Association rules extraction for customer segmentation in the SMEs sector using the apriori algorithm

dc.creatorSilva, Jesus
dc.creatorVarela Izquierdo, Noel
dc.creatorBorrero López, Luz Adriana
dc.creatorRojas Millán, Rafael Humberto
dc.date2019-06-10T13:52:20Z
dc.date2019-06-10T13:52:20Z
dc.date2019
dc.date.accessioned2023-10-03T19:41:50Z
dc.date.available2023-10-03T19:41:50Z
dc.identifier0000-2010
dc.identifierhttp://hdl.handle.net/11323/4835
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171530
dc.descriptionData Mining applied to the field of commercialization allows, among other aspects, to discover patterns of behavior in clients, which companies can use to create marketing strategies addressed to their different types of clients. This research focused on a database, the CRISP-DM methodology was applied for the Data Mining process. The database used was that corresponding to the sector of SMEs and referring to customers and sales, the analysis was made based on the PFM model (Presence, Frequency, Monetary Value), and on this model the grouping algorithms were applied: k -means, k-medoids, and SelfOrganizing Maps (SOM). To validate the result of the grouping algorithms and select the one that provides the best quality groups, the cascade evaluation technique has been used applying a classification algorithm. Finally, the Apriori algorithm was used to find associations between products for each group of customers.
dc.formatapplication/pdf
dc.languageeng
dc.publisherProcedia Computer Science
dc.relation[1] Al-hagery, M.A., 2015. Knowledge Discovery in the Data Sets of Hepatitis Disease for Diagnosis and Prediction to Support and Ser ve Community. Int. J. Comput. Electron. Res. 4, 118–125. [2] Amelec, V. (2015). Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Advanced Science Letters, 21(5), 1406-1408. [3] Fernandez-bassso, C., Ruiz, M.D., Martin-bautista, M.J., 2016. Extraction of Fuzzy association rules using Big Data technologies 11, 178– 185. https://doi.org/10.2495/DNE-V11-N3-178-185 [4] Lis-Gutiérrez M., Gaitán-Angulo M., Balaguera MI., Viloria A., Santander-Abril JE. (2018) Use of the Industrial Property System for New Creations in Colombia: A Departmental Analysis (2000–2016). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [5] Kulkarni, A.R., Mundhe, D.S.D., 2017. Data Mining Technique: An Implementation of Association Rule Mining in Healthcare. Iarjset 4, 62– 65. https://doi.org/10.17148/IARJSET.2017.4710 [6] Anuradha, K., Kumar, K.A., 2013. An E-Commerce application for Presuming Missing Items 4, 2636–2640. [7] Hwang, Y.M., Moon, J., Yoo, S., 2015. Developing A RFID-based food traceability system in Korea Ginseng Industry: Focused on the business process reengineering. Int. J. Control Autom. 8, 397–406. https://doi.org/10.14257/ijca.2015.8.4.36 [8] Vidhate, D., 2014. To improve Association Rule Mining using New Technique : Multilevel Relationship Algorithm towards Cooperative Learning 241–246. [9] Larose, D.T., Larose, C.D., 2014. Discovering Knowledge in Data. https://doi.org/10.1002/9781118874059 [10] Pickrahn, I., Kreindl, G., Müller, E., Dunkelmann, B., Zahrer, W., Cemper-Kiesslich, J., Neuhuber, F., 2017. Contamination incidents in the pre-analytical phase of forensic DNA analysis in Austria—Statistics of 17 years. Forensic Sci. Int. Genet. 31, 12–18. https://doi.org/10.1016/j.fsigen.2017.07.012 [11] DANE. 2018. Documento metodológico encuesta de desarrollo e innovación tecnológica en la industria Manufacturera. Bogotá: DANE. 43p. [12] Prajapati, D.J., Garg, S., Chauhan, N.C., 2017. Interesting Association Rule Mining with Consistent and Inconsistent Rul e Detection from Big Sales Data in Distributed Environment. Futur. Comput. Informatics J. 2, 19–30. https://doi.org/10.1016/j.fcij.2017.04.003 [13] Abdullah, M., Al-Hagery, H., 2016. Classifiers’ Accuracy Based on Breast Cancer Medical Data and Data Mining Techniques. Int. J. Adv. Biotechnol. Res. 7, 976–2612. [14] Varela Izquierdo N., Cabrera H.R., Lopez Carvajal G., Viloria A., Gaitán Angulo M., Henry MA. (2018) Methodology for the Reduction and Integration of Data in the Performance Measurement of Industries Cement Plants. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [15] Ban, T., Eto, M., Guo, S., Inoue, D., Nakao, K., Huang, R., 2015. A study on association rule mining of darknet big data. Int. Jt. Conf. Neural Networks 1–7. https://doi.org/10.1109/IJCNN.2015.7280818. [16] Witten, I.H., Frank, E., 2002. Data mining. ACM SIGMOD Rec. 31, 76. https://doi.org/10.1145/507338.507355 [17] Vo, B., Le, B., 2009. Fast Algorithm for Mining Generalized Association Rules 2, 1–12. [18] Kamatkar S.J., Tayade A., Viloria A., Hernández-Chacín A. (2018) Application of Classification Technique of Data Mining for Employee Management System. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [19] Khanali, H., 2017. A Survey on Improved Algorithms for Mining Association Rules 165, 8887. [20] Shorman, H.M. Al, Jbara, Y.H., 2017. An Improved Association Rule Mining Algorithm Based on Apriori and Ant Colony approaches 07, 18–23.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectCRISP-DM methodology
dc.subjectApriori algorithm
dc.subjectAssociation rules extraction
dc.subjectData mining
dc.subjectSMEs
dc.titleAssociation Rules Extraction for Customer Segmentation in the SMEs Sector Using the Apriori Algorithm
dc.titleAssociation rules extraction for customer segmentation in the SMEs sector using the apriori algorithm
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución