dc.creator | Alanazi, Abdullah | |
dc.creator | Alizadeh, Mehdi | |
dc.creator | Nurgalieva, Karina | |
dc.creator | Grimaldo Guerrero, John William | |
dc.creator | Abo-Dief, Hala M. | |
dc.creator | Eftekhari-Zadeh, Ehsan | |
dc.creator | nazemi, ehsan | |
dc.creator | Igor, Narozhnyy | |
dc.date | 2022-01-16T20:32:54Z | |
dc.date | 2022-01-16T20:32:54Z | |
dc.date | 2021-12-09 | |
dc.date.accessioned | 2023-10-03T19:42:35Z | |
dc.date.available | 2023-10-03T19:42:35Z | |
dc.identifier | 2071-1050 | |
dc.identifier | https://hdl.handle.net/11323/8974 | |
dc.identifier | https://doi.org/10.3390/su132413622 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9171644 | |
dc.description | To the best knowledge of the authors, in all the former studies, a fixed value of X-ray tube voltage has been used for investigating gas–liquid two-phase flow characteristics, while the energy of emitted X-ray radiations that depends on the tube voltage can significantly affect the measurement precision of the system. The purpose of present study is to find the optimum tube voltage to increase the accuracy and efficiency of an intelligent X-ray radiation-based two-phase flow meter. The detection system consists of an industrial X-ray tube and one detector located on either side of a steel pipe. Tube voltages in the range of 125–300 kV with a step of 25 kV were investigated. For each tube voltage, different gas volume percentages (GVPs) in the range of 10–90% with a step of 5% were modeled. A feature extraction method was performed on the output signals of the detector in every case, and the obtained matrixes were applied to the designed radial basis function neural networks (RBFNNs). The desired output of the networks was GVP. The precision of the networks in every voltage and every number of neurons in the hidden layer were obtained. The results showed that 225 kV tube voltage is the optimum voltage for this purpose. The obtained mean absolute error (MAE) for this case is less than 0.05, which demonstrates the very high precision of the metering system with an optimum X-ray tube voltage. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | 1. Almutairi, Z.; Al-Alweet, F.M.; Alghamdi, Y.A.; Almisned, O.A.; Alothman, O.Y. Investigating the characteristics of two-phase
flow using electrical capacitance tomography (ECT) for three pipe orientations. Processes 2020, 8, 51. [CrossRef] | |
dc.relation | 2. Yang, Y.; Wang, D.; Niu, P.; Liu, M.; Wang, S. Gas-liquid two-phase flow measurements by the electromagnetic flowmeter
combined with a phase-isolation method. Flow Meas. Instrum. 2018, 60, 78–87. [CrossRef] | |
dc.relation | 3. Wongsaroj, W.; Hamdani, A.; Thong-Un, N.; Takahashi, H.; Kikura, H. Extended short-time fourier transform for ultrasonic
velocity profiler on two-phase bubbly flow using a single resonant frequency. Appl. Sci. 2019, 9, 50. [CrossRef] | |
dc.relation | 4. Roshani, G.H.; Nazemi, E.; Feghhi, S.A.H. Investigation of using 60Co source and one detector for determining the flow regime
and void fraction in gas–liquid two-phase flows. Flow Meas. Instrum. 2016, 50, 73–79. [CrossRef] | |
dc.relation | 5. Roshani, M.; Phan, G.; Roshani, G.H.; Hanus, R.; Nazemi, B.; Corniani, E.; Nazemi, E. Combination of X-ray tube and GMDH
neural network as a nondestructive and potential technique for measuring characteristics of gas-oil–water three phase flows.
Measurement 2021, 168, 108427. [CrossRef] | |
dc.relation | 6. Asano, H.; Takenaka, N.; Fujii, T. Flow characteristics of gas–liquid two-phase flow in plate heat exchanger: (Visualization and
void fraction measurement by neutron radiography). Exp. Therm. Fluid Sci. 2004, 28, 223–230. [CrossRef] | |
dc.relation | 7. Hewitt, G.F.; Roberts, D.N. Studies of Two-Phase Flow Patterns by Simultaneous X-Ray and Flast Photography; No. AERE-M-2159;
Atomic Energy Research Establishment: Harwell, UK, 1969. | |
dc.relation | 8. Jones, O.C., Jr.; Zuber, N. The interrelation between void fraction fluctuations and flow patterns in two-phase flow. Int. J. Multiph.
Flow 1975, 2, 273–306. [CrossRef] | |
dc.relation | 9. Harvel, G.D.; Hori, K.; Kawanishi, K.; Chang, J.S. Cross-sectional void fraction distribution measurements in a vertical annulus
two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques. Flow Meas. Instrum.
1999, 10, 259–266. [CrossRef] | |
dc.relation | 10. Fischer, F.; Hampel, U. Ultra fast electron beam X-ray computed tomography for two-phase flow measurement. Nucl. Eng. Des.
2010, 240, 2254–2259. [CrossRef] | |
dc.relation | 11. Song, K.; Liu, Y. A compact x-ray system for two-phase flow measurement. Meas. Sci. Technol. 2018, 29, 025305. [CrossRef] | |
dc.relation | 12. Roshani, M.; Ali, P.J.M.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Phan, N.H.; Tran, H.N.; Nazemi, E. X-ray tube with artificial
neural network model as a promising alternative for radioisotope source in radiation based two phase flowmeters. Appl. Radiat.
Isot. 2020, 164, 109255. [CrossRef] | |
dc.relation | 13. Amiri, S.; Ali, P.J.M.; Mohammed, S.; Hanus, R.; Abdulkareem, L.; Alanezi, A.A.; Eftekhari-Zadeh, E.; Roshani, G.H.; Nazemi, E.;
Kalmoun, E.M. Proposing a nondestructive and intelligent system for simultaneous determining flow regime and void fraction
percentage of gas–liquid two phase flows using polychromatic X-ray transmission spectra. J. Nondestruct. Eval. 2021, 40, 1–12.
[CrossRef] | |
dc.relation | 14. Mäkiharju, S.A.; Gabillet, C.; Paik, B.G.; Chang, N.A.; Perlin, M.; Ceccio, S.L. Time-resolved two-dimensional X-ray densitometry
of a two-phase flow downstream of a ventilated cavity. Exp. Fluids 2013, 54, 1–21. [CrossRef] | |
dc.relation | 15. Tekawade, A.; Sforzo, B.A.; Matusik, K.E.; Fezzaa, K.; Kastengren, A.L.; Powell, C.F. Time-resolved 3D imaging of two-phase
fluid flow inside a steel fuel injector using synchrotron X-ray tomography. Sci. Rep. 2020, 10, 1–9. | |
dc.relation | 16. Heindel, T.J. A review of X-ray flow visualization with applications to multiphase flows. J. Fluids Eng. 2011, 133, 074001.
[CrossRef] | |
dc.relation | 17. Pelowitz, D.B. MCNP-X TM User’s Manual, Version 2.5.0. LA-CP-05e0369; Los Alamos National Laboratory: Los Alamos, NM,
USA, 2005. | |
dc.relation | 18. Karami, A.; Roshani, G.H.; Khazaei, A.; Nazemi, E.; Fallahi, M. Investigation of different sources in order to optimize the nuclear
metering system of gas-oil-water annular flows. Neural Comput. Appl. 2020, 32, 3619–3631. [CrossRef] | |
dc.relation | 19. Roshani, M.; Phan, G.T.; Ali, P.J.M.; Roshani, G.H.; Hanus, R.; Duong, T.; Corniani, E.; Nazemi, E.; Kalmoun, E.M. Evaluation of
flow pattern recognition and void fraction measurement in two phase flow independent of oil pipeline’s scale layer thickness.
Alex. Eng. J. 2021, 60, 1955–1966. [CrossRef] | |
dc.relation | 20. Salgado, C.M.; Pereira, C.M.; Schirru, R.; Brandão, L.E. Flow regime identification and volume fraction prediction in multiphase
flows by means of gamma-ray attenuation and artificial neural networks. Prog. Nucl. Energy 2010, 52, 555–562. [CrossRef] | |
dc.relation | 21. Nazemi, E.; Feghhi, S.; Roshani, G.; Setayeshi, S.A.; Peyvandi, R.G. A radiation-based hydrocarbon two-phase flow meter for
estimating of phase fraction independent of liquid phase density in stratified regime. Flow Meas. Instrum. 2015, 46, 25–32.
[CrossRef] | |
dc.relation | 22. Nazemi, E.; Feghhi, S.; Roshani, G.; Peyvandi, R.G.; Setayeshi, S. Precise void fraction measurement in two-phase flows
independent of the flow regime using gamma-ray attenuation. Nucl. Eng. Technol. 2016, 48, 64–71. [CrossRef] | |
dc.relation | 23. Roshani, G.; Nazemi, E.; Roshani, M. Identification of flow regime and estimation of volume fraction independent of liquid phase
density in gas-liquid two-phase flow. Prog. Nucl. Energy 2017, 98, 29–37. [CrossRef | |
dc.relation | 24. Roshani, G.H.; Nazemi, E.; Roshani, M.M. Flow regime independent volume fraction estimation in three-phase flows using
dual-energy broad beam technique and artificial neural network. Neural Comput. Appl. 2016, 28, 1265–1274. [CrossRef] | |
dc.relation | 25. Buhmann, M.D. Radial Basis Functions: Theory and Implementations; Cambridge University: Cambridge, UK, 2003;
ISBN 0-521-63338-9. | |
dc.relation | 26. Aleksandrov, A.N.; Kishchenko, M.A.; Van, T.N. Simulating the formation of wax deposits in wells using electric submersible
pumps. In Advances in Raw Material Industries for Sustainable Development Goals; CRC Press: London, UK, 2021; pp. 283–295.
[CrossRef] | |
dc.relation | 27. Khounani, Z.; Hosseinzadeh-Bandbafha, H.; Nazemi, F.; Shaeifi, M.; Karimi, K.; Tabatabaei, M.; Aghbashlo, M.; Lam, S.S. Exergy
analysis of a whole-crop safflower biorefinery: A step towards reducing agricultural wastes in a sustainable manner. J. Environ.
Manag. 2021, 279, 111822. [CrossRef] [PubMed] | |
dc.relation | 28. Karpikov, A.V.; Aliev, R.I.; Babyr, N.V. An analysis of the effectiveness of hydraulic fracturing at YS1 of the Northern field. In IOP
Conference Series: Materials, Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 952, p. 012036. | |
dc.relation | 29. Prischepa, O.M.; Nefedov, Y.V.; Kochneva, O.E. Raw material base of hard-to-extract oil reserves of Russia (Matéria-prima base
de reservas de óleo de difícil extração da Rússia). Periodico TCHE Quimica 2020, 17, 915–924. | |
dc.relation | 30. Roshani, S.; Roshani, S. Design of a high efficiency class-F power amplifier with large signal and small signal measurements.
Measurement 2020, 149, 106991. [CrossRef] | |
dc.relation | 31. Lalbakhsh, A.; Mohamadpour, G.; Roshani, S.; Ami, M.; Roshani, S.; Sayem, A.S.M.; Alibakhshikenari, M.; Koziel, S. Design
of a compact planar transmission line for miniaturized rat-race coupler with harmonics suppression. IEEE Access 2021, 9,
129207–129217. [CrossRef] | |
dc.relation | 32. Pirasteh, A.; Roshani, S.; Roshani, S. A modified class-F power amplifier with miniaturized harmonic control circuit. AEU Int. J.
Electron. Commun. 2018, 97, 202–209. [CrossRef] | |
dc.relation | 33. Lalbakhsh, A.; Jamshidi, M. (Behdad); Siahkamari, H.; Ghaderi, A.; Golestanifar, A.; Linhart, R.; Talla, J.; Simorangkir, R.B.;
Mandal, K. A compact lowpass filter for satellite communication systems based on transfer function analysis. AEU-Int. J. Electron.
Commun. 2020, 124, 153318. [CrossRef] | |
dc.relation | 34. Ruiz-Morales, B.; Espitia-Moreno, I.C.; Alfaro-Garcia, V.G.; Leon-Castro, E. Sustainable development goals Analysis with ordered
weighted average operators. Sustainability 2021, 13, 5240. [CrossRef] | |
dc.relation | 35. Lalbakhsh, A.; Afzal, M.U.; Hayat, T.; Esselle, K.P.; Manda, K. All-metal wideband metasurface for near-field transformation of
medium-to-high gain electromagnetic sources. Sci. Rep. 2021, 11, 1–9. | |
dc.relation | 36. Jamshidi, M.B.; Siahkamari, H.; Roshani, S.; Roshani, S. A compact Gysel power divider design using U-shaped and T-shaped
reso-nators with harmonics suppression. Electromagnetics 2019, 39, 491–504. [CrossRef] | |
dc.relation | 37. Lalbakhsh, A.; Alizadeh, S.M.; Ghaderi, A.; Golestanifar, A.; Mohamadzade, B.; Jamshidi, M.B.; Mandal, K.; Mohyuddin, W. A
design of a dual-band bandpass filter based on modal analysis for modern communication systems. Electronics 2020, 9, 1770.
[CrossRef] | |
dc.relation | 38. Moradi, M.J.; Hariri-Ardebili, M.A. Developing a library of shear walls database and the neural network based predictive
meta-model. Appl. Sci. 2019, 9, 2562. [CrossRef] | |
dc.relation | 39. Nazemi, B.; Rafiean, M. Forecasting house prices in Iran using GMDH. Int. J. Hous. Mark. Anal. 2021, 14, 555–568. [CrossRef] | |
dc.relation | 40. Nazemi, B.; Rafiean, M. Modelling the affecting factors of housing price using GMDH-type artificial neural networks in Isfa-han
city of Iran. Int. J. Hous. Mark. Anal. 2021, 32, 3619–3631. | |
dc.relation | 41. Roshani, G.H.; Feghhi, S.A.H.; Mahmoudi-Aznaveh, A.; Nazemi, E.; Adineh-Vand, A. Precise volume fraction prediction in
oil–water–gas multiphase flows by means of gamma-ray attenuation and artificial neural networks using one detector. Meas.
2014, 51, 34–41. [CrossRef] | |
dc.relation | 42. Ghanbari, B.; Yusuf, A.; Inc, M.; Baleanu, D. The new exact solitary wave solutions and stability analysis for the (2+1)-dimensional
Zakharov-Kuznetsov equation. Adv. Differ. Equ. 2019, 2019, 1–15. [CrossRef] | |
dc.relation | 43. Roshani, G.; Nazemi, E.; Roshani, M. Intelligent recognition of gas-oil-water three-phase flow regime and determination of
volume fraction using radial basis function. Flow Meas. Instrum. 2017, 54, 39–45. [CrossRef] | |
dc.relation | 44. Ghanbari, B. Abundant exact solutions to a generalized nonlinear Schrödinger equation with local fractional derivative. Math.
Methods Appl. Sci. 2021, 44, 8759–8774. [CrossRef] | |
dc.relation | 45. Roshani, G.H.; Roshani, S.; Nazemi, E.; Roshani, S. Online measuring density of oil products in annular regime of gas-liquid two
phase flows. Measurement 2018, 129, 296–301. [CrossRef] | |
dc.relation | 46. Ghanbari, B.; Nisar, K.S.; Aldhaifallah, M. Abundant solitary wave solutions to an extended nonlinear Schrödinger’s equation
with conformable derivative using an efficient integration method. Adv. Differ. Equ. 2020, 2020, 1–25. [CrossRef] | |
dc.relation | 47. Karami, A.; Roshani, G.H.; Nazemi, E.; Roshani, S. Enhancing the performance of a dual-energy gamma ray based three-phase
flow meter with the help of grey wolf optimization algorithm. Flow Meas. Instrum. 2018, 64, 164–172. [CrossRef] | |
dc.relation | 48. Srivastava, H.M.; Günerhan, H.; Ghanbari, B. Exact traveling wave solutions for resonance nonlinear Schrödinger equation with
intermodal dispersions and the Kerr law nonlinearity. Math. Methods Appl. Sci. 2019, 42, 7210–7221. [CrossRef] | |
dc.relation | 49. Roshani, G.; Nazemi, E. Intelligent densitometry of petroleum products in stratified regime of two phase flows using gamma ray
and neural network. Flow Meas. Instrum. 2017, 58, 6–11. [CrossRef] | |
dc.relation | 50. Roshani, M.; Phan, G.; Faraj, R.H.; Phan, N.H.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E. Proposing a gamma radiation
based intelligent system for simultaneous analyzing and detecting type and amount of petroleum by-products. Neural Eng.
Technol. 2021, 53, 1277–1283. [CrossRef] | |
dc.relation | 51. Golijanek-J ˛edrzejczyk, A.; Mrowiec, A.; Hanus, R.; Zych, M.; Heronimczak, M.; Swisulski, D. The assessment of metrological ´
properties of segmental orifice based on simulations and experiments. Measurement 2021, 181, 109601. [CrossRef] | |
dc.relation | 52. Roshani, G.H.; Nazemi, E.; Feghhi, S.A.; Setayeshi, S. Flow regime identification and void fraction prediction in two-phase flows
based on gamma ray attenuation. Measurement 2015, 62, 25–32. [CrossRef] | |
dc.relation | 53. Zych, M.; Petryka, L.; K ˛epi ´nski, J.; Hanus, R.; Bujak, T.; Puskarczyk, E. Radioisotope investigations of compound two-phase flows
in an open channel. Flow Meas. Instrum. 2014, 35, 11–15. [CrossRef] | |
dc.relation | 54. Sattari, M.A.; Roshani, G.H.; Hanus, R.; Nazemi, E. Applicability of time-domain feature extraction methods and artificial
intelligence in two-phase flow meters based on gamma-ray absorption technique. Measurement 2021, 168, 108474. [CrossRef] | |
dc.relation | 55. Zych, M.; Hanus, R.; Wilk, B.; Petryka, L.; Swisulski, D. Comparison of noise reduction methods in radiometric correlation ´
measurements of two-phase liquid-gas flows. Measurement 2018, 129, 288–295. [CrossRef] | |
dc.relation | 56. Dolgii, I.E. Methods to enhance oil recovery in the process of complex field development of the Yarega oil and titanium deposit.
J. Min. Inst. 2017, 231, 263–297. | |
dc.relation | 57. Nguyen, V.T.; Rogachev, M.K.; Aleksandrov, A.N. A new approach to improving efficiency of gas-lift wells in the conditions of
the formation of organic wax deposits in the dragon field. J. Pet. Explor. Prod. Technol. 2020, 10, 3663–3672. [CrossRef] | |
dc.relation | 58. Sandyga, M.S.; Struchkov, I.A.; Rogachev, M.K. Formation damage induced by wax deposition: Laboratory investigations and
modeling. J. Pet. Explor. Prod. Technol. 2020, 10, 2541–2558. [CrossRef] | |
dc.relation | 59. Sultanbekov, R.; Islamov, S.; Mardashov, D.; Beloglazov, I.; Hemmingsen, T. Research of the influence of marine residual fuel
composition on sedimentation due to incompatibility. J. Mar. Sci. Eng. 2021, 9, 1067. [CrossRef] | |
dc.relation | 60. Roshani, G.; Nazemi, E.; Roshani, M. Usage of two transmitted detectors with optimized orientation in order to three phase flow
me-tering. Measurement 2017, 100, 122–130. [CrossRef] | |
dc.relation | 61. Kashnikov, Y.A.; Ashikhmin, S.G.; Kukhtinskii, A.E.; Shustov, D.V. The relationship of fracture toughness coefficients and
geophysical characteristics of rocks of hydrocarbon deposits. J. Min. Inst. 2020, 1, 241. [CrossRef] | |
dc.relation | 62. Belonogov, E.V.; Korovin, A.Y.; Yakovlev, A.A. Increase of the injectivity coefficient by dynamic development of injection wells.
J. Min. Inst. 2019, 1, 238. | |
dc.relation | 63. Grigorev, M.B.; Tananykhin, D.S.; Poroshin, M.A. Sand management approach for a field with high viscosity oil. J. Appl. Eng. Sci.
2020, 18, 64–69. [CrossRef] | |
dc.relation | 64. Roshani, G.; Hanus, R.; Khazaei, A.; Zych, M.; Nazemi, E.; Mosorov, V. Density and velocity determination for single-phase flow
based on radiotracer technique and neural networks. Flow Meas. Instrum. 2018, 61, 9–14. [CrossRef] | |
dc.relation | 65. Shagiakhmetov, A.M.; Podoprigora, D.G.; Terleev, A.V. The study of the dependence of the rheological properties of gelforming
compositions on the crack opening when modeling their flow on a rotational viscometer. Period. Tche Quimica 2020, 17, 933–939.
[CrossRef] | |
dc.relation | 66. Galkin, S.V.; Kochnev, A.A.; Zotikov, V.I. Predictive assessment of the effectiveness of radial drilling technology for the Bashkir
production facilities of the Perm Territory fields. J. Min. Inst. 2019, 1, 238. | |
dc.relation | 67. Molchanov, A.A.; Ageev, P.G. Implementation of new technologies is a reliable way of extracting residual reserves of hydrocarbon
deposits. J. Min. Inst. 2017, 1, 227. | |
dc.relation | 68. Morenov, V.; Leusheva, E.; Martel, A. Investigation of the fractional composition effect of the carbonate weighting agents on the
rheology of the clayless drilling mud. Int. J. Eng. 2018, 31, 1152–1158. [CrossRef] | |
dc.relation | 69. Nikitin, M.N.; Saychenko, L.A. The rheological properties of abnormally viscous oil. Pet. Sci. Technol. 2018, 36, 136–140. [CrossRef] | |
dc.relation | 70. Francik, S.; Kurpaska, S. The use of artificial neural networks for forecasting of air temperature inside a heated foil tunnel. Sensors
2020, 20, 652. [CrossRef] [PubMed] | |
dc.relation | 71. Francik, S.; Knapczyk, A.; Knapczyk, A.; Francik, R. Decision support system for the production of miscanthus and willow
briquettes. Energies 2020, 13, 1364. [CrossRef] | |
dc.relation | 72. Ghanbari, B. A new model for investigating the transmission of infectious diseases in a prey-predator system using a non-singular
fractional derivative. Math. Methods Appl. Sci. 2021. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.74
12 (accessed on 16 April 2021). [CrossRef] | |
dc.relation | 73. Nabti, A.; Ghanbari, B. Global stability analysis of a fractional SVEIR epidemic model. Math. Methods Appl. Sci. 2021, 44,
8577–8597. [CrossRef] | |
dc.relation | 74. Ghanbari, B. On the modeling of the interaction between tumor growth and the immune system using some new fractional and
fractional-fractal operators. Adv. Differ. Equ. 2020, 2020, 585. [CrossRef] | |
dc.relation | 75. Djilali, S.; Ghanbari, B. The influence of an infectious disease on a prey-predator model equipped with a fractional-order
derivative. Adv. Differ. Equ. 2021, 2021, 20. [CrossRef] | |
dc.relation | 76. Wu, H.; Zhang, F.; Zhang, Z. Fundamental spray characteristics of air-assisted injection system using aviation kerosene. Fuel 2021,
286, 119420. [CrossRef] | |
dc.relation | 77. Ghanbari, B. A fractional system of delay differential equation with nonsingular kernels in modeling hand-foot-mouth disease.
Adv. Differ. Equ. 2020, 2020, 536. [CrossRef] [PubMed] | |
dc.relation | 78. Djilali, S.; Ghanbari, B. Dynamical behavior of two predators–one prey model with generalized functional response and
time-fractional derivative. Adv. Differ. Equ. 2021, 2021, 1–19. [CrossRef] | |
dc.relation | 79. Ghanbari, B. On novel nondifferentiable exact solutions to local fractional Gardner’s equation using an effective technique.
Math. Methods Appl. Sci. 2021, 44, 4673–4685. [CrossRef] | |
dc.relation | 80. Ghanbari, B. On approximate solutions for a fractional prey–predator model involving the Atangana–Baleanu derivative.
Adv. Differ. Equ. 2020, 2020, 679. [CrossRef] | |
dc.relation | 81. Ghanbari, B.; Atangana, A. Some new edge detecting techniques based on fractional derivatives with non-local and non-singular
kernels. Adv. Differ. Equ. 2020, 2020, 435. [CrossRef] | |
dc.relation | 82. Ghanbari, B.; Inc, M.; Rada, L. Solitary wave solutions to the Tzitzéica type equations obtained by a new efficient approach.
J. Appl. Anal. Comput. 2019, 9, 568–589. [CrossRef] | |
dc.relation | 83. Rahman, G.; Nisar, K.S.; Ghanbari, B.; Abdeljawad, T. On generalized fractional integral inequalities for the monotone weighted
Chebyshev functionals. Adv. Differ. Equ. 2020, 2020, 368. [CrossRef] | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | Sustainability | |
dc.source | https://www.mdpi.com/2071-1050/13/24/13622 | |
dc.subject | Tube voltage optimization | |
dc.subject | Artificial intelligence | |
dc.subject | X-ray | |
dc.subject | Two-phase flow | |
dc.subject | GVP | |
dc.subject | Sustainable technology | |
dc.title | Optimization of X-ray tube voltage to improve the precision of two phase flow meters used in petroleum industry | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |