dc.creatorCastellanos, Luis Marcos
dc.creatorHernández Herrera, Hernan
dc.creatorSilva Ortega, Jorge I
dc.creatorMartínez Diaz, Vicente Leonel
dc.creatorGarcía Sanchez, Zaid
dc.date2019-11-14T16:24:22Z
dc.date2019-11-14T16:24:22Z
dc.date2019
dc.date.accessioned2023-10-03T19:42:51Z
dc.date.available2023-10-03T19:42:51Z
dc.identifier2146-4553
dc.identifierhttp://hdl.handle.net/11323/5651
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171698
dc.descriptionCompressed air (CA) is one of the most common systems used in industry. In countries such as Australia, Italia, France, China and USA, energy consumption of CA systems (CASs) contributes about to 10% of the total electricity consumption in industry. In Colombia, this value reaches 8%, highlighting the textile industry, with a 24% of consumption. Despite of all its advantages, CA is expensive, between 10 and 30% of consumed energy reaches the end-use point. Improvements to CASs can achieve between 20 and 60% of energy savings, with pay-back periods lower than two years. These are the reasons that they can be considered as one of the main targetsystems while planning energy efficiency actions in industry. Colombia through different strategies has proposed to implement a group of measures to improve energy efficiency and reduce electricity consumption to 2021 around 7%. Implementation of good practices in CASs is one of them. This paper is showed the share cost, electricity consumption and the savings potential of the CASs in the different divisions of the Colombian manufacturing sector, the main sectors to be involved as well as the potential savings and reduction of dioxide carbon emissions.
dc.formatapplication/pdf
dc.languageeng
dc.publisherInternational Journal of Energy Economics and Policy
dc.relationhttps://doi.org/10.32479/ijeep.8084
dc.relationAbdelaziz, E.A., Saidur, R., Mekhilef, S. (2011), A review on energy saving strategies in industrial sector. Renewable and Sustainable Energy Reviews, 15, 150-168. Annegret, C., Radgen, P. (2003), Efficient Compressed Air a Successful Campaign for Energy Efficient Compressed Air Systems in Germany, ECEEE 2003 Summer study Proceedings; 2-7, Saint-Raphaël, France: ECEEE. Área Metropolitana del Valle de Aburra (AMVA). (2016). Protocolo como mecanismo de implementación del plan operacional para enfrentar episodios críticos de contaminación atmosférica- POECA. Available from: http://ieu.unal.edu.co/images/Acuerdo_N15POECA.pdf. [Last accessed on 2019 Feb 12]. Área Metropolitana del Valle de Aburra (AMVA). (2018). Protocolo como mecanismo de implementación del plan operacional para enfrentar episodios críticos de contaminación atmosférica- POECA. Available from: http://ieu.unal.edu.co/images/Acuerdo_N15POECA.pdf. [Last accessed on 2019 Mar 4]. Benedetti, M., Bertini, I., Bonfà, F., Ferrari, S., Introna, V., Santino, D., Ubertini, S. (2017), Assessing and improving compressed air systems’ energy efficiency in production and use: Findings from an explorative study in large and energy-intensive industrial firms. Energy Procedia, 105, 3112-3117. Benedetti, M., Bonfà, F., Bertini, I., Introna, V., Ubertini, S. (2017a), Explorative study on compressed air systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms. Applied Energy, 227, 436-448. Berruezo, J.A., Jiménez, J.D. (2017), Situación del Convenio Marco de Naciones Unidas sobre el Cambio Climático. Resumen de las Cumbres de París, COP21 y de Marrakech, COP22. Revista de Salud Ambiental, 17(1), 34-39. Bonfà, F., Salvatori, S., Benedetti, M., Introna, V., Ubertini, S. (2017), Monitoring compressed air systems energy performance in industrial production: lesson learned from an explorative study in large and energy-intensive industrial firms. Energy Procedia, 143, 396-403. BP Energy Economics. (2018), BP Energy Outlook. Available from: https://www.bp.com/content/dam/bp/en/corporate/pdf/ energyeconomics/energy-outlook/bp-energy-outlook-2018.pdf. [Last accessed on 2019 Jan 28]. Chikunov, S.O., Gutsunuk, O.N., Ivleva, M.I., Elyakova, I.D., Nikolaeva, I.V., Maramygin, M.S. (2018), Improving the economic performance of Russia’s energy system based on the development of alternative energy sources. International Journal of Energy Economics and Policy, 8(6), 382-391. Corsini, A., De Propris, L., Feudo, S., Stefanato, M. (2015), Assessment of a diagnostic procedure for the monitoring and control of industrial processes. Energy Procedia, 75, 1772-1778. DANE, (2018), Clasificación Industrial Internacional Uniforme de Todas Las Actividades Económicas, Revisión 4 adaptada para Colombia CIIU Rev. 4 A.C. Colombia: DANE. Desfiandi, A., Singagerda, F.S., Sanusi, A. (2019), Building an energy consumption model and sustainable economic growth in emerging countries. International Journal of Energy Economics and Policy, 9(2), 51-66. Dindorf, R. (2012), Estimating potential energy savings in compressed air systems”. Procedia Engineering, 39, 204-211. DoE, U.S. (1998), Improving Compressed Air System Performance, a Sourcebook for Industry. Prepared for the US Department of Energy, Motor Challenge Program by Lawrence Berkeley National Laboratory (LBNL) and Resource Dynamics Corporation (RDC). Vienna, VA: RDC. Echeverri, J., Hincapié, J.A. (2012), Evolución de la concentración y especialización industrial en Colombia, 1975-2005. Ensayos de Economía, 22(40), 81-102. European Commission. (2009), Reference Document on Best Available Techniques for Energy Efficiency. Available from: http://www. eippcb.jrc.ec.europa.eu. [Last accessed on 2019 Feb 22]. Faizah, S.I., Husaeni, U.A. (2018), Development of consumption and supplying energy in Indonesia’s economy. International Journal of Energy Economics and Policy, 8(6), 313-321. Fleiter, T., Hirzel, S., Worrell, E. (2012), The characteristics of energyefficiency measures a neglected dimension. Energy Policy, 51, 502-513. IEA. (2017), International Energy Outlook. Available from: https:// www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf. [Last accessed on 2019 Mar 14]. IEA. (2018), Energy Efficiency, Analysis and outlooks to 2040. Available from: https://www.webstore.iea.org/market-report-series-energyefficiency-2018-chinese-abridged. [Last accessed on 2019 Jan 29]. Jaramillo, A.C. (2019), Estimación Fracción Inhalada de Contaminantes Primarios del aire en la Ciudad de Medellín (Master’s Thesis, Escuela de Ingenierías), Medellin, Colombia. Kaya, D., Phelan, P., Chau, D., Ibrahim, H. (2002), Energy conservation in compressed-air systems. International Journal of Energy Research, 26(9), 837-849. Lotero, J., Posada, H.M., Valderrama, D. (2009), La competitividad de los departamentos colombianos desde la perspectiva de la geografía económica. Lecturas de Economía, (71), 107-139. Mousavi, S., Kara, S., Kornfeld, B. (2014), Energy Efficiency of Compressed Air Systems, 21st CIRP Conference on Life Cycle Engineering. Vol. 15. Sydney: Procedia CIRP. p313-318. Nehler, T. (2018a), Linking energy efficiency measures in industrial compressed air systems with non-energy benefits a review.” Renewable and Sustainable Energy Reviews, 89, 72-87. Nehler, T., Parra, R., Thollander, P. (2018a), Implementation of energy efficiency measures in compressed air systems: Barriers, drivers and non-energy benefits. Energy Efficiency, 11(5), 1281-1302. Ocampo, N., Garcia, J., Ghazoul, J., Etter, A. (2018), Quantifying impacts of oil palm expansion on Colombia’s threatened biodiversity. Biological Conservation, 224, 117-121. Radgen, P. (2005), Greenhous gas emissions reduction by motor systems the case of compressed air systems in power generation and industry. Greenhouse Gas Control Technologies, 7, 1421-1426. Radgen, P., Blaustein, E. (2001), Compressed air Systems in the European Union: Energy, Emissions, Savings Potential and Policy Actions. Stuttgart, Germany: LOG_X Verlag GmbH. Roa, S., Castellanos, A. (2018), Propuesta de un Sistema Solar Fotovoltaico en el Centro Experimental de la Universidad Distrital “El Tíbar”. Bogotá. Colombia: Trabajo de Grado. Universidad Distrital Francisco José de Caldas. Saidur, R., Rahim, N.A., Hasanuzzaman, M. (2010), A review on compressed-air energy use and energy saving. Renewable and Sustainable Energy Reviews, 14, 1135-1153. Šešlija, D., Ignjatović, I., Dudić, S., Lagod, B. (2011), Potential energy savings in compressed air systems in Serbia. African Journal of Business Management, 5(14), 5637-5645. Slobodan, D., Ignjatovic, I., Šešlija, D., Blagojevic, V., Miodrag, S. (2012), Leakage quantification of compressed air using ultrasound and infrared thermography. Measurement, 45, 1689-1694. Trianni, A., Cagno, E., Farné, S. (2016), Barriers, drivers and decisionmaking process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises. Applied Energy, 162, 1537-1551. United Nations. (2018), International Standard Industrial Classification off all Economics Activities (ISIC) Revision 4, ISBN: 978-92-1161518-0, United Nations, New York: ISIC. UPME CORPOEMA. (2014a), Determinación y Priorización de Alternativas de Eficiencia Energética Para los Subsectores Manufactureros Informe Final Códigos CIIU 19 a 31. Vol. 1. Colombia: UPME CORPOEMA. Available from: http://www. upme.gov.co/Estudios/2014/Informe_Final_Volumen_1.pdf. [Last accessed on 2019 Mar 08]. UPME CORPOEMA. (2014b), Determinación y Priorización de Alternativas de Eficiencia Energética para los Subsectores Manufactureros Informe Final Códigos CIIU 19 a 31. Vol. 2. Colombia: UPME CORPOEMA. Available from: http://www1. upme.gov.co/DemandaEnergetica/DeterminacionEficiencia/ Informe_Final_Volumen_2.pdf. [Last accessed on 2019 Mar 08]. UPME INCOMBUSTION. (2013). Determinación del Potencial de Reducción del Consumo Energético en los Subsectores Manufactureros Códigos CIIU 10 a 18 en Colombia. Available from: http://www1. upme.gov.co/DemandaEnergetica/INFORME_III_Caracterizacion_ energetica_VerPub.pdf. [Last accessed on 2019 Mar 06]. UPME. (2016), Plan de Acción Indicativo de Eficiencia Energética 2017-2022, una Realidad y Oportunidad Para Colombia (PAI Proure 2017-2022). Available from: http://www1. upme.gov.co/DemandaEnergetica/MarcoNormatividad/PAI_ PROURE_2017-2022.pdf. [Last accessed on 2018 Jan 29]. UPME. (2018), Balance Energético Colombiano. BECO. Available from: http://www1.upme.gov.co/InformacionCifras/Paginas/ BalanceEnergetico.aspx. [Last accessed on 2019 Feb 14]. Vittorini, D., Roberto, C. (2016), Energy saving potential in existing industrial compressors. Energy, 102, 502-515. Yang, M. (2009), Air compressor efficiency in a Vietnamese enterprise. Energy Policy, 37(6), 2327-2337. Yépez, A., Hallack, M., Ji, Yi., López, D. (2018), The Energy Path of Latin America and Caribbean. Caribbean: IDB Monograph. p683. Zahlan, J., Asfour, S. (2015), A multi-objective approach for determining optimal air compressor location in a manufacturing facility. Journal of Manufacturing Systems, 35, 176-190.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectCompressed air systems
dc.subjectElectricity consumption
dc.subjectEnergy efficiency
dc.titlePotential energy savings and co2 emissions reduction in colombia compressed air systems
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución