. https://doi.org/10.1016/J.JAD.2021.12.089 | |
dc.relation | Grant, R. A., Halpern, C. H., Baltuch, G. H., O’Reardon, J. P., & Caplan, A. (2014). Ethical considerations in deep brain stimulation for psychiatric illness. Journal of
Clinical Neuroscience, 21(1), 1–5. https://doi.org/10.1016/j.jocn.2013.04.004 | |
dc.relation | Hageman, S. B., van Rooijen, G., Bergfeld, I. O., Schirmbeck, F., de Koning, P., Schuurman, P. R., & Denys, D. (2021). Deep brain stimulation versus ablative surgery
for treatment-refractory obsessive-compulsive disorder: A meta-analysis. Acta Psychiatrica Scandinavica, 143(4), 307–318. https://doi.org/10.1111/ACPS.13276 | |
dc.relation | Harat, M., Rudas¨, M., Zielinski, ´ P., Birska, J., & Sokal, P. (2015). Deep brain stimulation in pathological aggression. Stereotactic and Functional Neurosurgery, 93(5),
310–315. https://doi.org/10.1159/000431373 | |
dc.relation | Henderson, J. M. (2012). “Connectomic surgery”: Diffusion tensor imaging (DTI) tractography as a targeting modality for surgical modulation of neural networks.
Frontiers in Integrative Neuroscience, 0(APRIL), 15. https://doi.org/10.3389/FNINT.2012.00015/BIBTEX | |
dc.relation | Hernando, V., Pastor, J., Pedrosa, M., Pena, ˜ E., & Sola, R. G. (2008). Low-frequency bilateral hypothalamic stimulation for treatment of drug-resistant aggressiveness
in a young man with mental retardation. Stereotactic and Functional Neurosurgery, 86(4), 219–223. https://doi.org/10.1159/000131659 | |
dc.relation | Hodaie, M., Wennberg, R. A., Dostrovsky, J. O., & Lozano, A. M. (2002). Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia, 43(6), 603–608.
https://doi.org/10.1046/J.1528-1157.2002.26001.X | |
dc.relation | Kashanian, A., Tsolaki, E., Pouratian, N., & Bari, A. A. (2022). Deep brain stimulation of the subgenual cingulate cortex for the treatment of chronic low back pain.
Neuromodulation, 25(2), 202–210. https://doi.org/10.1111/NER.13388 | |
dc.relation | Liu, W., Zhan, S., Li, D., Lin, Z., Zhang, C., Wang, T., Pan, S., Zhang, J., Cao, C., Jin, H., Li, Y., & Sun, B. (2020). Deep brain stimulation of the nucleus accumbens for
treatment-refractory anorexia nervosa: A long-term follow-up study. Brain Stimulation, 13(3), 643–649. https://doi.org/10.1016/j.brs.2020.02.004 | |
dc.relation | Lundwall, R. A., Stephenson, K. G., Neeley-Tass, E. S., Cox, J. C., South, M., Bigler, E. D., Anderberg, E., Prigge, M. D., Hansen, B. D., Lainhart, J. E., Kellems, R. O.,
Petrie, J. A., & Gabrielsen, T. P. (2017). Relationship between brain stem volume and aggression in children diagnosed with autism spectrum disorder. Research in
Autism Spectrum Disorders, 34, 44–51. https://doi.org/10.1016/J.RASD.2016.12.001 | |
dc.relation | Marotta, R. (2020). New therapeutic option in severe autism spectrum disorders: The deep brain stimulation in mesolimbic and mesocortical pathways. Acta Medica
Mediterranea, 36(3), 1901–1903. https://doi.org/10.19193/0393-6384_2020_3_297 | |
dc.relation | Matson, J. L., & Cervantes, P. E. (2014). Assessing aggression in persons with autism spectrum disorders: An overview. Research in Developmental Disabilities, 35(12),
3269–3275. https://doi.org/10.1016/J.RIDD.2014.08.004 | |
dc.relation | Matthies, S., Rsch, N., Weber, M., Lieb, K., Philipsen, A., Tuescher, O., Ebert, D., Hennig, J., & van Elst, L. T. (2012). Small amygdala – high aggression? The role of the
amygdala in modulating aggression in healthy subjects. The World Journal of Biological Psychiatry, 13(1), 75–81. https://doi.org/10.3109/15622975.2010.541282 | |
dc.relation | Mayanagi, Y., Hori, T., & Sano, K. (1978). The posteromedial hypothalamus and pain, behavior, with special reference to endocrinological findings. Stereotactic and
Functional Neurosurgery, 41(1–4), 223–231. https://doi.org/10.1159/000102421 | |
dc.relation | Mazurek, M. O., Kanne, S. M., & Wodka, E. L. (2013). Physical aggression in children and adolescents with autism spectrum disorders. Research in Autism Spectrum
Disorders, 7(3), 455–465. https://doi.org/10.1016/J.RASD.2012.11.004 | |
dc.relation | Messina, G., Islam, L., Cordella, R., Gambini, O., & Franzini, A. (2016). Deep-brain stimulation of the nucleus accumbens in obsessive compulsive disorder: Clinical,
surgical and electrophysiological considerations in two consecutive patients. Neurological Sciences, 60(2), 353–359. 〈https://pubmed.ncbi.nlm.nih.gov/
27007543/〉. | |
dc.relation | Micieli, R., Rios, A. L. L., Aguilar, R. P., Posada, L. F. B., & Hutchison, W. D. (2017). Single-unit analysis of the human posterior hypothalamus and red nucleus during
deep brain stimulation for aggressivity. Journal of Neurosurgery, 126(4), 1158–1164. https://doi.org/10.3171/2016.4.JNS141704 | |
dc.relation | Nicolaidis, S. (2017). Neurosurgery of the future: Deep brain stimulations and manipulations. Metabolism: Clinical and Experimental, 69, S16–S20. https://doi.org/
10.1016/j.metabol.2017.01.013 | |
dc.relation | Pardini, D. A., Raine, A., Erickson, K., & Loeber, R. (2014). Lower amygdala volume in men is associated with childhood aggression, early psychopathic traits, and
future violence. Biological Psychiatry, 75(1), 73–80. https://doi.org/10.1016/J.BIOPSYCH.2013.04.003 | |
dc.relation | Park, H. R., Kim, I. H., Kang, H., Lee, D. S., Kim, B. N., Kim, D. G., & Paek, S. H. (2016). Nucleus accumbens deep brain stimulation for a patient with self-injurious
behavior and autism spectrum disorder: Functional and structural changes of the brain: Report of a case and review of literature. Acta Neurochirurgica, 159(1),
137–143. https://doi.org/10.1007/S00701-016-3002-2 | |
dc.relation | Park, H. R., Kim, I. H., Kang, H., Lee, D. S., Kim, B. N., Kim, D. G., & Paek, S. H. (2017). Nucleus accumbens deep brain stimulation for a patient with self-injurious
behavior and autism spectrum disorder: Functional and structural changes of the brain: Report of a case and review of literature. Acta Neurochirurgica, 159(1),
137–143. https://doi.org/10.1007/S00701-016-3002-2/TABLES/3 | |
dc.relation | P´erisse, D., Amiet, C., Consoli, A., Thorel, M. V., Gourfinkel-An, I., Bodeau, N., Guinchat, V., Barth´el´emy, C., & Cohen, D. (2010). Risk factors of acute behavioral
regression in psychiatrically hospitalized adolescents with autism. Journal of the Canadian Academy of Child and Adolescent Psychiatry, 19(2), 100. /pmc/articles/
PMC2868556/. | |
dc.relation | Ramamurthi, B. (1988). Stereotactic operation in behaviour disorders. Amygdalotomy and hypothalamotomy. Acta Neurochirurgica Supplementum, 44, 152–157.
https://doi.org/10.1007/978-3-7091-9005-0_29/COVER | |
dc.relation | Rizzi, M., & Marras, C. E. (2017). Deep brain stimulation for the treatment of aggressive behaviour: Considerations on pathophysiology and target choice. Stereotactic
and Functional Neurosurgery, 95(2), 114–116. https://doi.org/10.1159/000460260 | |
dc.relation | Rizzi, M., Gambini, O., & Marras, C. E. (2021). Posterior hypothalamus as a target in the treatment of aggression: From lesioning to deep brain stimulation. Handbook
of Clinical Neurology, 182, 95–106. https://doi.org/10.1016/B978-0-12-819973-2.00007-1 | |
dc.relation | Rosell, D. R., & Siever, L. J. (2015). The neurobiology of aggression and violence. CNS Spectrums, 20(3), 254–279. https://doi.org/10.1017/S109285291500019X | |
dc.relation | Schaltenbrand, G., & Wahren, Waldemar (1977). Atlas for stereotaxy of the human brain (2nd ed.,). Thieme.
Schermer, M. (2011). Ethical issues in deep brain stimulation. Frontiers in Integrative Neuroscience, 5, 17. https://doi.org/10.3389/FNINT.2011.00017/BIBTEX | |
dc.relation | Schvarcz, J. R., Driollet, R., Rios, E., & Betti, O. (1972). Stereotactic hypothalamotomy for behaviour disorders. Journal of Neurology, Neurosurgery & Psychiatry, 35(3),
356–359. https://doi.org/10.1136/JNNP.35.3.356 | |
dc.relation | Segar, D. J., Chodakiewitz, Y. G., Torabi, R., & Rees Cosgrove, G. (2015). Deep brain stimulation for the obsessive-compulsive and Tourette-like symptoms of Kleefstra
syndrome. Neurosurgical Focus, 38(6), Article E12. https://doi.org/10.3171/2015.3.FOCUS1528 | |
dc.relation | Seltzer, M. M., Krauss, M. W., Shattuck, P. T., Orsmond, G., Swe, A., & Lord, C. (2003). The symptoms of autism spectrum disorders in adolescence and adulthood.
Journal of Autism and Developmental Disorders, 33(6), 565–581. https://doi.org/10.1023/B:JADD.0000005995.02453.0B | |
dc.relation | Siever, L. J. (2008). Neurobiology of aggression and violence. American Journal of Psychiatry, 165(4), 429–442. https://doi.org/10.1176/APPI.AJP.2008.07111774/
ASSET/IMAGES/LARGE/S97F7.JPEG | |
dc.relation | Silver, J. M., & Yudofsky, S. C. (1991). The overt aggression scale: Overview and guiding principles. The Journal of Neuropsychiatry and Clinical Neurosciences, 3(2),
22–29. 〈https://psycnet.apa.org/record/1991-26248-001〉. | |
dc.relation | Stocco, A., & Baizabal-Carvallo, J. F. (2014). Deep brain stimulation for severe secondary stereotypies. Parkinsonism and Related Disorders, 20(9), 1035–1036. https://
doi.org/10.1016/j.parkreldis.2014.06.019 | |
dc.relation | Storch, E. A., Cepeda, S. L., Lee, E., Goodman, S. L. V., Robinson, A. D., de Nadai, A. S., Schneider, S. C., Sheth, S. A., Torgerson, L., & L´
azaro-Munoz, ˜ G. (2020).
Parental attitudes toward deep brain stimulation in adolescents with treatment-resistant conditions. Journal of Child and Adolescent Psychopharmacology, 30(2),
97–103. https://doi.org/10.1089/CAP.2019.0134/ASSET/IMAGES/LARGE/CAP.2019.0134_FIGURE1.JPEG | |
dc.relation | Sturm, V., Fricke, O., Bührle, C. P., Lenartz, D., Maarouf, M., Treuer, H., Mai, J. K., & Lehmkuhl, G. (2012). DBS in the baso-lateral Amygdala improves symptoms of
autism and related self-injurious behavior: A case report and hypothesis on the pathogenesis of the disorder. Frontiers in Human Neuroscience, 0(DEC), 341.
https://doi.org/10.3389/FNHUM.2012.00341/BIBTEX | |
dc.relation | Takahashi, A., & Miczek, K. A. (2015). Neurogenetics of aggressive behavior: Studies in rodents. Current Topics in Behavioral Neurosciences, 17, 3–44. https://doi.org/
10.1007/7854_2013_263/COVER | |
dc.relation | Takahashi, A., Quadros, I. M., de Almeida, R. M. M., & Miczek, K. A. (2010). Brain serotonin receptors and transporters: initiation vs. termination of escalated
aggression. Psychopharmacology, 213(2), 183–212. https://doi.org/10.1007/S00213-010-2000-Y | |
dc.relation | Thalheimer, W., & Cook, S. (2002). How to calculate effect sizes. How to Calculate Effect Sizes from Published Research Articles: A Simplified Methodology. Work-Learning
Research. https://www.worklearning.com/. | |
dc.relation | Torres, C. v, Sola, R. G., Pastor, J., Pedrosa, M., Navas, M., García-Navarrete, E., Ezquiaga, E., & García-Camba, E. (2013). Long-term results of posteromedial
hypothalamic deep brain stimulation for patients with resistant aggressiveness: Clinical article. Journal of Neurosurgery, 119(2), 277–287. https://doi.org/
10.3171/2013.4.JNS121639 | |
dc.relation | Torres, C. v, Martínez, N., Ríos-Lago, M., Lara, M., Alvarez-Linera, J., Cabanyes, J., Dorado, M. L., Cabrera, W., Rey, G., & Martínez-Alvarez, R. (2021). Surgery and
radiosurgery in autism: A retrospective study in 10 patients. Stereotactic and Functional Neurosurgery, 99(6), 474–483. https://doi.org/10.1159/000516963 | |
dc.relation | Torres, C. V., Manzanares, R., & Sola, R. G. (2014). Integrating diffusion tensor imaging-based tractography into deep brain stimulation surgery: A review of the
literature. Stereotactic and Functional Neurosurgery, 92(5), 282–290. https://doi.org/10.1159/000362937 | |
dc.relation | Torres, I., & Sacoto, F. (2020). Localising an asset-based COVID-19 response in Ecuador. The Lancet, 395(10233), 1339. https://doi.org/10.1016/S0140-6736(20)
30851-5 | |
dc.relation | Van der Vegt, B. J., Lieuwes, N., van de Wall, E. H. E. M., Moya-Albiol, L., Martínez-Sanchis, S., Kato, K., … Koolhaas, J. M. (2003). Activation of serotonergic
neurotransmission during the performance of aggressive behavior in rats. Behavioral Neuroscience, 117(4), 667–674. https://doi.org/10.1037/0735-
7044.117.4.667 | |
dc.relation | Van Erp, A. M. M., & Miczek, K. A. (2000). Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. Journal of Neuroscience, 20
(24), 9320–9325. https://doi.org/10.1523/JNEUROSCI.20-24-09320.2000 | |
dc.relation | Wang, J. jing, Tian, H., Rao, J., Xiong, N., Yi, D. ye, Liu, X. ming, Xiang, W., Zhao, H. yang, Jiang, X. bing, & Fu, P. (2021). Efficacy and safety of general anesthesia
deep brain stimulation for dystonia: an individual patient data meta-analysis of 341 cases. Neurological Sciences, 42(7), 2661–2671. https://doi.org/10.1007/
S10072-021-05214-1 | |
dc.relation | Wu, Y., Mo, J., Sui, L., Zhang, J., Hu, W., Zhang, C., Wang, Y., Liu, C., Zhao, B., Wang, X., Zhang, K., & Xie, X. (2021). Deep brain stimulation in treatment-resistant
depression: A systematic review and meta-analysis on efficacy and safety. Frontiers in Neuroscience, 15, 257. https://doi.org/10.3389/FNINS.2021.655412/
BIBTEX | |
dc.relation | Yan, H., Elkaim, L. M., Gouveia, F. V., Huber, J. F., Germann, J., Loh, A., Benedetti-Isaac, J. C., Doshi, P. K., Torres, C. v, Segar, D. J., Elias, G. J. B., Boutet, A.,
Rees, G. C., Fasano, A., Lozano, A. M., Kulkarni, A. v, & Ibrahim, G. M. (2022). Deep brain stimulation for extreme behaviors associated with autism spectrum
disorder converges on a common pathway: A systematic review and connectomic analysis. Journal of Neurosurgery, 137(3), 699–708. https://doi.org/10.3171/
2021.11.JNS21928 | |
dc.relation | 10 | |
dc.relation | 1 | |
dc.relation | 102 | |
dc.rights | © 2023 The Authors. Published by Elsevier Ltd. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.source | https://www.sciencedirect.com/science/article/pii/S1750946723000314#:~:text=We%20conclude%20that%20DBS%20is,and%20that%20of%20their%20caregivers. | |
dc.subject | DBS | |
dc.subject | Severe | |
dc.subject | ASD | |
dc.subject | Refractory aggressiveness | |
dc.title | Effectiveness of deep brain stimulation in refractory and drug-resistant aggressiveness in autism spectrum disorder | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |