dc.creator | silva d, jesus g | |
dc.creator | Senior Naveda, Alexa | |
dc.creator | Solórzano Movilla, José | |
dc.creator | Niebles Núñez, William | |
dc.creator | Hernández Palma, Hugo | |
dc.date | 2020-01-30T13:47:46Z | |
dc.date | 2020-01-30T13:47:46Z | |
dc.date | 2020 | |
dc.date.accessioned | 2023-10-03T19:42:29Z | |
dc.date.available | 2023-10-03T19:42:29Z | |
dc.identifier | 1742-6588 | |
dc.identifier | 1742-6596 | |
dc.identifier | http://hdl.handle.net/11323/5959 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9171637 | |
dc.description | This article introduces a n-gram-based approach to automatic classification of Web services using a multilayer perceptron-type artificial neural network. Web services contain information that is useful for achieving a classification based on its functionality. The approach relies on word n-grams extracted from the web service description to determine its membership in a category. The experimentation carried out shows promising results, achieving a classification with a measure F=0.995 using unigrams (2-grams) of words (characteristics composed of a lexical unit) and a TF-IDF weight. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Journal of Physics: Conference Series | |
dc.relation | 10.1088/1742-6596/1432/1/012076/pdf | |
dc.relation | [1] Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang , Anand Ghalsas (2010) “Cloud
computing — The business perspective”, Decision support systems, Volume 51, Issue 1, April
2011, Pages 176–189, Elsevier. | |
dc.relation | [2] Bifet, A., & De Francisci Morales, G. (2014). Big data stream learning with Samoa. Recuperado
dehttps://www.researchgate.net/publication/282303881_Big_data_stream_learning_with_SAM
OA. | |
dc.relation | [3] Mell, Grance. "The NIST definition of cloud computing." NIST Special Publication 800 – 145,
2011Valarie Zeithaml A, A. Parasuraman, Leonard L. Berry (1999.5). Total, quality Management
services. Bogota: Diaz de Santos. | |
dc.relation | [4] Sitto, K., M. Presser, 2015. Field Guide to Hadoop. California: O’REILLY, 31-33 pp. | |
dc.relation | [5] Sosinsky, B., 2011. Cloud Computing Bible. Indiana: Wiley Publishing Inc., 3 pp. | |
dc.relation | [6] Bravo, M., Alvarado, M.: Similarity measures for substituting Web services. International Journal
of Web Services Research, 7 (3), pp. 1–29 (2010). | |
dc.relation | [7] Chen, L., Zhang, Y., Song, Z.L., Miao, Z.: Automatic web services classification based on rough
set theory. Journal of Central South University, 20, pp. 2708–2714 (2013). | |
dc.relation | [8] Pineda Lezama, O., & Gómez Dorta, R. (2017). Techniques of multivariate statistical analysis:
An application for the Honduran banking sector. Innovare: Journal of Science and Technology, 5
(2), 61-75 | |
dc.relation | [9] Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J.
(2018) Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the
Teaching - Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y.,
Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol
10943. Springer, Cham | |
dc.relation | [10] Zhu, Fang et al. "IBM Cloud Computing Powering a Smarter Planet", Libro Cloud Computing,
Volumen 599.51/2009, Páginas 621- 625. | |
dc.relation | [11] Mohanty, R., Ravi, V., Patra, M.R.: Web-services classification using intelligent techniques.
Expert Systems with Applications, 37(7), pp. 5484–5490 (2010). | |
dc.relation | [12] L. Thames and D. Schaefer, “Softwaredefined Cloud Manufacturing for Industry 4.0,” Procedía
CIRP, vol. 52, p p .12-17, 2016. | |
dc.relation | [13] Amelec Viloria, Dionicio Neira-Rodado, Omar Bonerge Pineda Lezama. Recovery of scientific
data using Intelligent Distributed Data Warehouse. ANT/EDI40 2019: 1249-1254. | |
dc.relation | [14] Schweidel, D. A., & Knox, G. (2013). Incorporating direct marketing activity into latent attrition
models. Marke¬ting Science, 31(3), pp. 471-487. | |
dc.relation | [15] Setnes, M., & Kaymak, U. (2001). Fuzzy modeling of client preference from large data sets: an
application to target selection in direct marketing. Fuzzy Systems, IEEE Transactions on, 9(1),
pp. 153-163. | |
dc.relation | [16] Amelec Viloria, Omar Bonerge Pineda Lezama. Improvements for Determining the Number of
Clusters in k-Means for Innovation Databases in SMEs. ANT/EDI40 2019: 1201-1206 | |
dc.relation | [17] Nisa, R., Qamar, U.: A text mining based approach for web service classification. Information
Systems and e-Business Management, pp. 1–18 (2014). | |
dc.relation | [18] Wu, J., Chen, L., Zheng, Z., Lyu, M. R., Wu, Z.: Clustering web services to facilitate service
discovery. Knowledge and information systems, 38(1), pp. 207–229 (2014) [22] Alderson, J.
(2015). A markerless motion capture technique for sport performance analysis and injury
prevention: Toward a big data, machine learning future. Journal of Science and Medicine in
Sport, 19, e79. doi: 10.1016/j.jsams.2015.12.192. | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.subject | Neural networks | |
dc.subject | Web services | |
dc.subject | Artificial neural network | |
dc.title | Neural networks for the web services classification | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |