dc.contributorSousa Santos, Vladimir
dc.contributorCabello Eras, Juan José
dc.contributorRodríguez Gámez, María 
dc.contributorNúñez Álvarez, José Ricardo
dc.creatorCastro Charris, Narciso Antonio
dc.date2022-09-11T01:06:05Z
dc.date2022-09-11T01:06:05Z
dc.date2022
dc.date.accessioned2023-10-03T19:42:18Z
dc.date.available2023-10-03T19:42:18Z
dc.identifierhttps://hdl.handle.net/11323/9504
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171605
dc.descriptionLa tesis de maestría en Eficiencia Energética y Energía Renovable que se presenta tiene como objetivo evaluar la eficiencia energética de motores trifásicos de inducción (MTIs) alimentados desde sistemas fotovoltaicos (SFs). La investigación se origina a partir de estudios que demuestran que los SFs, si bien tiene beneficios ambientales, también producen problemas en los sistemas eléctricos como inestabilidad en la generación de energía, problemas de regulación de frecuencia, generación de armónicos e inestabilidad de potencia reactiva. Estos estudios, sin embargo, no analizan la influencia que puede tener los SFs en la eficiencia de los MTI. En la investigación se comparó las características electromecánicas y la eficiencia de un MTI alimentado desde la red eléctrica en relación con la alimentación desde un SF. Los estudios experimentales demostraron que, con la alimentación desde el SF, se incrementó la tensión y los armónicos de tensión y corrientes en comparación con la alimentación desde la red eléctrica. Estos problemas, producidos por el inversor, redujeron la eficiencia del MTI hasta en un 2,7% comparado con la alimentación desde la red eléctrica. El MTI modelado en condiciones reales de variación de la carga, consumió 2,6 % más de energía alimentado desde el SF, en relación con la alimentación desde la red eléctrica. Los resultados de la investigación pretenden llamar la atención a las entidades responsables de la instalación y operación de SF, que deben considerar la calidad de la energía suministrada por estos sistemas, pues se puede afectar la operación de los MTI y aumentar el consumo de energía.
dc.descriptionThe master's thesis in Energy Efficiency and Renewable Energy that is presented aims to evaluate the energy efficiency of three-phase induction motors (MTIs) powered by photovoltaic systems (SFs). The research originates from studies that show that SFs, although they have environmental benefits, also cause problems in electrical systems such as instability in power generation, frequency regulation problems, generation of harmonics, and reactive power instability. These studies, however, do not analyze the influence that SFs may have on the efficiency of MTI s. The research compared the electromechanical characteristics, and the efficiency of an MTI fed on the electrical network to the feed from a SF. The experimental studies showed that, with the power supply from the SF, the voltage and the harmonics of voltage and currents were increased compared to the power supply from the electrical network. These inverter-induced problems reduced the efficiency of the MTI by as much as 2.7% compared to powering from the utility grid. The MTI modeled in actual conditions of load variation consumed 2.6% more energy fed from the SF than the feed from the electrical network. The results of the investigation are intended to draw the attention of the entities responsible for the installation and operation of SF, which must consider the quality of the energy supplied by these systems since it can affect the operation of the MTI s and increase energy consumption.
dc.descriptionIntroducción 11 -- Descripción del problema – 15 Objetivos 19 -- Metodología 19 -- Capítulo 1. Características de los SF, problemas de calidad de energía y eficiencia -- 1.1 Componentes y funcionamiento de los sistemas fotovoltaicos 22 -- 1.3 Problemas de calidad de energía generados por sistemas fotovoltaicos 25 -- 1.4 Afectación de los problemas de calidad de energía en los MTI 32 -- Capítulo 3 46 -- Resultados de la evaluación del mti conectado a la red eléctrica y al sf 46 -- 3.1 Resultados de la evaluación de la operación del MTI a – 46 -- Referencias 64
dc.descriptionMagíster en Eficiencia Energética y Energía Renovable
dc.descriptionMaestría
dc.format80 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.publisherEnergía
dc.publisherBarranquilla, Colombia
dc.publisherMaestría en Eficiencia Energética y Energía Renovable
dc.relationAdekitan, A. I., Adetokun, B., Shomefun, T., & Aligbe, A. (2018). Cost implication of line voltage variation on Three Phase Induction Motor operation. Telkomnika (Telecommunication Computing Electronics and Control), 16(4). https://doi.org/10.12928/TELKOMNIKA.v16i4.9628
dc.relationAguirre-Mendoza, A. M., Díaz-Mendoza, C., & Pasqualino, J. (2019). Renewable energy potential analysis in non-interconnected islands. Case study: Isla Grande, Corales del Rosario Archipelago, Colombia. Ecological Engineering, 130(December 2016), 252–262. https://doi.org/10.1016/j.ecoleng.2017.08.020
dc.relationAkin, B., Orguner, U., Toliyat, H. A., & Rayner, M. (2008). Low order PWM inverter harmonics contributions to the inverter-fed induction machine fault diagnosis. IEEE Transactions on Industrial Electronics, 55(2). https://doi.org/10.1109/TIE.2007.911954
dc.relationAl-Badri, M., Pillay, P., & Angers, P. (2017). A Novel in Situ Efficiency Estimation Algorithm for Three-Phase Induction Motors Operating with Distorted Unbalanced Voltages. IEEE Transactions on Industry Applications, 53(6), 5338–5347. https://doi.org/10.1109/TIA.2017.2728786
dc.relationAlger, P. L., & Arnold, R. E. (1976). The History of Induction Motors in America. Proceedings of the IEEE, 64(9), 1380–1383. https://doi.org/10.1109/PROC.1976.10329
dc.relationAngarita, E. N., Eras, J. J. C., Herrera, H. H., Santos, V. S., Morejón, M. B., Ortega, J. I. S., & Gutiérrez, A. S. (2019). Energy planning and management during battery manufacturing. Gestao e Producao, 26(4), 1–14. https://doi.org/10.1590/0104-530X3928-19
dc.relationAzzouz, M. A., Farag, H. E., & El-Saadany, E. F. (2017). Real-time fuzzy voltage regulation for distribution networks incorporating high penetration of renewable sources. IEEE Systems Journal, 11(3), 1702–1711. https://doi.org/10.1109/JSYST.2014.2330606
dc.relationBasu, M. (2019). Optimal generation scheduling of hydrothermal system with demand side management considering uncertainty and outage of renewable energy sources. Renewable Energy. https://doi.org/10.1016/j.renene.2019.06.069
dc.relationBenhabib, M. C., Myrzik, J. M. A., & Duarte, J. L. (2007). Harmonic effects caused by large scale PV installations in LV network. https://doi.org/10.1109/EPQU.2007.4424134
dc.relationBhaskar, M. S., Padmanaban, S., & Blaabjerg, F. (2017). A multistage DC-DC step-up selfbalanced and magnetic component-free converter for photovoltaic applications: Hardware implementation. Energies, 10(5). https://doi.org/10.3390/en10050719
dc.relationBonnett, A. H., Glatt, H., & Hauck, S. (2016). Effect of Power Deviations on Squirrel-Cage Induction Motors: Addressing the Impact of Voltage and Frequency Variations. IEEE Industry Applications Magazine, 22(6), 39–47. https://doi.org/10.1109/MIAS.2015.2459113
dc.relationBrahma, S. M., & Girgis, A. A. (2004). Development of Adaptive Protection Scheme for Distribution Systems with High Penetration of Distributed Generation. IEEE Transactions on Power Delivery, 19(1), 56–63. https://doi.org/10.1109/TPWRD.2003.820204
dc.relationCabello Eras, J. J., Sousa Santos, V., Sagastume Gutiérrez, A., Guerra Plasencia, M. Á., Haeseldonckx, D., & Vandecasteele, C. (2016). Tools to improve forecasting and control of the electricity consumption in hotels. Journal of Cleaner Production, 137, 803–812. https://doi.org/10.1016/j.jclepro.2016.07.192
dc.relationChapman, S. (2011). Electric Machinery Fundamentals (5th ed.). New York: McGraw-Hill Education.
dc.relationChicco, G., Schlabbach, J., & Spertino, F. (2009). Experimental assessment of the waveform distortion in grid-connected photovoltaic installations. Solar Energy, 83(7), 1026–1039. https://doi.org/10.1016/j.solener.2009.01.005
dc.relationChidurala, A., Saha, T. K., & Mithulananthan, N. (2016). Harmonic impact of high penetration photovoltaic system on unbalanced distribution networks - Learning from an urban photovoltaic network. IET Renewable Power Generation, 10(4), 485–494. https://doi.org/10.1049/iet-rpg.2015.0188
dc.relationChirindo, M., Khan, M. A., & Barendse, P. S. (2016). Considerations for Nonintrusive Efficiency Estimation of Inverter-Fed Induction Motors. IEEE Transactions on Industrial Electronics, 63(2), 741–749. https://doi.org/10.1109/TIE.2015.2477801
dc.relationChuang, H. C., Li, G. De, & Lee, C. T. (2019). The efficiency improvement of AC induction motor with constant frequency technology. Energy, 174, 805–813. https://doi.org/10.1016/j.energy.2019.03.019
dc.relationDib, M., Ramzi, M., & Nejmi, A. (2019). Voltage regulation in the medium voltage distribution grid in the presence of renewable energy sources. Materials Today: Proceedings, 13, 739– 745. https://doi.org/10.1016/j.matpr.2019.04.035
dc.relationDonolo, P., Pezzani, M., Bossio, G., Quispe, E. C., Valencia, D., & Sousa, V. (2018). Impact of Voltage Waveform on the Losses and Performance of Energy Efficiency Induction Motors. 2018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings, 20–23. https://doi.org/10.1109/ANDESCON.2018.8564677
dc.relationDuman, T., Marti, S., Moonem, M. A., Kader, A. A. R. A., & Krishnaswami, H. (2017). A modular multilevel converter with power mismatch control for grid-connected photovoltaic systems. Energies, 10(5). https://doi.org/10.3390/en10050698
dc.relationEl-Kharashi, E., Massoud, J. G., & Al-Ahmar, M. A. (2019). The impact of the unbalance in both the voltage and the frequency on the performance of single and cascaded induction motors. Energy, 181, 561–575. https://doi.org/10.1016/J.ENERGY.2019.05.169
dc.relationEras, J. J. C., Morejón, M. B., Gutiérrez, A. S., García, A. P., Ulloa, M. C., Martínez, F. J. R., & Rueda-Bayona, J. G. (2019). A look to the electricity generation from non-conventional renewable energy sources in Colombia. International Journal of Energy Economics and Policy, 9(1), 15–25. https://doi.org/10.32479/ijeep.7108
dc.relationFang, Y., Jia, K., Yang, Z., Li, Y., & Bi, T. (2019). Impact of Inverter-Interfaced Renewable Energy Generators on Distance Protection and an Improved Scheme. IEEE Transactions on Industrial Electronics, 66(9), 7078–7088. https://doi.org/10.1109/TIE.2018.2873521
dc.relationFernandes, D., Almeida, R., Guedes, T., Sguarezi Filho, A. J., & Costa, F. F. (2017). State feedback control for DC-photovoltaic systems. Electric Power Systems Research, 143, 794– 801. https://doi.org/https://doi.org/10.1016/j.epsr.2016.08.037
dc.relationFreddy, T. K. S., Lee, J.-H., Moon, H.-C., Lee, K.-B., & Rahim, N. A. (2017). Modulation Technique for Single-Phase Transformerless Photovoltaic Inverters with Reactive Power Capability. IEEE Transactions on Industrial Electronics, 64(9), 6989–6999. https://doi.org/10.1109/TIE.2017.2686366
dc.relationGnaciński, P., Hallmann, D., Pepliński, M., & Jankowski, P. (2019). The effects of voltage subharmonics on cage induction machine. International Journal of Electrical Power & Energy Systems, 111, 125–131. https://doi.org/https://doi.org/10.1016/j.ijepes.2019.04.009
dc.relationGómez, A., Miguel, J., Córdova, A., Alfonso, R., & Salinas, I. (2016). K factor estimation in distribution transformers using linear regression models. Tecnura, 20(48), 29–40. https://doi.org/10.14483/udistrital.jour.tecnura.2016.2.a02
dc.relationHabib, A., Sou, C., Hafeez, H. M., & Arshad, A. (2018). Evaluation of the effect of high penetration of renewable energy sources (RES) on system frequency regulation using stochastic risk assessment technique (an approach based on improved cumulant). Renewable Energy, 127, 204–212. https://doi.org/10.1016/J.RENENE.2018.04.063
dc.relationHariri, A., & Faruque, M. O. (2014). Impacts of distributed generation on power quality. https://doi.org/10.1109/NAPS.2014.6965404
dc.relationHasanuzzaman, M., Rahim, N. A., Saidur, R., & Kazi, S. N. (2011). Energy savings and emissions reductions for rewinding and replacement of industrial motor. Energy, 36(1), 233–240. https://doi.org/10.1016/j.energy.2010.10.046
dc.relationHenao, F., Rodriguez, Y., Viteri, J. P., & Dyner, I. (2019). Optimising the insertion of renewables in the Colombian power sector. Renewable Energy, 132, 81–92. https://doi.org/10.1016/j.renene.2018.07.099
dc.relationHernández-Callejo, L., Gallardo-Saavedra, S., & Alonso-Gómez, V. (2019). A review of photovoltaic systems: Design, operation and maintenance. Solar Energy, 188(June), 426– 440. https://doi.org/10.1016/j.solener.2019.06.017
dc.relationHernández, J. C., Ortega, M. J., De La Cruz, J., & Vera, D. (2011). Guidelines for the technical assessment of harmonic, flicker and unbalance emission limits for PV-distributed generation. Electric Power Systems Research, 81(7), 1247–1257. https://doi.org/10.1016/j.epsr.2011.03.012
dc.relationHu, X., & Gong, C. (2015). A high gain input-parallel output-series DC/DC converter with dual coupled inductors. IEEE Transactions on Power Electronics, 30(3), 1306–1317. https://doi.org/10.1109/TPEL.2014.2315613
dc.relationIEA. (2018). Renewables Information 2018: Overview. IEA Statistics, 497. Retrieved from https://webstore.iea.org/download/direct/2260?fileName=Renewables_Information_2018_O verview.pdf
dc.relationIEA. (2019). World Energy Investment 2019. Retrieved from https://webstore.iea.org/download/direct/2738?fileName=WEI2019.pdf
dc.relationIEC. (2010). IEC 60034-1:2010. Rotating electrical machines - Part 1: Rating and performance.
dc.relationIEEE. (2009). IEEE Recommended Practice for Monitoring Electric Power Quality. In IEEE Std 1159-2009 (Vol. 2009). https://doi.org/10.1109/IEEESTD.2009.5154067
dc.relationIEEE. (2014). IEEE Std 519TM-2014: IEEE Recommended Practice and Requirements for Harmonic Control. ANSI/IEEE Std. 519, Vol. 2014, pp. 5–9. https://doi.org/10.1109/IEEESTD.2014.6826459
dc.relationIEEE Std 1159. (2019). IEEE Std 1159TM-2019: IEEE Recommended Practice for Monitoring Electric Power Quality. IEEE Standard 1159-2019 (Revision of IEEE Std 1159-2009), Vol. 2019, pp. 1–98.
dc.relationJainy, G. C. (1964). The Effect of Voltage Waveshape on the Performance of a 3-Phase Induction Motor. IEEE Transactions on Power Apparatus and Systems, 83(6), 561–566. https://doi.org/10.1109/TPAS.1964.4766039
dc.relationJie, B., Tsuji, T., & Uchida, K. (2017). Analysis and modelling regarding frequency regulation of power systems and power supply–demand-control based on penetration of renewable energy sources. The Journal of Engineering, 2017(13), 1824–1828. https://doi.org/10.1049/joe.2017.0646
dc.relationKabiri, R., Holmes, D. G., McGrath, B. P., & Meegahapola, L. G. (2015). LV Grid Voltage Regulation Using Transformer Electronic Tap Changing, with PV Inverter Reactive Power Injection. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(4), 1182– 1192. https://doi.org/10.1109/JESTPE.2015.2443839
dc.relationKadir, A. F. A., Khatib, T., & Elmenreich, W. (2014). Integrating photovoltaic systems in power system: Power quality impacts and optimal planning challenges. International Journal of Photoenergy, 2014. https://doi.org/10.1155/2014/321826
dc.relationKalair, A. R., Abas, N., Kalair, A. R., Saleem, Z., & Khan, N. (2017). Review of harmonic analysis, modeling and mitigation techniques. Renewable and Sustainable Energy Reviews, 78, 1152–1187. https://doi.org/10.1016/j.rser.2017.04.121
dc.relationKermani, H. R., Dahraie, M. V., & Najafi, H. R. (2016). Frequency control of a microgrid including renewable resources with energy management of electric vehicles. 4th Iranian Conference on Renewable Energy and Distributed Generation, ICREDG 2016, 114–118. https://doi.org/10.1109/ICREDG.2016.7875905
dc.relationKim, K., Park, H., & Kim, H. (2017). Real options analysis for renewable energy investment decisions in developing countries. Renewable and Sustainable Energy Reviews, 75(November 2016), 918–926. https://doi.org/10.1016/j.rser.2016.11.073
dc.relationKusakana, K. (2015). Operation cost minimization of photovoltaic-diesel-battery hybrid systems. Energy, 85, 645–653. https://doi.org/10.1016/j.energy.2015.04.002
dc.relationKwon, J. B., Wang, X., Blaabjerg, F., Bak, C. L., Wood, A. R., & Watson, N. R. (2016). Harmonic instability analysis of a single-phase grid-connected converter using a harmonic state-space modeling method. IEEE Transactions on Industry Applications, 52(5), 4188– 4200. https://doi.org/10.1109/TIA.2016.2581154
dc.relationKwon, J., Wang, X., Bak, C. L., & Blaabjerg, F. (2015). The modeling and harmonic coupling analysis of multiple-parallel connected inverter using Harmonic State Space (HSS). 2015 IEEE Energy Conversion Congress and Exposition, ECCE 2015, 6231–6238. https://doi.org/10.1109/ECCE.2015.7310534
dc.relationLangella, R., Testa, A., Meyer, J., Moller, F., Stiegler, R., & Djokic, S. Z. (2016). ExperimentalBased Evaluation of PV Inverter Harmonic and Interharmonic Distortion Due to Different Operating Conditions. IEEE Transactions on Instrumentation and Measurement, 65(10), 2221–2233. https://doi.org/10.1109/TIM.2016.2554378
dc.relationLee, S., Kim, J., An, D., & Hong, J. (2014). Equivalent Circuit Considering the Harmonics of Core Loss in the Squirrel-Cage Induction Motor for Electrical Power Steering Application. IEEE Transactions on Magnetics, 50(11), 1–4. https://doi.org/10.1109/TMAG.2014.2329316
dc.relationLiang, X., & Andalib-Bin-Karim, C. (2018). Harmonics and Mitigation Techniques Through Advanced Control in Grid-Connected Renewable Energy Sources: A Review. IEEE Transactions on Industry Applications, 54(4), 3100–3111. https://doi.org/10.1109/TIA.2018.2823680
dc.relationLu, B., Habetler, T. G., & Harley, R. G. (2006). A survey of efficiency-estimation methods for in-service induction motors. IEEE Transactions on Industry Applications, 42(4), 924–933. https://doi.org/10.1109/TIA.2006.876065
dc.relationLu, B., Habetler, T. G., & Harley, R. G. (2008). A nonintrusive and in-service motor-efficiency estimation method using air-gap torque with considerations of condition monitoring. IEEE Transactions on Industry Applications, 44(6), 1666–1674. https://doi.org/10.1109/TIA.2008.2006297
dc.relationMinisterio de Minas y Energía. (2018). Resolución CREG 030: Por la cual se regulan las actividades de autogeneración a pequeña escala y de generación distribuida en el Sistema Interconectado Nacional (p. 27). p. 27. Retrieved from http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/83b41035c2c4 474f05258243005a1191/$FILE/Creg030-2018.pdf
dc.relationMinisterio minas y energia, & UPME. (2016). Guia práctica para la aplicación de los incentivos tributarios de la Ley 1715 de 2014. 28.
dc.relationMohanty, P., Muneer, T., & Kolhe, M. (2016). Solar Photovoltaic System Applications (First; P. Mohanty, T. Muneer, & M. Kolhe, Eds.). https://doi.org/10.1007/978-3-319-14663-8
dc.relationMolina-García, Á., Mastromauro, R. A., García-Sánchez, T., Pugliese, S., Liserre, M., & Stasi, S. (2017). Reactive Power Flow Control for PV Inverters Voltage Support in LV Distribution Networks. IEEE Transactions on Smart Grid, 8(1), 447–456. https://doi.org/10.1109/TSG.2016.2625314
dc.relationMonteiro, R. V. A., Guimarães, G. C., Moura, F. A. M., Albertini, M. R. M. C., & Albertini, M. K. (2017). Estimating photovoltaic power generation: Performance analysis of artificial neural networks, Support Vector Machine and Kalman filter. Electric Power Systems Research, 143, 643–656. https://doi.org/10.1016/j.epsr.2016.10.050
dc.relationMu, C. X., Jin, J. X., & Xu, W. (2016). Adaptive frequency regulation strategy based integral sliding mode control for smart grid with renewable energy sources. 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, ASEMD 2015 - Proceedings, 391–392. https://doi.org/10.1109/ASEMD.2015.7453627
dc.relationNEMA. (2016). ANSI/NEMA MG 1-2016 . Motors and Generators.
dc.relationNoriega-Angarita, E., Sousa-Santos, V., Quintero-Duran, M., & Gil-Arrieta, C. (2016). Solar radiation prediction for dimensioning photovoltaic systems using artificial neural networks. International Journal of Engineering and Technology, 8(4). https://doi.org/10.21817/ijet/2016/v8i4/160804234
dc.relationNour, M., & Thirugnanam, P. (2017). Investigation of voltage and frequency variation on induction motor core and copper losses. 2017 7th International Conference on Modeling, Simulation, and Applied Optimization, ICMSAO 2017, 3(1), 1–5. https://doi.org/10.1109/ICMSAO.2017.7934894
dc.relationOrtega, M. J., Hernández, J. C., & García, O. G. (2013). Measurement and assessment of power quality characteristics for photovoltaic systems: Harmonics, flicker, unbalance, and slow voltage variations. Electric Power Systems Research, 96, 23–35. https://doi.org/10.1016/j.epsr.2012.11.003
dc.relationOrtmeyer, T. H., Chakravarthi, K. R., & Mahmoud, A. A. (1985). The Effects of Power System Harmonics on Power System Equipment and Loads. IEEE Transactions on Power Apparatus and Systems, PAS-104(9), 2555–2563. https://doi.org/10.1109/TPAS.1985.319019
dc.relationPérez-Díaz, J. I., Chazarra, M., García-González, J., Cavazzini, G., & Stoppato, A. (2015). Trends and challenges in the operation of pumped-storage hydropower plants. Renewable and Sustainable Energy Reviews, 44, 767–784. https://doi.org/10.1016/j.rser.2015.01.029
dc.relationPérez-Díaz, J. I., & Jiménez, J. (2016). Contribution of a pumped-storage hydropower plant to reduce the scheduling costs of an isolated power system with high wind power penetration. Energy, 109, 92–104. https://doi.org/10.1016/j.energy.2016.04.014
dc.relationPierret, R. F. (1983). Modular series on solid state devices. Volume I: Semiconductor fundamentals. Addison-Wesley Publishing Company.
dc.relationQuispe, E.C., López, I. D., Ferreira, F. J. T. E., & Sousa, V. (2018). Unbalanced voltages impacts on the energy performance of induction motors. International Journal of Electrical and Computer Engineering, 8(3), 1412–1422. https://doi.org/10.11591/ijece.v8i3.pp1412- 1422
dc.relationQuispe, Enrique C., Lopez-Fernandez, X. M., Mendes, A. M. S., Marques Cardoso, A. J., & Palacios, J. A. (2013). Influence of the positive sequence voltage on the derating of threephase induction motors under voltage unbalance. Proceedings of the 2013 IEEE International Electric Machines and Drives Conference, IEMDC 2013, (100), 100–105. https://doi.org/10.1109/IEMDC.2013.6556239
dc.relationRajesh, K. S., Dash, S. S., Bayinder, Sridhar, R., & Rajagopal, R. (2017). Implementation of an adaptive control strategy for solar photo voltaic generators in microgrlds with MPPT and energy storage. 2016 IEEE International Conference on Renewable Energy Research and Applications, ICRERA 2016, 766–771. https://doi.org/10.1109/ICRERA.2016.7884439
dc.relationRawcliffe, G. H., & Menon, A. M. (1952). A simple new test for harmonic-frequency losses in a.c. machines. Journal of the Institution of Electrical Engineers, 1952(4), 119. https://doi.org/10.1049/jiee-2.1952.0037
dc.relationRen, J., Hu, J., Deng, R., Zhang, D., Zhang, Y., & Shen, X. S. (2018). Joint Load Scheduling and Voltage Regulation in the Distribution System with Renewable Generators. IEEE Transactions on Industrial Informatics, 14(4), 1564–1574. https://doi.org/10.1109/TII.2017.2782725
dc.relationRodríguez-Urrego, D., & Rodríguez-Urrego, L. (2018). Photovoltaic energy in Colombia: Current status, inventory, policies and future prospects. Renewable and Sustainable Energy Reviews, 92(May), 160–170. https://doi.org/10.1016/j.rser.2018.04.065
dc.relationRönnberg, S., & Bollen, M. (2016). Power quality issues in the electric power system of the future. Electricity Journal, 29(10), 49–61. https://doi.org/10.1016/j.tej.2016.11.006
dc.relationRueda-Bayona, J. G., Guzmán, A., Eras, J. J. C., Silva-Casarín, R., Bastidas-Arteaga, E., & Horrillo-Caraballo, J. (2019). Renewables energies in Colombia and the opportunity for the offshore wind technology. Journal of Cleaner Production, 220, 529–543. https://doi.org/10.1016/j.jclepro.2019.02.174
dc.relationSagastume Gutiérrez, A., Cabello Eras, J. J., Sousa Santos, V., Hernández Herrera, H., Hens, L., & Vandecasteele, C. (2018). Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia. Journal of Cleaner Production, 198, 1443–1458. https://doi.org/10.1016/j.jclepro.2018.07.105
dc.relationSaidur, R. (2010). A review on electrical motors energy use and energy savings. Renewable and Sustainable Energy Reviews, 14(3), 877–898. https://doi.org/10.1016/j.rser.2009.10.018
dc.relationSantos, V. S., Felipe, P. R. V., Sarduy, J. R. G., Lemozy, N. A., Jurado, A., & Quispe, E. C. (2015). Procedure for determining induction motor efficiency working under distorted grid voltages. IEEE Transactions on Energy Conversion, 30(1). https://doi.org/10.1109/TEC.2014.2335994
dc.relationSarkar, M. N. I., Meegahapola, L. G., & Datta, M. (2018). Reactive power management in renewable rich power grids: A review of grid-codes, renewable generators, support devices, control strategies and optimization Algorithms. IEEE Access, 6, 41458–41489. https://doi.org/10.1109/ACCESS.2018.2838563
dc.relationShen, Y., Cui, M., Wang, Q., Shen, F., Zhang, B., & Liang, L. (2017). Comprehensive reactive power support of DFIG adapted to different depth of voltage sags. Energies, 10(6). https://doi.org/10.3390/en10060808
dc.relationShim, J. W., Verbic, G., Zhang, N., & Hur, K. (2018). Harmonious integration of faster-acting energy storage systems into frequency control reserves in power grid with high renewable generation. IEEE Transactions on Power Systems, 33(6), 6193–6205. https://doi.org/10.1109/TPWRS.2018.2836157
dc.relationSidrach-De-Cardona, M., & Carretero, J. (2005). Analysis of the current total harmonic distortion for different single-phase inverters for grid-connected pv-systems. Solar Energy Materials and Solar Cells, 87(1–4), 529–540. https://doi.org/10.1016/j.solmat.2004.08.016
dc.relationSolanki, N., & Patel, J. (2017). Utilization of PV solar farm for Grid Voltage regulation during night; Analysis & control. 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016. https://doi.org/10.1109/ICPEICES.2016.7853390
dc.relationSousa Santos, V., Cabello Eras, J. J., Sagastume Gutierrez, A., & Cabello Ulloa, M. J. (2019). Assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring. Measurement, 136, 237–247. https://doi.org/10.1016/j.measurement.2018.12.080
dc.relationSousa Santos, V., Quispe, E. C., Gomez Sarduy, J. R., Viego, P. R., Lemozy, N., Jurado, A., & Brugnoni, M. (2013). Bacterial Foraging Algorithm application for induction motor field efficiency estimation under harmonics and unbalanced voltages. 2013 International Electric Machines & Drives Conference, 1108–1111. https://doi.org/10.1109/IEMDC.2013.6556235
dc.relationSousa, V., Viego, P. R., Gomez, J. R., Quispe, E. C., & Balbis, M. (2016). Shaft Power Estimation in Induction Motor Operating Under Unbalanced and Harmonics Voltages. IEEE Latin America Transactions, 14(5), 2309–2315. https://doi.org/10.1109/TLA.2016.7530427
dc.relationSousa, Vladimir, Herrera, H. H., Quispe, E. C., Viego, P. R., & Gómez, J. R. (2017). Harmonic distortion evaluation generated by PWM motor drives in electrical industrial systems. International Journal of Electrical and Computer Engineering, 7(6), 3207–3216. https://doi.org/10.11591/ijece.v7i6.pp3207-3216
dc.relationSPOONER, T., & FOLTZ, J. P. (1929). Study of Noises in Electrical Apparatus. Transactions of the American Institute of Electrical Engineers, 48(3), 747–751. https://doi.org/10.1109/TAIEE.1929.5055283
dc.relationTang, Z. X., Lim, Y. S., Morris, S., Yi, J. L., Lyons, P. F., & Taylor, P. C. (2019). A comprehensive work package for energy storage systems as a means of frequency regulation with increased penetration of photovoltaic systems. International Journal of Electrical Power & Energy Systems, 110, 197–207. https://doi.org/10.1016/J.IJEPES.2019.03.002
dc.relationTelukunta, V., Pradhan, J., Agrawal, A., Singh, M., & Srivani, S. G. (2018). Protection challenges under bulk penetration of renewable energy resources in power systems: A review. CSEE Journal of Power and Energy Systems, 3(4), 365–379. https://doi.org/10.17775/cseejpes.2017.00030
dc.relationTesta, A., Akram, M. F., Burch, R., Carpinelli, G., Chang, G., Dinavahi, V., … Xu, W. (2007). Interharmonics: Theory and Modeling. IEEE Transactions on Power Delivery, 22(4), 2335– 2348. https://doi.org/10.1109/TPWRD.2007.905505
dc.relationThao, N. G. M., & Uchida, K. (2017). A two-level control strategy with fuzzy logic for largescale photovoltaic farms to support grid frequency regulation. Control Engineering Practice, 59, 77–99. https://doi.org/10.1016/j.conengprac.2016.11.006
dc.relationTiwari, G.N., & Dubey, S. (2010). Fundamentals of Photovoltaic Modules and their Applications. Royal Society of Chemistry.
dc.relationTungadio, D. H., & Sun, Y. (2019). Load frequency controllers considering renewable energy integration in power system. Energy Reports, 5, 436–453. https://doi.org/10.1016/J.EGYR.2019.04.003
dc.relationUNFCCC. (2015). Convention on Climate Change: Climate Agreement of Paris. 1–25. Retrieved from https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
dc.relationUPME. (2015). Plan Energetico Nacional Colombia: Ideario Energético 2050. 184. Retrieved from http://www.upme.gov.co/Docs/PEN/PEN_IdearioEnergetico2050.pdf
dc.relationUPME. (2016). Boletín Estadístico de Minas y energía 2012 – 2016. Ministerio de Minas y Energía, 200. Retrieved from http://www1.upme.gov.co/simco/Documents/Boletin_Estadistico_2012_2016.pdf
dc.relationVita, V., Alimardan, T., & Ekonomou, L. (2016). The impact of distributed generation in the distribution networks’ voltage profile and energy losses. Proceedings - EMS 2015: UKSimAMSS 9th IEEE European Modelling Symposium on Computer Modelling and Simulation, 260–265. https://doi.org/10.1109/EMS.2015.46
dc.relationWaide, P., & Brunner, C. U. (2011). Energy-Efficiency Policy Opportunities for Electric MotorDriven Systems. Cedex, France: Int. Energy Agency, 132. https://doi.org/10.1787/5kgg52gb9gjd-en
dc.relationYe, Y., Qiao, Y., & Lu, Z. (2019). Revolution of frequency regulation in the converterdominated power system. Renewable and Sustainable Energy Reviews, 111, 145–156. https://doi.org/10.1016/J.RSER.2019.04.066
dc.relationYu, Y., Konstantinou, G., Hredzak, B., & Agelidis, V. G. (2015). Operation of Cascaded HBridge Multilevel Converters for Large-Scale Photovoltaic Power Plants under Bridge Failures. IEEE Transactions on Industrial Electronics, 62(11), 7228–7236. https://doi.org/10.1109/TIE.2015.2434995
dc.relationZerrahn, Alexander; Schill, W.-P. (2018). On the economics of electrical storage for variable renewable energy sources. 108, 259–279. Retrieved from https://zenodo.org/record/1170555
dc.relationZhang, B., Hou, P., Hu, W., Soltani, M., Chen, C., & Chen, Z. (2016). A Reactive Power Dispatch Strategy with Loss Minimization for a DFIG-Based Wind Farm. IEEE Transactions on Sustainable Energy, 7(3), 914–923. https://doi.org/10.1109/TSTE.2015.2509647
dc.relationZhang, S., Mishra, Y., & Shahidehpour, M. (2017). Utilizing distributed energy resources to support frequency regulation services. Applied Energy, 206, 1484–1494. https://doi.org/10.1016/J.APENERGY.2017.09.114
dc.relationZhao, Y., Lu, M. L., & Yuan, Y. (2000). Operation and maintenance integration to improve safety. 24(2–7), 401–407. https://doi.org/10.1016/S0098-1354(00)00429-4
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectSistemas fotovoltaicos
dc.subjectMotor trifásico
dc.subjectEficiencia energética
dc.subjectCalidad de energía
dc.subjectPhotovoltaic systems
dc.subjectThree-phase motor
dc.subjectEnergy efficiency
dc.subjectPower quality
dc.titleEvaluación de la eficiencia energética de motores trifásicos de inducción alimentados desde un sistema fotovoltaico
dc.typeTrabajo de grado - Maestría
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typehttp://purl.org/redcol/resource_type/TM
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución