dc.contributorSchneider, Ismael
dc.creatorBaena Hamburger, Julio
dc.creatorCampo Morales, Melissa
dc.date2020-08-11T20:59:41Z
dc.date2020-08-11T20:59:41Z
dc.date2020
dc.date.accessioned2023-10-03T19:41:38Z
dc.date.available2023-10-03T19:41:38Z
dc.identifierBaena, J. y Campo, M. (2020). Evaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla, Atlántico. Trabajo de Pregrado. Recuperado de https://hdl.handle.net/11323/6905
dc.identifierhttps://hdl.handle.net/11323/6905
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171491
dc.descriptionExposure to contaminated environments has important health repercussions, especially for vulnerable groups such as children. The purpose of this study is to evaluate the concentrations of PM2.5 particulate matter in two educational institutions (EI) in both indoor and outdoor environments. During the period between June and October 2019, the concentrations were evaluated by means of low-cost PA-II-SD sensors from PurpleAir, which were validated and calibrated by parallel measurements with the Teledyne model T640X reference equipment. The PM2.5 average concentrations for the EIA were 14.46 and 17.26 µg/m3 and for the EIB of 19.18 and 18.95 µg/m3 in internal and external environments, respectively. Ventilation processes, classroom activity and vehicular traffic were the factors that most affected variations in concentrations. The Indoor/Outdoor relations at PM2.5 levels demonstrate that the EIA is less affected by external concentrations (I/O = 0.83), while the EIB has equal concentrations for both environments (I/O = 1.01). These variations are related to the location (being EIA in an urban background area and EIB an area close to the traffic influence) and the architectural conditions of the buildings evaluated. Likewise, significant differences were observed between working and non-working days and between the conditions of occupation of the classrooms. The results indicate the need to evaluate each EI individually, assuring a good air quality to children.
dc.descriptionLa exposición a ambientes contaminados trae repercusiones importantes a la salud, sobre todo a grupos vulnerables como los niños. El presente estudio tiene como finalidad evaluar las concentraciones de material particulado PM2.5 en dos instituciones educativas (IEA y IEB) en ambientes interiores y exteriores. Las concentraciones fueron evaluadas por medio de sensores de bajo costo PA-II-SD de la empresa PurpleAir, los cuales fueron validados y calibrados por mediciones paralelas con el equipo de referencia Teledyne modelo T640X. El periodo de muestreo comprendió entre junio y octubre de 2019. Las concentraciones promedio de PM2.5 para la IEA fueron de 14,46 y 17,26 µg/m3 y para la IEB de 19,18 y 18,95 µg/m3 en ambientes internos y externos, respectivamente. Los procesos de ventilación, la actividad de las aulas y el tráfico vehicular fueron los factores que más afectaron las variaciones en las concentraciones. Las relaciones Interior/Exterior en los niveles de PM2.5 demuestran que la IEA es menos afectada por las concentraciones externas (I/E = 0,83), mientras la IEB presenta concentraciones iguales para los dos ambientes (I/E = 1,01). Estas variaciones están relacionadas con la ubicación (siendo IEA en un área de fondo urbano e IEB un área cercana a la influencia del tráfico) y las condiciones arquitectónicas de las edificaciones evaluadas. Igualmente fueron observadas diferencias significativas entre los días hábiles y no hábiles y entre las condiciones de ocupación de las aulas. Los resultados indican la necesidad de evaluar cada IE individualmente, para garantizar una buena calidad de aire a los niños.
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.publisherIngeniería Ambiental
dc.relationAdgate, J. L., Ramachandran, G., Pratt, G. C., Waller, L. A., & Sexton, K. (2003). Longitudinal variability in outdoor, indoor, and personal PM2.5 exposure in healthy non-smoking adults. Atmospheric Environment, 37(7), 993–1002. https://doi.org/10.1016/S1352-2310(02)00978- 0
dc.relationAkyüz, M., & Çabuk, H. (2009). Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. Journal of Hazardous Materials, 170(1), 13–21. https://doi.org/10.1016/j.jhazmat.2009.05.029
dc.relationAlcaldía de Barranquilla. (2020). Informe general oficina de registro de tránsito. Barranquilla.
dc.relationAlcaldía de Barranquilla. (2012). DTS. Libro I: Componente General Plan de Ordenamiento Territorial Distrito Especial, Industrial y Porturario de Barranquilla, 1–407.
dc.relationAlcaldía de Barranquilla. (2016). Barranquilla dispone de 3 estaciones de monitoreo de calidad de aire. Retrieved from https://www.barranquilla.gov.co/mi-barranquilla/barranquilladispone-de-3-estaciones-de-monitoreo-de-calidad-de-aire
dc.relationAllen, R. W., Mar, T., Koenig, J., Liu, L.-J. S., Gould, T., Simpson, C., & Larson, T. (2008). Changes in Lung Function and Airway Inflammation Among Asthmatic Children Residing in a Woodsmoke-Impacted Urban Area. Inhalation Toxicology, 20(4), 423–433. https://doi.org/10.1080/08958370801903826
dc.relationAlmeida, S. M., Canha, N., Silva, A., Do Carmo Freitas, M., Pegas, P., Alves, C., … Pio, C. A. (2011). Children exposure to atmospheric particles in indoor of Lisbon primary schools. Atmospheric Environment, 45(40), 7594–7599. https://doi.org/10.1016/j.atmosenv.2010.11.052
dc.relationAmato, F., Rivas, I., Viana, M., Moreno, T., Bouso, L., Reche, C., … Querol, X. (2014). Sources of indoor and outdoor PM2.5 concentrations in primary schools. Science of the Total Environment, 490, 757–765. https://doi.org/10.1016/j.scitotenv.2014.05.051
dc.relationArciniégas, C. (2012). Diagnóstico y control de material particulado: partículas suspendidas totales y fracción respirable PM10. Luna Azul, (34), 195–213. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1909-24742012000100012
dc.relationBaklanov, A., Molina, L. T., & Gauss, M. (2016). Megacities, air quality and climate. Atmospheric Environment, 126, 235–249. https://doi.org/10.1016/j.atmosenv.2015.11.059
dc.relationBarnett, A. G., Williams, G. M., Schwartz, J., Neller, A. H., Best, T. L., Petroeschevsky, A. L., & Simpson, R. W. (2005). Air Pollution and Child Respiratory Health. American Journal of Respiratory and Critical Care Medicine, 171(11), 1272–1278. https://doi.org/10.1164/rccm.200411-1586OC
dc.relationBarranquilla Verde. (2018). Informe anual de calidad de aire de barranquilla.
dc.relationBarría, R. M., Calvo, M., & Pino, P. (2016). Contaminación intradomiciliaria por material particulado fino (MP2,5) en hogares de recién nacidos. Revista Chilena de Pediatría, 87(5), 343–350. https://doi.org/10.1016/J.RCHIPE.2016.04.007
dc.relationBi, D., Qiu, Y., Cheng, H., Zhou, Q., Liu, X., Chen, J., … Zhu, Z. (2018). Seasonal characteristics of indoor and outdoor fine particles and their metallic compositions in Nanjing, China. Building and Environment, 137, 118–126. https://doi.org/10.1016/j.buildenv.2018.04.008
dc.relationBi, J., Stowell, J., Seto, E. Y. W., English, P. B., Al-Hamdan, M. Z., Kinney, P. L., … Liu, Y. (2020). Contribution of low-cost sensor measurements to the prediction of PM2.5 levels: A case study in Imperial County, California, USA. Environmental Research, 180(August 2019), 108810. https://doi.org/10.1016/j.envres.2019.108810Brockmeyer, S., & D’Angiulli, A. (2016). How air pollution alters brain development: The role of neuroinflammation. Translational Neuroscience, 7(1), 24–30. https://doi.org/10.1515/tnsci-2016-0005
dc.relationBrokamp, C., Rao, M. B., Fan, Z., & Ryan, P. H. (2015). Does the elemental composition of indoor and outdoor PM2.5 accurately represent the elemental composition of personal PM2.5? Atmospheric Environment, 101, 226–234. https://doi.org/10.1016/j.atmosenv.2014.11.022
dc.relationCanha, N., Mandin, C., Ramalho, O., Wyart, G., Ribéron, J., Dassonville, C., … Derbez, M. (2016). Assessment of ventilation and indoor air pollutants in nursery and elementary schools in France. Indoor Air, 26(3), 350–365. https://doi.org/10.1111/ina.12222
dc.relationCarrion-Matta, A., Kang, C. M., Gaffin, J. M., Hauptman, M., Phipatanakul, W., Koutrakis, P., & Gold, D. R. (2019). Classroom indoor PM2.5 sources and exposures in inner-city schools. Environment International, 131(July), 104968. https://doi.org/10.1016/j.envint.2019.104968
dc.relationChatzidiakou, L., Mumovic, D., & Summerfield, A. J. (2012). What do we know about indoor air quality in school classrooms? A critical review of the literature. Intelligent Buildings International, 4(4), 228–259. https://doi.org/10.1080/17508975.2012.725530
dc.relationCheng, Y., Lee, S., Gu, Z., Ho, K., Zhang, Y., Huang, Y., … Zhang, R. (2015). PM2.5and PM10-2.5chemical composition and source apportionment near a Hong Kong roadway. Particuology. https://doi.org/10.1016/j.partic.2013.10.003
dc.relationContreras, R., Gidhagen, L., & Moreno, J. J. V. (2019). New monitoring methods of particulate material for the study of air quality. Conference Proceedings - Congreso Colombiano y Conferencia Internacional de Calidad de Aire y Salud Publica, CASAP 2019, 50(6), 3–6. https://doi.org/10.1109/CASAP.2019.8916757
dc.relationDANE. (2019). Resultados Censo Nacional de Población y Vivienda 2018. Barranquilla.
dc.relationDomiguez, L. G. I., Alonso, E. J. H., Guarnizo, J. A. C., Carrillo, J. A., & Guativa, J. A. V. (2019). Monitoreo de material particulado PM10 y PM2.5 en la ciudad de Villavicencio. In Conference Proceedings - Congreso Colombiano y Conferencia Internacional de Calidad de Aire y Salud Publica, CASAP 2019 (pp. 8–12). https://doi.org/10.1109/CASAP.2019.8916702
dc.relationEcheverri Londoño, C., & Maya Vasco, G. (2008). Relación entre las partículas finas (PM 2.5) y respirables PM 10) en la ciudad de Medellín. Revista de Ingenierías: Universidad de Medellín, 7(12), 23–42.
dc.relationElbayoumi, M., Ramli, N. A., Md Yusof, N. F. F., & Al Madhoun, W. (2013). Spatial and seasonal variation of particulate matter (PM10 and PM2.5) in Middle Eastern classrooms. https://doi.org/10.1016/j.atmosenv.2013.07.067
dc.relationElbayoumi, M., Ramli, N. A., Md Yusof, N. F. F., Yahaya, A. S. Bin, Al Madhoun, W., & UlSaufie, A. Z. (2014). Multivariate methods for indoor PM10 and PM2.5 modelling in naturally ventilated schools buildings. Atmospheric Environment, 94, 11–21. https://doi.org/10.1016/j.atmosenv.2014.05.007
dc.relationFeenstra, B., Papapostolou, V., Hasheminassab, S., Zhang, H., Boghossian, B. Der, Cocker, D., & Polidori, A. (2019). Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site. Atmospheric Environment, 216(February), 116946. https://doi.org/10.1016/j.atmosenv.2019.116946
dc.relationFromme, H., Diemer, J., Dietrich, S., Cyrys, J., Heinrich, J., Lang, W., … Twardella, D. (2008). Chemical and morphological properties of particulate matter (PM10, PM2.5) in school classrooms and outdoor air. Atmospheric Environment, 42(27), 6597–6605. https://doi.org/10.1016/j.atmosenv.2008.04.047
dc.relationGao, M., Cao, J., & Seto, E. (2015). A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China. Environmental Pollution, 199, 56–65. https://doi.org/10.1016/j.envpol.2015.01.013
dc.relationGobernación del Atlántico. (2016). Plan de Desarrollo 2016 - 2019 de la gobernación del Atlántico “Atlántico Líder.” Gobernación Del Atlántico, 132.
dc.relationGrineski, S. E., & Collins, T. W. (2018). Geographic and social disparities in exposure to air neurotoxicants at U.S. public schools. Environmental Research, 161(September 2017), 580– 587. https://doi.org/10.1016/j.envres.2017.11.047
dc.relationGuo, H., Morawska, L., He, C., Zhang, Y. L., Ayoko, G., & Cao, M. (2010). Characterization of particle number concentrations and PM2.5 in a school: Influence of outdoor air pollution on indoor air. Environmental Science and Pollution Research (Vol. 17). https://doi.org/10.1007/s11356-010-0306-2
dc.relationHalek, F., Kianpour-Rad, M., & Kavousirahim, A. (2013). Parametric evaluation of indoor particulate matters in elementary schools in the central parts of Tehran. Indoor and Built Environment, 22(3), 580–585. https://doi.org/10.1177/1420326X11433224
dc.relationHan, Y., Li, X., Zhu, T., Lv, D., Chen, Y., Hou, an, … Ren, M. (2016). Characteristics and Relationships between Indoor and Outdoor PM 2.5 in Beijing: A Residential Apartment Case Study. Aerosol and Air Quality Research, 16, 2386–2395. https://doi.org/10.4209/aaqr.2015.12.0682
dc.relationHasheminassab, S., Daher, N., Shafer, M. M., Schauer, J. J., Delfino, R. J., & Sioutas, C. (2014). Chemical characterization and source apportionment of indoor and outdoor fine particulate matter (PM2.5) in retirement communities of the Los Angeles Basin. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2014.05.044
dc.relationHatzopoulou, M., Weichenthal, S., Dugum, H., Pickett, G., Miranda-Moreno, L., Kulka, R., … Goldberg, M. (2013). The impact of traffic volume, composition, and road geometry on personal air pollution exposures among cyclists in Montreal, Canada. Journal of Exposure Science and Environmental Epidemiology, 23(1), 46–51. https://doi.org/10.1038/jes.2012.85
dc.relationIDEAM. (n.d.). Calidad del aire. Retrieved May 6, 2019, from http://www.ideam.gov.co/web/contaminacion-y-calidad-ambiental/calidad-del-aire
dc.relationJanssen, N. A. H., Van Vliet, P. H. N., Aarts, F., Harssema, H., & Brunekreef, B. (2001). Assessment of exposure to traffic related air pollution of children attending schools near motorways. Atmospheric Environment, 35(22), 3875–3884. https://doi.org/10.1016/S1352- 2310(01)00144-3
dc.relationJi, W., & Zhao, B. (2015). Contribution of outdoor-originating particles, indoor-emitted particles and indoor secondary organic aerosol (SOA) to residential indoor PM2.5 concentration: A model-based estimation. Building and Environment, 90, 196–205. https://doi.org/10.1016/J.BUILDENV.2015.04.006
dc.relationKalimeri, K. K., Bartzis, J. G., Sakellaris, I. A., & de Oliveira Fernandes, E. (2019). Investigation of the PM2.5, NO2 and O3 I/O ratios for office and school microenvironments. Environmental Research, 179(2), 1–8. https://doi.org/10.1016/j.envres.2019.108791
dc.relationKaragulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., & Amann, M. (2015). Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment. Elsevier Ltd. https://doi.org/10.1016/j.atmosenv.2015.08.087
dc.relationKoenig, J. Q., Mar, T. F., Allen, R. W., Jansen, K., Lumley, T., Sullivan, J. H., … Liu, L.-J. S. (2005). Pulmonary effects of indoor- and outdoor-generated particles in children with asthma. Environmental Health Perspectives, 113(4), 499–503. https://doi.org/10.1289/EHP.7511
dc.relationKouyoumdjian, H., & Saliba, N. A. (2006). Mass concentration and ion composition of coarse and fine particles in an urban area in Beirut: Effect of calcium carbonate on the absorption of nitric and sulfuric acids and the depletion of chloride. Atmospheric Chemistry and Physics, 6(7), 1865–1877. https://doi.org/10.5194/acp-6-1865-2006
dc.relationLarsen, B. (2003). Hygiene and Health in Developing Countries: Defining Priorities through Cost-Benefit Assessments. International journal of environmental health research (Vol. 13). Carfax publishing company. Retrieved from https://www.tib.eu/de/suchen/id/BLSE%3ARN132305857/Hygiene-and-health-indeveloping-countries-defining/
dc.relationLi, H., Qin, Y., & Feng, G. (2017). The analysis of PM2.5 Outdoor Fine Particulate Matter Impact on Air Quality in the University Libraries Reading Room in Winter of North China. Procedia Engineering, 205, 3346–3352. https://doi.org/10.1016/J.PROENG.2017.09.836
dc.relationLi, J., Zhang, H., Chao, C., Chien, C., Wu, C., Heng, C., … Biswas, P. (2020a). Integrating lowcost air quality sensor networks with fixed and satellite monitoring systems to study ground-level PM2.5. Atmospheric Environment, 223(December 2019), 117293. https://doi.org/10.1016/j.atmosenv.2020.117293
dc.relationLi, M., Wang, L., Liu, J., Gao, W., Song, T., Sun, Y., … Wang, Y. (2020b). Exploring the regional pollution characteristics and meteorological formation mechanism of PM2.5 in North China during 2013–2017. Environment International, 134(November 2019), 105283. https://doi.org/10.1016/j.envint.2019.105283
dc.relationLiang, C. S., Duan, F. K., He, K. Bin, & Ma, Y. L. (2016). Review on recent progress in observations, source identifications and countermeasures of PM 2.5. Environment International, 86, 150–170. https://doi.org/10.1016/j.envint.2015.10.016
dc.relationLillibridge, S. (2000). Manejo de los aspectos de salud ambiental en los desastres: agua, excretas humanas y albergues. Impacto De Los Desastres en la Salud Publica
dc.relationLv, Y., Wang, H., Wei, S., Zhang, L., & Zhao, Q. (2017). The Correlation between Indoor and Outdoor Particulate Matter of Different Building Types in Daqing, China. Procedia Engineering, 205, 360–367. https://doi.org/10.1016/j.proeng.2017.10.002
dc.relationMacNeill, M., Wallace, L., Kearney, J., Allen, R. W., Van Ryswyk, K., Judek, S., … Wheeler, A. (2012). Factors influencing variability in the infiltration of PM 2.5 mass and its components. Atmospheric Environment, 61, 518–532. https://doi.org/10.1016/j.atmosenv.2012.07.005
dc.relationMajd, E., McCormack, M., Davis, M., Curriero, F., Berman, J., Connolly, F., … Koehler, K. (2019). Indoor air quality in inner-city schools and its associations with building characteristics and environmental factors. Environmental Research, 170(November 2018), 83–91. https://doi.org/10.1016/j.envres.2018.12.012
dc.relationMarlier, M. E., Defries, R. S., Kim, P. S., Gaveau, D. L. A., Koplitz, S. N., Jacob, D. J., … Myers, S. S. (2015). Regional air quality impacts of future fire emissions in Sumatra and Kalimantan. Environ. Res. Lett, 10, 54010. https://doi.org/10.1088/1748-9326/10/5/054010
dc.relationMartins, N. R., & Carrilho da Graça, G. (2018). Impact of PM2.5 in indoor urban environments: A review. Sustainable Cities and Society, 42(July), 259–275. https://doi.org/10.1016/j.scs.2018.07.011
dc.relationMinAmbiente. (2020). Gobierno Nacional presenta el estado de la calidad del aire en Colombia y la primera Estrategia Nacional de Calidad del Aire del país. Medellín, Colombia.
dc.relationMinisterio de Ambiente Vivienda y Desarrollo Territorial. (2008). Manual de Operación de Sistemas de Vigilancia de la Calidad del aire, 287.
dc.relationMohammadyan, M., & Shabankhani, B. (2013). Indoor PM1, PM2.5, PM10 and outdoor PM2.5concentrations in primary schools in sari, Iran. Arhiv Za Higijenu Rada i Toksikologiju, 64(3), 371–377. https://doi.org/10.2478/10004-1254-64-2013-2346
dc.relationMorawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., … Williams, R. (2018). Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environment International, 116(April), 286–299. https://doi.org/10.1016/j.envint.2018.04.018
dc.relationMoya, J., Bearer, C. F., & Etzel, R. a. (2004). Children’s Behavior and Physiology and How It Affects Exposure to Environmental Contaminants. Pediatrics, 113(4), 996–1006. https://doi.org/10.1542/peds.113.4.S1.996
dc.relationOcampo-Giraldo, D. M., Gonzalez-Calderon, C. A., & Posada-Henao, J. J. (2019). Assessment of trucking bans in urban areas as a strategy to reduce air pollution. Journal of Transport and Health, 14. https://doi.org/10.1016/j.jth.2019.100589
dc.relationOliveira, M., Slezakova, K., Delerue-Matos, C., Pereira, M. C., & Morais, S. (2016). Assessment of air quality in preschool environments (3-5 years old children) with emphasis on elemental composition of PM10 and PM2.5. Environmental Pollution, 214, 430–439. https://doi.org/10.1016/j.envpol.2016.04.046
dc.relationOMS. (2018a). Calidad del aire ambiente (exterior) y salud. Retrieved May 6, 2019, from https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-andhealth
dc.relationOMS. (2018b). Exposure to ambient air pollution from particulate matter for 2016, (April), 6.
dc.relationOMS. (2005). Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre. Retrieved from http://apps.who.int/iris/bitstream/handle/10665/69478/WHO_SDE_PHE_OEH_06.02_spa.p df;jsessionid=B55CAE781E549453492E4D7D1EDAA4DA?sequence=1
dc.relationOthman, M., Latif, M. T., & Matsumi, Y. (2019). The exposure of children to PM2.5 and dust in indoor and outdoor school classrooms in Kuala Lumpur City Centre. Ecotoxicology and Environmental Safety, 170(December 2018), 739–749. https://doi.org/10.1016/j.ecoenv.2018.12.042
dc.relationPateraki, S., Asimakopoulos, D. N., Flocas, H. A., Maggos, T., & Vasilakos, C. (2012). The role of meteorology on different sized aerosol fractions (PM 10, PM 2.5, PM 2.5-10). Science of the Total Environment, 419, 124–135. https://doi.org/10.1016/j.scitotenv.2011.12.064
dc.relationPurpleAir. (n.d.-a). How do PurpleAir sensors work?
dc.relationPurpleAir. (n.d.-b). PurpleAir PA-II-SD.
dc.relationQu, Y., Wang, H., Zhu, L., & Ji, J. (2017). Concentration Distribution and Control strategy of Indoor PM2.5. Procedia Engineering, 205, 1606–1611. https://doi.org/10.1016/J.PROENG.2017.10.288
dc.relationReche, C., Rivas, I., Pandolfi, M., Viana, M., Bouso, L., Àlvarez-Pedrerol, M., … Querol, X. (2015). Real-time indoor and outdoor measurements of black carbon at primary schools. Atmospheric Environment, 120, 417–426. https://doi.org/10.1016/j.atmosenv.2015.08.044
dc.relationRichmond-Bryant, J., Saganich, C., Bukiewicz, L., & Kalin, R. (2009). Associations of PM2.5 and black carbon concentrations with traffic, idling, background pollution, and meteorology during school dismissals. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2009.01.046
dc.relationRivas, I., Viana, M., Moreno, T., Bouso, L., Pandolfi, M., Alvarez-Pedrerol, M., … Querol, X. (2015). Outdoor infiltration and indoor contribution of UFP and BC, OC, secondary inorganic ions and metals in PM2.5 in schools. Atmospheric Environment, 106, 129–138. https://doi.org/10.1016/j.atmosenv.2015.01.055
dc.relationRivas, I., Viana, M., Moreno, T., Pandolfi, M., Amato, F., Reche, C., … Querol, X. (2014). Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain. Environment International, 69, 200–212. https://doi.org/10.1016/j.envint.2014.04.009
dc.relationRojas, N., & Galvis, B. (2005). Relación entre PM2.5 y PM10 en la ciudad de Bogotá. Revista de Ingeniería, (22), 54–60. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-49932005000200006
dc.relationRomero, H., Irarrázaval, F., Opazo, D., Salgado, M., & Smith, P. (2010). Climas Urbanos y Contaminación Atmosférica en Santiago de Chile. Eure, 36(109), 35–62. https://doi.org/10.4067/s0250-71612010000300002
dc.relationRyu, J., Kim, J. J., Byeon, H., Go, T., & Lee, S. J. (2019). Removal of fine particulate matter (PM2.5) via atmospheric humidity caused by evapotranspiration. Environmental Pollution, 245, 253–259. https://doi.org/10.1016/j.envpol.2018.11.004
dc.relationSayahi, T., Kaufman, D., Becnel, T., Kaur, K., Butterfield, A. E., Collingwood, S., … Kelly, K. E. (2019). Development of a calibration chamber to evaluate the performance of low-cost particulate matter sensors. Environmental Pollution, 255. https://doi.org/10.1016/j.envpol.2019.113131
dc.relationSouth Coast AQMD. (n.d.). PurpleAir PA-II. Retrieved June 10, 2019, from https://www.aqmd.gov/aq-spec/product/purpleair-pa-ii
dc.relationTai, A. P. K., Mickley, L. J., & Jacob, D. J. (2010). Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmospheric Environment, 44(32), 3976–3984. https://doi.org/10.1016/j.atmosenv.2010.06.060
dc.relationTargino, A. C., Gibson, M. D., Krecl, P., Rodrigues, M. V. C., dos Santos, M. M., & de Paula Corrêa, M. (2016). Hotspots of black carbon and PM2.5 in an urban area and relationships to traffic characteristics. Environmental Pollution, 218, 475–486. https://doi.org/10.1016/j.envpol.2016.07.027
dc.relationTiwari, S., Srivastava, A. K., Bisht, D. S., Parmita, P., Srivastava, M. K., & Attri, S. D. (2013). Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: Influence of meteorology. Atmospheric Research, 125–126, 50–62. https://doi.org/10.1016/j.atmosres.2013.01.011
dc.relationTryner, J., L’Orange, C., Mehaffy, J., Miller-Lionberg, D., Hofstetter, J. C., Wilson, A., & Volckens, J. (2020). Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers. Atmospheric Environment, 220(October 2019), 117067. https://doi.org/10.1016/j.atmosenv.2019.117067UNICEF. (2016). Clear the air for children: The impact of air pollution on children. Retrieved from www.unicef.org/environment
dc.relationWang, J., & Ogawa, S. (2015). Effects of meteorological conditions on PM2.5 concentrations in Nagasaki, Japan. International Journal of Environmental Research and Public Health, 12(8), 9089–9101. https://doi.org/10.3390/ijerph120809089
dc.relationWatson, J. G., & Chow, J. (1998). Guideline on speciated particulate monitoring. U.S. Environmental Protection Agency. Retrieved from https://www.researchgate.net/publication/235341487_Guideline_On_Speciated_Particulate _Monitoring
dc.relationWichmann, J., Lind, T., Nilsson, M. A. M., & Bellander, T. (2010). PM2.5, soot and NO2 indoor-outdoor relationships at homes, pre-schools and schools in Stockholm, Sweden. Atmospheric Environment, 44(36), 4536–4544. https://doi.org/10.1016/j.atmosenv.2010.08.023
dc.relationWilson, W. E., & Brauer, M. (2006). Estimation of ambient and non-ambient components of particulate matter exposure from a personal monitoring panel study. Journal of Exposure Science & Environmental Epidemiology, 16(3), 264–274. https://doi.org/10.1038/sj.jes.7500483
dc.relationXu, H., Guinot, B., Shen, Z., Ho, K. F., Niu, X., Xiao, S., … Cao, J. (2015). Characteristics of organic and elemental carbon in PM2.5 and PM0.25 in indoor and outdoor environments of a middle school: Secondary formation of organic carbon and sources identification. Atmosphere, 6(3), 361–379. https://doi.org/10.3390/atmos6030361
dc.relationZalakeviciute, R., Rybarczyk, Y., López-Villada, J., & Diaz Suarez, M. V. (2018). Quantifying decade-long effects of fuel and traffic regulations on urban ambient PM2.5 pollution in a mid-size South American city. Atmospheric Pollution Research, 9(1), 66–75. https://doi.org/10.1016/j.apr.2017.07.001
dc.relationZhang, C., Ni, Z., & Ni, L. (2015). Multifractal detrended cross-correlation analysis between PM2.5 and meteorological factors. Physica A: Statistical Mechanics and Its Applications, 438, 114–123. https://doi.org/10.1016/j.physa.2015.06.039
dc.relationZhang, L., Morisaki, H., Wei, Y., Li, Z., Yang, L., Zhou, Q., … Tang, N. (2019). Characteristics of air pollutants inside and outside a primary school classroom in Beijing and respiratory health impact on children. Environmental Pollution, 255, 113147. https://doi.org/10.1016/j.envpol.2019.113147
dc.relationZwoździak, A., Sówka, I., Krupińska, B., Zwoździak, J., & Nych, A. (2013). Infiltration or indoor sources as determinants of the elemental composition of particulate matter inside a school in Wrocław, Poland? Building and Environment, 66, 173–180. https://doi.org/10.1016/j.buildenv.2013.04.023
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectSchool
dc.subjectExposure
dc.subjectParticulate matter
dc.subjectPM2.5
dc.subjectLow cost sensor
dc.subjectEscuela
dc.subjectExposición
dc.subjectMaterial particulado
dc.subjectPM2.5
dc.subjectSensor de bajo costo
dc.titleEvaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla, Atlántico
dc.typeTrabajo de grado - Pregrado
dc.typehttp://purl.org/coar/resource_type/c_7a1f
dc.typeText
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/TP
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución