dc.creatorBenedetti-Isaac, Juan Carlos
dc.creatorCamargo, Loida
dc.creatorCardenas, Fernando P.
dc.creatorLopez, Norman
dc.date2023-08-23T21:25:50Z
dc.date2025
dc.date2023-08-23T21:25:50Z
dc.date2023
dc.date.accessioned2023-10-03T19:43:13Z
dc.date.available2023-10-03T19:43:13Z
dc.identifierJuanCarlos Benedetti-Isaac, Loida Camargo, Fernando P. Cardenas, Norman López, Effectiveness of deep brain stimulation in refractory and drug-resistant aggressiveness in autism spectrum disorder, Research in Autism Spectrum Disorders, Volume 102, 2023, 102131, ISSN 1750-9467, https://doi.org/10.1016/j.rasd.2023.102131
dc.identifier1750-9467
dc.identifierhttps://hdl.handle.net/11323/10402
dc.identifier10.1016/j.rasd.2023.102131
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171742
dc.descriptionBackground. Aggressive behavior, resistant to pharmacological and psychological treatment, is observed in some cases of autism. The main objective of this study is to analyze the efficacy of deep brain stimulation (DBS) for aggressive behavior in severe autism. Method. The effectiveness of DBS was analyzed in a clinical follow-up of 5 autistic patients, with impaired functional activity and refractoriness to psychopharmacological and behavioral treatment. The patients were examined in medical meetings and evaluated by experienced professionals using the Overt Aggressiveness Scale (OAS), before surgical implantation and after 6, 12 and, 18 months of follow-up. Student's t-test analyses were performed to assess changes in aggressiveness scores. The effect size of surgical intervention on patients' OAS performance was estimated. Results. Before the intervention, patients scored very high on the aggressiveness scale. In the subsequent medical controls, a clinically and psychometrically significant decrease in aggressiveness and self-injury symptoms was observed. These data were confirmed by the parents up to 18 months of follow-up. Very large effect sizes were obtained in favor of DBS. Conclusions. In this case series, DBS significantly reduced aggressiveness and self-injury, favoring functionality, social adaptation of the patients, and improving the quality of life of the family. We believe that DBS may be a viable treatment option.
dc.format10 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherElsevier BV
dc.publisherNetherlands
dc.relationResearch in Autism Spectrum Disorders
dc.relationAmerican Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders. https://doi.org/10.1176/APPI.BOOKS.9780890425596.
dc.relationAntonacci, D. J., Manuel, C., & Davis, E. (2008). Diagnosis and treatment of aggression in individuals with developmental disabilities. Psychiatric Quarterly, 79(3), 225–247. https://doi.org/10.1007/S11126-008-9080-4
dc.relationAshkan, K., Mirza, A. B., Tambirajoo, K., & Furlanetti, L. (2021). Deep brain stimulation in the management of paediatric neuropsychiatric conditions: Current evidence and future directions. European Journal of Paediatric Neurology, 33, 146–158. https://doi.org/10.1016/J.EJPN.2020.09.004
dc.relationBenabid, A. L., Koudsi´e, A., Benazzouz, A., Vercueil, L., Fraix, V., Chabardes, S., LeBas, J. F., & Pollak, P. (2001). Deep brain stimulation of the corpus luysi (subthalamic nucleus) and other targets in Parkinson’s disease. Extension to new indications such as dystonia and epilepsy. Journal of Neurology, 248(3), 37–47. https://doi.org/10.1007/PL00007825
dc.relationBenedetti-Isaac, J. C., Camargo, L., Gargiulo, P., & Lopez, ´ N. (2021). Deep brain stimulation in the posteromedial hypothalamic nuclei in refractory aggressiveness: Post-surgical results of 19 cases. International Journal of Neuropsychopharmacology, 24(12), 977–978. https://doi.org/10.1093/IJNP/PYAB059
dc.relationBenedetti-Isaac, J. C., Torres-Zambrano, M., Vargas-Toscano, A., Perea-Castro, E., Alcala-Cerra, ´ G., Furlanetti, L. L., Reithmeier, T., Tierney, T. S., Anastasopoulos, C., Fonoff, E. T., & Contreras Lopez, W. O. (2015). Seizure frequency reduction after posteromedial hypothalamus deep brain stimulation in drug-resistant epilepsy associated with intractable aggressive behavior. Epilepsia, 56(7), 1152–1161. https://doi.org/10.1111/EPI.13025
dc.relationBeszłej, J. A., Wieczorek, T., Kobyłko, A., Piotrowski, P., Siwicki, D., Weiser, A., Fila-Witecka, K., Rymaszewska, J., & Tabakow, P. (2019). Deep brain stimulation: new possibilities for the treatment of mental disorders. Psychiatria Polska, 53(4), 789–806. https://doi.org/10.12740/PP/ONLINEFIRST/103090
dc.relationBillstedt, E., Gillberg, C., & Gillberg, C. (2005). Autism after adolescence: Population-based 13- to 22-year follow-up study of 120 individuals with autism diagnosed in childhood. Journal of Autism and Developmental Disorders, 35(3), 351–360. https://doi.org/10.1007/S10803-005-3302-5
dc.relationCamacho-Conde, J. A., Gonzalez-Bermudez, M. del R., Carretero-Rey, M., & Khan, Z. U. (2022). Brain stimulation: A therapeutic approach for the treatment of neurological disorders. CNS Neuroscience & Therapeutics, 28(1), 5–18. https://doi.org/10.1111/CNS.13769
dc.relationCartmill, T., Skvarc, D., Bittar, R., McGillivray, J., Berk, M., & Byrne, L. K. (2021). Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: A metaanalysis of mood effects. Neuropsychology Review, 31(3), 385–401. https://doi.org/10.1007/S11065-020-09467-Z
dc.relationCitrome, L., & Volavka, J. (2014). The psychopharmacology of violence: Making sensible decisions. CNS Spectrums, 19(5), 411–418. https://doi.org/10.1017/ S1092852914000054
dc.relationCleary, D. R., Ozpinar, A., Raslan, A. M., & Ko, A. L. (2015). Deep brain stimulation for psychiatric disorders: Where we are now. Neurosurgical Focus, 38(6). https:// doi.org/10.3171/2015.3.FOCUS1546
dc.relationConen, S., Matthews, J. C., Patel, N. K., Anton-Rodriguez, J., & Talbot, P. S. (2017). Acute and chronic changes in brain activity with deep brain stimulation for refractory depression. Journal of Psychopharmacology, 32(4), 430–440. https://doi.org/10.1177/0269881117742668
dc.relationCordella, R., Carella, F., Franzini, A., Marras, C., Villani, F., Messina, G., Tringali, G., & Broggi, G. (2010). Intraoperative microrecordings in the posterior hypothalamus of anaesthetized humans with aggressive behaviour. Neurological Sciences, 31(2), 183–188. https://doi.org/10.1007/S10072-010-0217-5
dc.relationDavis, R. A., Winston, H., Gault, J. M., Kern, D. S., Mikulich-Gilbertson, S. K., & Abosch, A. (2021). Deep brain stimulation for ocd in a patient with comorbidities: Epilepsy, tics, autism, and major depressive disorder. Journal of Neuropsychiatry and Clinical Neurosciences, 33(2), 167–171. https://doi.org/10.1176/APPI. NEUROPSYCH.20060153/ASSET/IMAGES/LARGE/APPI.NEUROPSYCH.20060153F1.JPEG
dc.relationDe Jesus, O., Fogwe, D. T., Mesfin, F. B., & Das, J. M. (2022). Neuromodulation Surgery For Psychiatric Disorders. StatPearls. StatPearls Publishing. https://www.ncbi. nlm.nih.gov/books/NBK482366/.
dc.relationDoruk Camsari, D., Kirkovski, M., & Croarkin, P. E. (2018). Therapeutic applications of invasive neuromodulation in children and adolescents. Psychiatric Clinics of North America, 41(3), 479–483. https://doi.org/10.1016/J.PSC.2018.04.008
dc.relationDoshi, P. K., Hegde, A., & Desai, A. (2019). Nucleus accumbens deep brain stimulation for obsessive-compulsive disorder and aggression in an autistic patient: A case report and hypothesis of the role of nucleus accumbens in autism and comorbid symptoms. World Neurosurgery, 125, 387–391. https://doi.org/10.1016/J. WNEU.2019.02.021
dc.relationFamitafreshi, H., & Karimian, M. (2018). Overview of the recent advances in pathophysiology and treatment for autism. CNS & Neurological Disorders - Drug Targets, 17 (8), 590–594. https://doi.org/10.2174/1871527317666180706141654
dc.relationFinisguerra, A., Borgatti, R., & Urgesi, C. (2019). Non-invasive brain stimulation for the rehabilitation of children and adolescents with neurodevelopmental disorders: A systematic review. Frontiers in Psychology, 10(FEB), 135. https://doi.org/10.3389/FPSYG.2019.00135/BIBTEX
dc.relationFranzini, A., Marras, C., Ferroli, P., Bugiani, O., & Broggi, G. (2005). Stimulation of the posterior hypothalamus for medically intractable impulsive and violent behavior. Stereotactic and Functional Neurosurgery, 83(2–3), 63–66. https://doi.org/10.1159/000086675
dc.relationFranzini, A., Broggi, G., Cordella, R., Dones, I., & Messina, G. (2013). Deep-brain stimulation for aggressive and disruptive behavior. World Neurosurgery, 80(3–4), S29. e11–S29.e14. https://doi.org/10.1016/J.WNEU.2012.06.038
dc.relationFreire, R. C., Cabrera-Abreu, C., & Milev, R. (2020). Neurostimulation in anxiety disorders, post-traumatic stress disorder, and obsessive-compulsive disorder. Advances in Experimental Medicine and Biology, 1191, 331–346. https://doi.org/10.1007/978-981-32-9705-0_18/COVER
dc.relationGaitanis, J. (2016). Deep brain stimulation for autism spectrum disorders. Neurosurgical Focus, 41(1), Article E12. https://doi.org/10.3171/2016.1.FOCUS15603
dc.relationGhashghaei, H. T., & Barbas, H. (2002). Pathways for emotion: Interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience, 115(4), 1261–1279. https://doi.org/10.1016/S0306-4522(02)00446-3
dc.relationGhashghaei, H. T., Hilgetag, C. C., & Barbas, H. (2007). Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage, 34(3), 905. https://doi.org/10.1016/J.NEUROIMAGE.2006.09.046
dc.relationGialloreti, L. E., & Curatolo, P. (2018). Autism spectrum disorder: Why do we know so little? Frontiers in Neurology, 9(AUG), 670. https://doi.org/10.3389/ FNEUR.2018.00670/BIBTEX
dc.relationGillberg, C., & Schaumann, H. (1982). Infantile autism and puberty. Journal of Autism and Developmental Disorders, 11(4), 365–371. https://doi.org/10.1007/ BF01531612
dc.relationGouveia, F. V., Germann, J., Devenyi, G. A., Fonoff, E. T., Morais, R. M. C. B., Brentani, H., Chakravarty, M. M., & Martinez, R. C. R. (2021). Bilateral amygdala radiofrequency ablation for refractory aggressive behavior alters local cortical thickness to a pattern found in non-refractory patients. Frontiers in Human Neuroscience, 15, 276. https://doi.org/10.3389/FNHUM.2021.653631/BIBTEX
dc.relationGouveia, F. V., Hamani, C., Fonoff, E. T., Brentani, H., Alho, E. J. L., de Morais, R. M. C. B., de Souza, A. L., Rigonatti, S. P., & Martinez, R. C. R. (2019). Amygdala and hypothalamus: Historical overview with focus on aggression. Clinical Neurosurgery, 85(1), 11–30. https://doi.org/10.1093/NEUROS/NYY635
dc.relationGraat, I., Figee, M., & Denys, D. (2017). The application of deep brain stimulation in the treatment of psychiatric disorders. International Review of Psychiatry, 29, 178–190. https://doi.org/10.1080/09540261.2017.1282439
dc.relationGraat, I., Balke, S., Prinssen, J., de Koning, P., Vulink, N., Mocking, R., van Rooijen, G., Munckhof, P., van den, Schuurman, R., & Denys, D. (2022). Effectiveness and safety of deep brain stimulation for patients with refractory obsessive compulsive disorder and comorbid autism spectrum disorder; A case series. Journal of Affective Disorders, 299, 492–497. https://doi.org/10.1016/J.JAD.2021.12.089
dc.relationGrant, R. A., Halpern, C. H., Baltuch, G. H., O’Reardon, J. P., & Caplan, A. (2014). Ethical considerations in deep brain stimulation for psychiatric illness. Journal of Clinical Neuroscience, 21(1), 1–5. https://doi.org/10.1016/j.jocn.2013.04.004
dc.relationHageman, S. B., van Rooijen, G., Bergfeld, I. O., Schirmbeck, F., de Koning, P., Schuurman, P. R., & Denys, D. (2021). Deep brain stimulation versus ablative surgery for treatment-refractory obsessive-compulsive disorder: A meta-analysis. Acta Psychiatrica Scandinavica, 143(4), 307–318. https://doi.org/10.1111/ACPS.13276
dc.relationHarat, M., Rudas¨, M., Zielinski, ´ P., Birska, J., & Sokal, P. (2015). Deep brain stimulation in pathological aggression. Stereotactic and Functional Neurosurgery, 93(5), 310–315. https://doi.org/10.1159/000431373
dc.relationHenderson, J. M. (2012). “Connectomic surgery”: Diffusion tensor imaging (DTI) tractography as a targeting modality for surgical modulation of neural networks. Frontiers in Integrative Neuroscience, 0(APRIL), 15. https://doi.org/10.3389/FNINT.2012.00015/BIBTEX
dc.relationHernando, V., Pastor, J., Pedrosa, M., Pena, ˜ E., & Sola, R. G. (2008). Low-frequency bilateral hypothalamic stimulation for treatment of drug-resistant aggressiveness in a young man with mental retardation. Stereotactic and Functional Neurosurgery, 86(4), 219–223. https://doi.org/10.1159/000131659
dc.relationHodaie, M., Wennberg, R. A., Dostrovsky, J. O., & Lozano, A. M. (2002). Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia, 43(6), 603–608. https://doi.org/10.1046/J.1528-1157.2002.26001.X
dc.relationKashanian, A., Tsolaki, E., Pouratian, N., & Bari, A. A. (2022). Deep brain stimulation of the subgenual cingulate cortex for the treatment of chronic low back pain. Neuromodulation, 25(2), 202–210. https://doi.org/10.1111/NER.13388
dc.relationLiu, W., Zhan, S., Li, D., Lin, Z., Zhang, C., Wang, T., Pan, S., Zhang, J., Cao, C., Jin, H., Li, Y., & Sun, B. (2020). Deep brain stimulation of the nucleus accumbens for treatment-refractory anorexia nervosa: A long-term follow-up study. Brain Stimulation, 13(3), 643–649. https://doi.org/10.1016/j.brs.2020.02.004
dc.relationLundwall, R. A., Stephenson, K. G., Neeley-Tass, E. S., Cox, J. C., South, M., Bigler, E. D., Anderberg, E., Prigge, M. D., Hansen, B. D., Lainhart, J. E., Kellems, R. O., Petrie, J. A., & Gabrielsen, T. P. (2017). Relationship between brain stem volume and aggression in children diagnosed with autism spectrum disorder. Research in Autism Spectrum Disorders, 34, 44–51. https://doi.org/10.1016/J.RASD.2016.12.001
dc.relationMarotta, R. (2020). New therapeutic option in severe autism spectrum disorders: The deep brain stimulation in mesolimbic and mesocortical pathways. Acta Medica Mediterranea, 36(3), 1901–1903. https://doi.org/10.19193/0393-6384_2020_3_297
dc.relationMatson, J. L., & Cervantes, P. E. (2014). Assessing aggression in persons with autism spectrum disorders: An overview. Research in Developmental Disabilities, 35(12), 3269–3275. https://doi.org/10.1016/J.RIDD.2014.08.004
dc.relationMatthies, S., Rsch, N., Weber, M., Lieb, K., Philipsen, A., Tuescher, O., Ebert, D., Hennig, J., & van Elst, L. T. (2012). Small amygdala – high aggression? The role of the amygdala in modulating aggression in healthy subjects. The World Journal of Biological Psychiatry, 13(1), 75–81. https://doi.org/10.3109/15622975.2010.541282
dc.relationMayanagi, Y., Hori, T., & Sano, K. (1978). The posteromedial hypothalamus and pain, behavior, with special reference to endocrinological findings. Stereotactic and Functional Neurosurgery, 41(1–4), 223–231. https://doi.org/10.1159/000102421
dc.relationMazurek, M. O., Kanne, S. M., & Wodka, E. L. (2013). Physical aggression in children and adolescents with autism spectrum disorders. Research in Autism Spectrum Disorders, 7(3), 455–465. https://doi.org/10.1016/J.RASD.2012.11.004
dc.relationMessina, G., Islam, L., Cordella, R., Gambini, O., & Franzini, A. (2016). Deep-brain stimulation of the nucleus accumbens in obsessive compulsive disorder: Clinical, surgical and electrophysiological considerations in two consecutive patients. Neurological Sciences, 60(2), 353–359. 〈https://pubmed.ncbi.nlm.nih.gov/ 27007543/〉.
dc.relationMicieli, R., Rios, A. L. L., Aguilar, R. P., Posada, L. F. B., & Hutchison, W. D. (2017). Single-unit analysis of the human posterior hypothalamus and red nucleus during deep brain stimulation for aggressivity. Journal of Neurosurgery, 126(4), 1158–1164. https://doi.org/10.3171/2016.4.JNS141704
dc.relationNicolaidis, S. (2017). Neurosurgery of the future: Deep brain stimulations and manipulations. Metabolism: Clinical and Experimental, 69, S16–S20. https://doi.org/ 10.1016/j.metabol.2017.01.013
dc.relationPardini, D. A., Raine, A., Erickson, K., & Loeber, R. (2014). Lower amygdala volume in men is associated with childhood aggression, early psychopathic traits, and future violence. Biological Psychiatry, 75(1), 73–80. https://doi.org/10.1016/J.BIOPSYCH.2013.04.003
dc.relationPark, H. R., Kim, I. H., Kang, H., Lee, D. S., Kim, B. N., Kim, D. G., & Paek, S. H. (2016). Nucleus accumbens deep brain stimulation for a patient with self-injurious behavior and autism spectrum disorder: Functional and structural changes of the brain: Report of a case and review of literature. Acta Neurochirurgica, 159(1), 137–143. https://doi.org/10.1007/S00701-016-3002-2
dc.relationPark, H. R., Kim, I. H., Kang, H., Lee, D. S., Kim, B. N., Kim, D. G., & Paek, S. H. (2017). Nucleus accumbens deep brain stimulation for a patient with self-injurious behavior and autism spectrum disorder: Functional and structural changes of the brain: Report of a case and review of literature. Acta Neurochirurgica, 159(1), 137–143. https://doi.org/10.1007/S00701-016-3002-2/TABLES/3
dc.relationP´erisse, D., Amiet, C., Consoli, A., Thorel, M. V., Gourfinkel-An, I., Bodeau, N., Guinchat, V., Barth´el´emy, C., & Cohen, D. (2010). Risk factors of acute behavioral regression in psychiatrically hospitalized adolescents with autism. Journal of the Canadian Academy of Child and Adolescent Psychiatry, 19(2), 100. /pmc/articles/ PMC2868556/.
dc.relationRamamurthi, B. (1988). Stereotactic operation in behaviour disorders. Amygdalotomy and hypothalamotomy. Acta Neurochirurgica Supplementum, 44, 152–157. https://doi.org/10.1007/978-3-7091-9005-0_29/COVER
dc.relationRizzi, M., & Marras, C. E. (2017). Deep brain stimulation for the treatment of aggressive behaviour: Considerations on pathophysiology and target choice. Stereotactic and Functional Neurosurgery, 95(2), 114–116. https://doi.org/10.1159/000460260
dc.relationRizzi, M., Gambini, O., & Marras, C. E. (2021). Posterior hypothalamus as a target in the treatment of aggression: From lesioning to deep brain stimulation. Handbook of Clinical Neurology, 182, 95–106. https://doi.org/10.1016/B978-0-12-819973-2.00007-1
dc.relationRosell, D. R., & Siever, L. J. (2015). The neurobiology of aggression and violence. CNS Spectrums, 20(3), 254–279. https://doi.org/10.1017/S109285291500019X
dc.relationSchaltenbrand, G., & Wahren, Waldemar (1977). Atlas for stereotaxy of the human brain (2nd ed.,). Thieme. Schermer, M. (2011). Ethical issues in deep brain stimulation. Frontiers in Integrative Neuroscience, 5, 17. https://doi.org/10.3389/FNINT.2011.00017/BIBTEX
dc.relationSchvarcz, J. R., Driollet, R., Rios, E., & Betti, O. (1972). Stereotactic hypothalamotomy for behaviour disorders. Journal of Neurology, Neurosurgery & Psychiatry, 35(3), 356–359. https://doi.org/10.1136/JNNP.35.3.356
dc.relationSegar, D. J., Chodakiewitz, Y. G., Torabi, R., & Rees Cosgrove, G. (2015). Deep brain stimulation for the obsessive-compulsive and Tourette-like symptoms of Kleefstra syndrome. Neurosurgical Focus, 38(6), Article E12. https://doi.org/10.3171/2015.3.FOCUS1528
dc.relationSeltzer, M. M., Krauss, M. W., Shattuck, P. T., Orsmond, G., Swe, A., & Lord, C. (2003). The symptoms of autism spectrum disorders in adolescence and adulthood. Journal of Autism and Developmental Disorders, 33(6), 565–581. https://doi.org/10.1023/B:JADD.0000005995.02453.0B
dc.relationSiever, L. J. (2008). Neurobiology of aggression and violence. American Journal of Psychiatry, 165(4), 429–442. https://doi.org/10.1176/APPI.AJP.2008.07111774/ ASSET/IMAGES/LARGE/S97F7.JPEG
dc.relationSilver, J. M., & Yudofsky, S. C. (1991). The overt aggression scale: Overview and guiding principles. The Journal of Neuropsychiatry and Clinical Neurosciences, 3(2), 22–29. 〈https://psycnet.apa.org/record/1991-26248-001〉.
dc.relationStocco, A., & Baizabal-Carvallo, J. F. (2014). Deep brain stimulation for severe secondary stereotypies. Parkinsonism and Related Disorders, 20(9), 1035–1036. https:// doi.org/10.1016/j.parkreldis.2014.06.019
dc.relationStorch, E. A., Cepeda, S. L., Lee, E., Goodman, S. L. V., Robinson, A. D., de Nadai, A. S., Schneider, S. C., Sheth, S. A., Torgerson, L., & L´ azaro-Munoz, ˜ G. (2020). Parental attitudes toward deep brain stimulation in adolescents with treatment-resistant conditions. Journal of Child and Adolescent Psychopharmacology, 30(2), 97–103. https://doi.org/10.1089/CAP.2019.0134/ASSET/IMAGES/LARGE/CAP.2019.0134_FIGURE1.JPEG
dc.relationSturm, V., Fricke, O., Bührle, C. P., Lenartz, D., Maarouf, M., Treuer, H., Mai, J. K., & Lehmkuhl, G. (2012). DBS in the baso-lateral Amygdala improves symptoms of autism and related self-injurious behavior: A case report and hypothesis on the pathogenesis of the disorder. Frontiers in Human Neuroscience, 0(DEC), 341. https://doi.org/10.3389/FNHUM.2012.00341/BIBTEX
dc.relationTakahashi, A., & Miczek, K. A. (2015). Neurogenetics of aggressive behavior: Studies in rodents. Current Topics in Behavioral Neurosciences, 17, 3–44. https://doi.org/ 10.1007/7854_2013_263/COVER
dc.relationTakahashi, A., Quadros, I. M., de Almeida, R. M. M., & Miczek, K. A. (2010). Brain serotonin receptors and transporters: initiation vs. termination of escalated aggression. Psychopharmacology, 213(2), 183–212. https://doi.org/10.1007/S00213-010-2000-Y
dc.relationThalheimer, W., & Cook, S. (2002). How to calculate effect sizes. How to Calculate Effect Sizes from Published Research Articles: A Simplified Methodology. Work-Learning Research. https://www.worklearning.com/.
dc.relationTorres, C. v, Sola, R. G., Pastor, J., Pedrosa, M., Navas, M., García-Navarrete, E., Ezquiaga, E., & García-Camba, E. (2013). Long-term results of posteromedial hypothalamic deep brain stimulation for patients with resistant aggressiveness: Clinical article. Journal of Neurosurgery, 119(2), 277–287. https://doi.org/ 10.3171/2013.4.JNS121639
dc.relationTorres, C. v, Martínez, N., Ríos-Lago, M., Lara, M., Alvarez-Linera, J., Cabanyes, J., Dorado, M. L., Cabrera, W., Rey, G., & Martínez-Alvarez, R. (2021). Surgery and radiosurgery in autism: A retrospective study in 10 patients. Stereotactic and Functional Neurosurgery, 99(6), 474–483. https://doi.org/10.1159/000516963
dc.relationTorres, C. V., Manzanares, R., & Sola, R. G. (2014). Integrating diffusion tensor imaging-based tractography into deep brain stimulation surgery: A review of the literature. Stereotactic and Functional Neurosurgery, 92(5), 282–290. https://doi.org/10.1159/000362937
dc.relationTorres, I., & Sacoto, F. (2020). Localising an asset-based COVID-19 response in Ecuador. The Lancet, 395(10233), 1339. https://doi.org/10.1016/S0140-6736(20) 30851-5
dc.relationVan der Vegt, B. J., Lieuwes, N., van de Wall, E. H. E. M., Moya-Albiol, L., Martínez-Sanchis, S., Kato, K., … Koolhaas, J. M. (2003). Activation of serotonergic neurotransmission during the performance of aggressive behavior in rats. Behavioral Neuroscience, 117(4), 667–674. https://doi.org/10.1037/0735- 7044.117.4.667
dc.relationVan Erp, A. M. M., & Miczek, K. A. (2000). Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. Journal of Neuroscience, 20 (24), 9320–9325. https://doi.org/10.1523/JNEUROSCI.20-24-09320.2000
dc.relationWang, J. jing, Tian, H., Rao, J., Xiong, N., Yi, D. ye, Liu, X. ming, Xiang, W., Zhao, H. yang, Jiang, X. bing, & Fu, P. (2021). Efficacy and safety of general anesthesia deep brain stimulation for dystonia: an individual patient data meta-analysis of 341 cases. Neurological Sciences, 42(7), 2661–2671. https://doi.org/10.1007/ S10072-021-05214-1
dc.relationWu, Y., Mo, J., Sui, L., Zhang, J., Hu, W., Zhang, C., Wang, Y., Liu, C., Zhao, B., Wang, X., Zhang, K., & Xie, X. (2021). Deep brain stimulation in treatment-resistant depression: A systematic review and meta-analysis on efficacy and safety. Frontiers in Neuroscience, 15, 257. https://doi.org/10.3389/FNINS.2021.655412/ BIBTEX
dc.relationYan, H., Elkaim, L. M., Gouveia, F. V., Huber, J. F., Germann, J., Loh, A., Benedetti-Isaac, J. C., Doshi, P. K., Torres, C. v, Segar, D. J., Elias, G. J. B., Boutet, A., Rees, G. C., Fasano, A., Lozano, A. M., Kulkarni, A. v, & Ibrahim, G. M. (2022). Deep brain stimulation for extreme behaviors associated with autism spectrum disorder converges on a common pathway: A systematic review and connectomic analysis. Journal of Neurosurgery, 137(3), 699–708. https://doi.org/10.3171/ 2021.11.JNS21928
dc.relation10
dc.relation1
dc.relation102
dc.rights© 2023 The Authors. Published by Elsevier Ltd.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S1750946723000314#:~:text=We%20conclude%20that%20DBS%20is,and%20that%20of%20their%20caregivers.
dc.subjectDBS
dc.subjectSevere
dc.subjectASD
dc.subjectRefractory aggressiveness
dc.titleEffectiveness of deep brain stimulation in refractory and drug-resistant aggressiveness in autism spectrum disorder
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución