dc.creatorsilva d, jesus g
dc.creatorSenior Naveda, Alexa
dc.creatorSolórzano Movilla, José
dc.creatorNiebles Núñez, William
dc.creatorHernández Palma, Hugo
dc.date2020-01-30T13:47:46Z
dc.date2020-01-30T13:47:46Z
dc.date2020
dc.date.accessioned2023-10-03T19:42:29Z
dc.date.available2023-10-03T19:42:29Z
dc.identifier1742-6588
dc.identifier1742-6596
dc.identifierhttp://hdl.handle.net/11323/5959
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171637
dc.descriptionThis article introduces a n-gram-based approach to automatic classification of Web services using a multilayer perceptron-type artificial neural network. Web services contain information that is useful for achieving a classification based on its functionality. The approach relies on word n-grams extracted from the web service description to determine its membership in a category. The experimentation carried out shows promising results, achieving a classification with a measure F=0.995 using unigrams (2-grams) of words (characteristics composed of a lexical unit) and a TF-IDF weight.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherJournal of Physics: Conference Series
dc.relation10.1088/1742-6596/1432/1/012076/pdf
dc.relation[1] Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang , Anand Ghalsas (2010) “Cloud computing — The business perspective”, Decision support systems, Volume 51, Issue 1, April 2011, Pages 176–189, Elsevier.
dc.relation[2] Bifet, A., & De Francisci Morales, G. (2014). Big data stream learning with Samoa. Recuperado dehttps://www.researchgate.net/publication/282303881_Big_data_stream_learning_with_SAM OA.
dc.relation[3] Mell, Grance. "The NIST definition of cloud computing." NIST Special Publication 800 – 145, 2011Valarie Zeithaml A, A. Parasuraman, Leonard L. Berry (1999.5). Total, quality Management services. Bogota: Diaz de Santos.
dc.relation[4] Sitto, K., M. Presser, 2015. Field Guide to Hadoop. California: O’REILLY, 31-33 pp.
dc.relation[5] Sosinsky, B., 2011. Cloud Computing Bible. Indiana: Wiley Publishing Inc., 3 pp.
dc.relation[6] Bravo, M., Alvarado, M.: Similarity measures for substituting Web services. International Journal of Web Services Research, 7 (3), pp. 1–29 (2010).
dc.relation[7] Chen, L., Zhang, Y., Song, Z.L., Miao, Z.: Automatic web services classification based on rough set theory. Journal of Central South University, 20, pp. 2708–2714 (2013).
dc.relation[8] Pineda Lezama, O., & Gómez Dorta, R. (2017). Techniques of multivariate statistical analysis: An application for the Honduran banking sector. Innovare: Journal of Science and Technology, 5 (2), 61-75
dc.relation[9] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J. (2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham
dc.relation[10] Zhu, Fang et al. "IBM Cloud Computing Powering a Smarter Planet", Libro Cloud Computing, Volumen 599.51/2009, Páginas 621- 625.
dc.relation[11] Mohanty, R., Ravi, V., Patra, M.R.: Web-services classification using intelligent techniques. Expert Systems with Applications, 37(7), pp. 5484–5490 (2010).
dc.relation[12] L. Thames and D. Schaefer, “Softwaredefined Cloud Manufacturing for Industry 4.0,” Procedía CIRP, vol. 52, p p .12-17, 2016.
dc.relation[13] Amelec Viloria, Dionicio Neira-Rodado, Omar Bonerge Pineda Lezama. Recovery of scientific data using Intelligent Distributed Data Warehouse. ANT/EDI40 2019: 1249-1254.
dc.relation[14] Schweidel, D. A., & Knox, G. (2013). Incorporating direct marketing activity into latent attrition models. Marke¬ting Science, 31(3), pp. 471-487.
dc.relation[15] Setnes, M., & Kaymak, U. (2001). Fuzzy modeling of client preference from large data sets: an application to target selection in direct marketing. Fuzzy Systems, IEEE Transactions on, 9(1), pp. 153-163.
dc.relation[16] Amelec Viloria, Omar Bonerge Pineda Lezama. Improvements for Determining the Number of Clusters in k-Means for Innovation Databases in SMEs. ANT/EDI40 2019: 1201-1206
dc.relation[17] Nisa, R., Qamar, U.: A text mining based approach for web service classification. Information Systems and e-Business Management, pp. 1–18 (2014).
dc.relation[18] Wu, J., Chen, L., Zheng, Z., Lyu, M. R., Wu, Z.: Clustering web services to facilitate service discovery. Knowledge and information systems, 38(1), pp. 207–229 (2014) [22] Alderson, J. (2015). A markerless motion capture technique for sport performance analysis and injury prevention: Toward a big data, machine learning future. Journal of Science and Medicine in Sport, 19, e79. doi: 10.1016/j.jsams.2015.12.192.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectNeural networks
dc.subjectWeb services
dc.subjectArtificial neural network
dc.titleNeural networks for the web services classification
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución