dc.creatorAcosta-Coll, Melisa
dc.creatorAnaya, Daniel
dc.creatorOjeda-Field, Luis
dc.creatorZamora-Musa, Ronald
dc.date2021-11-08T13:13:06Z
dc.date2021-11-08T13:13:06Z
dc.date2021-09-13
dc.date2022-09-13
dc.date.accessioned2023-10-03T19:42:37Z
dc.date.available2023-10-03T19:42:37Z
dc.identifier978-303086972-4
dc.identifierhttps://hdl.handle.net/11323/8846
dc.identifier10.1007/978-3-030-86973-1_9
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171654
dc.descriptionCurrently, people want to take control of what they consume as well as the local authorities pursue to implement measures to improve sustainability, food security, and living standards. Indoor urban farming initiatives provide an opportunity to grow their own and obtain fresher food with fewer transportation emissions, likewise, it is a strategy to lift people out of food poverty, reduce environmental impact since the use of herbicides and pesticides is minimal and helps to reduce food waste. However, factors such as the time dedicated to the cultivation of plants, and the adequate space inside their houses prevents them from carrying out this activity. This project presents the design of a low cost smart indoor greenhouse design to cultivate herbs and vegetables with minimum human intervention monitored by a web application. The prototype has three systems to control and monitor the main variables involved in the plant’s growth such as soil moisture, temperature, and solar light intensity. Likewise, it is suitable for a home with little space and it is easily installable, has low energy consumption, and is cost-efficient. © 2021, Springer Nature Switzerland AG.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherSpringer International Publishing
dc.relationANALYSIS-Urban farms to traffic bans: Cities prep for post-coronavirus future (2020) Thompson Reuters Foundation News, p. 21. April
dc.relationDe Bon, H., Parrot, L., Moustier, P. Sustainable urban agriculture in developing countries. A review (Open Access) (2010) Agronomy for Sustainable Development, 30 (1), pp. 21-32. Cited 179 times. doi: 10.1051/agro:2008062
dc.relationFarhangi, M.H., Turvani, M.E., van der Valk, A., Carsjens, G.J. High-tech urban agriculture in Amsterdam: An actor network analysis (Open Access) (2020) Sustainability (Switzerland), 12 (10), art. no. 3955. Cited 6 times. http://www.mdpi.com/2071-1050/12/10/3955 doi: 10.3390/SU12103955
dc.relationKhumalo, N.Z., Sibanda, M. Does urban and peri-urban agriculture contribute to household food security? An assessment of the food security status of households in Tongaat, eThekwini Municipality (Open Access) (2019) Sustainability (Switzerland), 11 (4), art. no. 1082. Cited 15 times. https://www.mdpi.com/2071-1050/11/4/1082/pdf doi: 10.3390/su11041082
dc.relationZasada, I. Multifunctional peri-urban agriculture-A review of societal demands and the provision of goods and services by farming (2011) Land Use Policy, 28 (4), pp. 639-648. Cited 373 times. doi: 10.1016/j.landusepol.2011.01.008
dc.relationOrsini, F., Kahane, R., Nono-Womdim, R., Gianquinto, G. Urban agriculture in the developing world: A review (Open Access) (2013) Agronomy for Sustainable Development, 33 (4), pp. 695-720. Cited 252 times. doi: 10.1007/s13593-013-0143-z
dc.relationPearson, L.J., Pearson, L., Pearson, C.J. Sustainable urban agriculture: Stocktake and opportunities (2011) Urban Agriculture: Diverse Activities and Benefits for City Society, pp. 7-19. Cited 8 times. http://www.tandfebooks.com/doi/book/10.4324/9781849774857 ISBN: 978-113654314-2; 978-113898657-2 doi: 10.3763/ijas.2009.0468
dc.relationPinstrup-Andersen, P. Is it time to take vertical indoor farming seriously? (2018) Global Food Security, 17, pp. 233-235. Cited 26 times. http://ezproxy.cuc.edu.co:2147/global-food-security/ doi: 10.1016/j.gfs.2017.09.002
dc.relationKaburuan, E.R., Jayadi, R., Harisno A design of IoT-based monitoring system for intelligence indoor micro-climate horticulture farming in Indonesia (Open Access) (2019) Procedia Computer Science, 157, pp. 459-464. Cited 9 times. http://ezproxy.cuc.edu.co:2053/science/journal/18770509 doi: 10.1016/j.procs.2019.09.001
dc.relationGoodman, W., Minner, J. Will the urban agricultural revolution be vertical and soilless? A case study of controlled environment agriculture in New York City (2019) Land Use Policy, 83, pp. 160-173. Cited 24 times. www.elsevier.com/inca/publications/store/3/0/4/5/1/ doi: 10.1016/j.landusepol.2018.12.038
dc.relationSammons, P.J., Furukawua, T., Bulgin, A. Autonomous pesticide spraying robot for use in a greenhouse (2005) ISBN 0–9587583–7–9
dc.relationBenke, K., Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture (Open Access) (2017) Sustainability: Science, Practice, and Policy, 13 (1), pp. 13-26. Cited 139 times. https://ezproxy.cuc.edu.co:2191/doi/abs/10.1080/15487733.2017.1394054#aHR0cHM6Ly93d3cudGFuZGZvbmxpbmUuY29tL2RvaS9wZGYvMTAuMTA4MC8xNTQ4NzczMy4yMDE3LjEzOTQwNTRAQEAw doi: 10.1080/15487733.2017.1394054
dc.relationMartin, M., Molin, E. Environmental assessment of an urban vertical hydroponic farming system in Sweden (Open Access) (2019) Sustainability (Switzerland), 11 (15), art. no. 4124. Cited 14 times. https://res.mdpi.com/sustainability/sustainability-11-04124/article_deploy/sustainability-11-04124.pdf?filename=&attachment=1 doi: 10.3390/su11154124
dc.relationPandit, A.A., Mancharkar, A.V. Green house environment monitoring and control system (2016) Int. J. Sci. Eng. Res., 7 (8).
dc.relationChitti, S., Samyu Ktha, L. Data acquisition of green house gases and energy monitoring system using GSM technology (Open Access) (2019) International Journal of Innovative Technology and Exploring Engineering, 8 (6 Special Issue 4), pp. 820-825. Cited 2 times. https://www.ijitee.org/wp-content/uploads/papers/v8i6s4/F11650486S419.pdf doi: 10.35940/ijitee.F1165.0486S419
dc.relationSalazar-Aguilar, N. (2020) Diseño De Un Sistema Inteligente Para El Control Automa-Tizado De Inveranderos México, Maestría
dc.relationMoliner, R., Marsh, H., Heinz, E. Del carbón activo al grafeno: Evolución de los materiales de carbono (2016) Grupo De Conversion De Combustibles. ICB-CSIC, pp. 2-5. Cited 2 times. , pp
dc.relationRichard, M. El carbón activo ya se fabrica con una estructura diseñada a medida, MIT Technol. Rev (2015) 12 Junio
dc.relationOmo-Okoro, P.N., Daso, A.P., Okonkwo, J.O. A review of the application of agricultural wastes as precursor materials for the adsorption of per- and polyfluoroalkyl substances: A focus on current approaches and methodologies (2018) Environmental Technology and Innovation, 9, pp. 100-114. Cited 42 times. http://ezproxy.cuc.edu.co:2147/environmental-technology-and-innovation/ doi: 10.1016/j.eti.2017.11.005
dc.relationPalansooriya, K.N., et al.: Impacts of biochar application on upland agriculture: a review. J. Environ. Manage. 234(December 2018), 52–64 (2019). https://ezproxy.cuc.edu.co:2067/10.1016/j.jenvman. 2018.12.085
dc.relation(2018) Green Power: Eco Friendly Technology. El Uso De carbón Vegetal Como Fertilizante, 27.
dc.relationJacobo Mendez Alzamora Consultor Eco-Agricultura, C. PGSJ): Carbón En Agricultura – Engormix, 11, p. 2017.
dc.relationYuan, C., Feng, S., Huo, Z., Ji, Q. Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China (2019) Agricultural Water Management, 212, pp. 424-432. Cited 30 times. http://ezproxy.cuc.edu.co:2147/agricultural-water-management/ doi: 10.1016/j.agwat.2018.09.019
dc.relationKamcev, J., Sujanani, R., Jang, E.-S., Yan, N., Moe, N., Paul, D.R., Freeman, B.D. Salt concentration dependence of ionic conductivity in ion exchange membranes (2018) Journal of Membrane Science, 547, pp. 123-133. Cited 67 times. www.elsevier.com/locate/memsci doi: 10.1016/j.memsci.2017.10.024
dc.relationSadiku, M.N.O., Alexander, C.K. Fundamentals of Electric Circuits, Third Ed. Vol. 91 (2017) Bookman
dc.relationCotching, W.E. Organic matter in the agricultural soils of Tasmania, Australia – A review (2018) Geoderma, 312, pp. 170-182. Cited 7 times. www.elsevier.com/inca/publications/store/5/0/3/3/3/2 doi: 10.1016/j.geoderma.2017.10.006
dc.relationFrouz, J.: Effects of soil macro-and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332(September 2017), 161–172 (2018). https://ezproxy.cuc.edu.co:2067/10. 1016/j.geoderma.2017.08.039
dc.relationRostami, S., Azhdarpoor, A.: The application of plant growth regulators to improve phytore-mediation of contaminated soils: a review. Chemosphere 220, 818–827 (2019). https://doi. org/10.1016/j.chemosphere.2018.12.203
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourceLecture Notes in Computer Science
dc.sourcehttps://www.springerprofessional.de/en/low-cost-smart-indoor-greenhouse-for-urban-farming/19653344
dc.subjectIndoor greenhouse
dc.subjectSmart greenhouse
dc.subjectUrban farming
dc.titleLow-cost smart indoor greenhouse for urban farming
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución