dc.creator | Ramírez, Rolando | |
dc.creator | Pinto, Diana | |
dc.creator | georgin, jordana | |
dc.creator | de Oliveira, Anelise H.P. | |
dc.creator | Dison S.P., Franco | |
dc.creator | Wolff, Delmira | |
dc.creator | Carissimi, Elvis | |
dc.creator | Naushad, Mu. | |
dc.creator | Silva Oliveira, Luis Felipe | |
dc.creator | Lima, Éder C. | |
dc.creator | Dotto, Guilherme Luiz | |
dc.date | 2023-09-18T16:17:22Z | |
dc.date | 2025 | |
dc.date | 2023-09-18T16:17:22Z | |
dc.date | 2023 | |
dc.date.accessioned | 2023-10-03T19:41:30Z | |
dc.date.available | 2023-10-03T19:41:30Z | |
dc.identifier | Rolando Ramirez, Diana Pinto, Jordana Georgin, Anelise H.P. de Oliveira, Dison S.P. Franco, Delmira Wolff, Elvis Carissimi, Mu. Naushad, Luis F.O. Siva, Éder C. Lima, Guilherme L. Dotto, Adsorptive properties of highly porous activated carbon from açaí (Euterpe oleracea) towards the toxic herbicide atrazine, Journal of Environmental Chemical Engineering, Volume 11, Issue 3, 2023, 109966, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2023.109966. | |
dc.identifier | https://hdl.handle.net/11323/10492 | |
dc.identifier | 10.1016/j.jece.2023.109966 | |
dc.identifier | 2213-3437 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9171468 | |
dc.description | The great variety and possibilities of consumption of açaí pulp (Euterpe oleracea) have made its consumption increase considerably in recent years, mainly in Brazilian territory. The big problem is the generation of tons of waste that characterizes the fruit stone. This waste was converted into a highly porous activated carbon and employed to remove the herbicide atrazine. The characterization analyses confirmed that the applied methodology generated an adsorbent with good textural characteristics (specific surface area 920.56 m² g−1, pore volume 0.467 cm3 g−1; average pore diameter 1.13 nm). Furthermore, it was found that the adsorption of atrazine reached satisfactory results at natural pH and with an adsorbent mass of 0.54 g for each liter of solution. The Redlich-Peterson model presented the most satisfactory fit with the equilibrium data. This study found that the evolution of system temperature increased the concentration in the solid phase of 178 mg g−1 at 328 K. Regarding adsorption kinetics, the linear driving force model can represent the experimental data. Also, the predicted adsorption data of the model follows the experimental data. The application of the adsorbent in the removal of the herbicide mixture presented an efficiency of 81.45%. Therefore, using residual açaí fruit seeds as biomass for producing activated carbon employing zinc chloride as an agent activator is the possible application of the material. The material showed high efficiency and affinity with the target molecule. | |
dc.format | 12 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Elsevier BV | |
dc.publisher | United Kingdom | |
dc.relation | Journal of Environmental Chemical Engineering | |
dc.relation | [1] F. Suo, X. You, Y. Ma, Y. Li, Rapid removal of triazine pesticides by P doped biochar
and the adsorption mechanism, Chemosphere 235 (2019) 918–925, https://doi.
org/10.1016/j.chemosphere.2019.06.158. | |
dc.relation | [2] D.S.P. Franco, J. Georgin, E.C. Lima, L.F.O. Silva, Advances made in removing
paraquat herbicide by adsorption technology: a review, J. Water Process Eng. 49
(2022), 102988, https://doi.org/10.1016/j.jwpe.2022.102988. | |
dc.relation | [3] S.E. Lewis, J.E. Brodie, Z.T. Bainbridge, K.W. Rohde, A.M. Davis, B.L. Masters,
M. Maughan, M.J. Devlin, J.F. Mueller, B. Schaffelke, Herbicides: a new threat to
the Great Barrier Reef, Environ. Pollut. 157 (2009) 2470–2484, https://doi.org/
10.1016/J.ENVPOL.2009.03.006. | |
dc.relation | [4] Y. Gao, Z. Jiang, J. Li, W. Xie, Q. Jiang, M. Bi, Y. Zhang, A comparison of the
characteristics and atrazine adsorption capacity of co-pyrolysed and mixed
biochars generated from corn straw and sawdust, Environ. Res. 172 (2019)
561–568, https://doi.org/10.1016/j.envres.2019.03.010. | |
dc.relation | [5] R. Grillo, A.E.S. Pereira, C.S. Nishisaka, R. De Lima, K. Oehlke, R. Greiner, L.
F. Fraceto, Chitosan/tripolyphosphate nanoparticles loaded with paraquat
herbicide: an environmentally safer alternative for weed control, J. Hazard. Mater.
278 (2014) 163–171, https://doi.org/10.1016/j.jhazmat.2014.05.079. | |
dc.relation | [6] V. Kumar, P. Jha, Influence of herbicides applied postharvest in wheat stubble on
control, fecundity, and progeny fitness of Kochia scoparia in the US Great Plains,
Crop Prot. 71 (2015) 144–149, https://doi.org/10.1016/j.cropro.2015.02.016. | |
dc.relation | [7] P. Vanraes, G. Willems, A. Nikiforov, P. Surmont, F. Lynen, J. Vandamme, J. Van
Durme, Y.P. Verheust, S.W.H. Van Hulle, A. Dumoulin, C. Leys, Removal of
atrazine in water by combination of activated carbon and dielectric barrier
discharge, J. Hazard. Mater. 299 (2015) 647–655, https://doi.org/10.1016/j.
jhazmat.2015.07.075. | |
dc.relation | [8] M. Kica, S. Ronka, The removal of atrazine from water using specific polymeric
adsorbent, Sep. Sci. Technol. 49 (2014) 1634–1642, https://doi.org/10.1080/
01496395.2014.906461. | |
dc.relation | [9] S.S. Caldas, J.L.O. Arias, C. Rombaldi, L.L. Mello, M.B.R. Cerqueira, A.F. Martins, E.
G. Primel, Occurrence of pesticides and PPCPs in surface and drinking water in
southern Brazil: data on 4-year monitoring, J. Braz. Chem. Soc. 30 (2019) 71–80,
https://doi.org/10.21577/0103-5053.20180154. | |
dc.relation | [10] C. Steffens, S.C. Ballen, E. Scapin, D.M. da Silva, J. Steffens, R.A. Jacques, Advances
of nanobiosensors and its application in atrazine detection in water: a review, Sens.
Actuators Rep. 4 (2022), 100096, https://doi.org/10.1016/j.snr.2022.100096. | |
dc.relation | [11] T. Bohn, E. Cocco, L. Gourdol, C. Guignard, L. Hoffmann, Determination of atrazine
and degradation products in luxembourgish drinking water: origin and fate of
potential endocrine-disrupting pesticides, Food Addit. Contam. Part A 28 (2011)
1041–1054, https://doi.org/10.1080/19440049.2011.580012. | |
dc.relation | [12] J. Georgin, D.S.P. Franco, K. Da Boit Martinello, E.C. Lima, L.F.O. Silva, A review of
the toxicology presence and removal of ketoprofen through adsorption technology,
J. Environ. Chem. Eng. 10 (2022), 107798, https://doi.org/10.1016/j.
jece.2022.107798. | |
dc.relation | [13] A.K. Arya, A. Singh, D. Bhatt, Pesticide applications in agriculture and their effects
on birds: an overview, Contam. Agric. Environ. Heal. Risks Remediat. 249404
(2019) 129–137, https://doi.org/10.26832/aesa-2019-cae-0163-010. | |
dc.relation | [14] S. Salvestrini, P. Sagliano, P. Iovino, S. Capasso, C. Colella, Atrazine adsorption by
acid-activated zeolite-rich tuffs, Appl. Clay Sci. 49 (2010) 330–335, https://doi.
org/10.1016/j.clay.2010.04.008. | |
dc.relation | [15] X.M. Yan, B.Y. Shi, J.J. Lu, C.H. Feng, D.S. Wang, H.X. Tang, Adsorption and
desorption of atrazine on carbon nanotubes, J. Colloid Interface Sci. 321 (2008)
30–38, https://doi.org/10.1016/j.jcis.2008.01.047. | |
dc.relation | [16] Y. Jia, R. Wang, A.G. Fane, Atrazine adsorption from aqueous solution using
powdered activated carbon - improved mass transfer by air bubbling agitation,
Chem. Eng. J. 116 (2006) 53–59, https://doi.org/10.1016/j.cej.2005.10.014. | |
dc.relation | [17] M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Cationic and anionic dye
adsorption by agricultural solid wastes: a comprehensive review, Desalination 280
(2011) 1–13, https://doi.org/10.1016/j.desal.2011.07.019. | |
dc.relation | [18] C.M. Kerkhoff, K. da Boit Martinello, D.S.P. Franco, M.S. Netto, J. Georgin, E.
L. Foletto, D.G.A. Piccilli, L.F.O. Silva, G.L. Dotto, Adsorption of ketoprofen and
paracetamol and treatment of a synthetic mixture by novel porous carbon derived
from Butia capitata endocarp, J. Mol. Liq. 339 (2021), 117184, https://doi.org/
10.1016/j.molliq.2021.117184. | |
dc.relation | [19] S. Hokkanen, A. Bhatnagar, M. Sillanpa¨¨
a, A review on modification methods to
cellulose-based adsorbents to improve adsorption capacity, Water Res. 91 (2016)
156–173, https://doi.org/10.1016/j.watres.2016.01.008. | |
dc.relation | [20] N. Eibisch, R. Schroll, R. Fuß, R. Mikutta, M. Helfrich, H. Flessa, Pyrochars and
hydrochars differently alter the sorption of the herbicide isoproturon in an
agricultural soil, Chemosphere 119 (2015) 155–162, https://doi.org/10.1016/j.
chemosphere.2014.05.059. | |
dc.relation | [21] Y. Liu, S.P. Sohi, F. Jing, J. Chen, Oxidative ageing induces change in the
functionality of biochar and hydrochar: mechanistic insights from sorption of
atrazine, Environ. Pollut. 249 (2019) 1002–1010, https://doi.org/10.1016/j.
envpol.2019.03.035. | |
dc.relation | [22] X. Wei, Z. Wu, Z. Wu, B.-C. Ye, Adsorption behaviors of atrazine and Cr(III) onto
different activated carbons in single and co-solute systems, Powder Technol. 329
(2018) 207–216, https://doi.org/10.1016/j.powtec.2018.01.060. | |
dc.relation | [23] J.S. Lazarotto, C. Schnorr, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, L.F.
O. Silva, C.R.B. Rhoden, G.L. Dotto, Microporous activated carbon from the fruits
of the invasive species Hovenia dulcis to remove the herbicide atrazine from
waters, J. Mol. Liq. 364 (2022), 120014, https://doi.org/10.1016/j.
molliq.2022.120014. | |
dc.relation | [24] Y. Vieira, C. Schnorr, A.C. Piazzi, M.S. Netto, W.M. Piccini, D.S.P. Franco, E.
S. Mallmann, J. Georgin, L.F.O. Silva, G.L. Dotto, An advanced combination of
density functional theory simulations and statistical physics modeling in the
unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated
carbon, J. Mol. Liq. 361 (2022), 119639, https://doi.org/10.1016/j.
molliq.2022.119639. | |
dc.relation | [25] J. Georgin, D. Pinto, D.S.P. Franco, M.S. Netto, J.S. Lazarotto, D.G. Allasia, R. Tassi,
L.F.O. Silva, G.L. Dotto, Improved Adsorption of the Toxic Herbicide Diuron Using
Activated Carbon Obtained from Residual Cassava Biomass, 2022. | |
dc.relation | [26] Y.L. Salomon, ´ J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto,
D. Pinto, M.L.S. Oliveira, G.L. Dotto, Adsorption of atrazine herbicide from water
by Diospyros kaki fruit waste activated carbon, J. Mol. Liq. 347 (2022), 117990,
https://doi.org/10.1016/j.molliq.2021.117990. | |
dc.relation | [27] Y.L. de, O. Salomon, ´ J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.
L. Foletto, L.F.S. Oliveira, G.L. Dotto, High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen
palm fruit endocarp (Syagrus romanzoffiana), J. Environ. Chem. Eng. 9 (2021),
104911, https://doi.org/10.1016/j.jece.2020.104911. | |
dc.relation | [28] Q.A. Binh, H.H. Nguyen, Investigation the isotherm and kinetics of adsorption
mechanism of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on corn cob
biochar, Bioresour. Technol. Rep. 11 (2020), 100520, https://doi.org/10.1016/j.
biteb.2020.100520. | |
dc.relation | [29] M.A.B. Freitas, J.L.L. Magalh˜
aes, C.P. Carmona, V. Arroyo-Rodríguez, I.C.G. Vieira,
M. Tabarelli, Intensification of açaí palm management largely impoverishes tree
assemblages in the Amazon estuarine forest, Biol. Conserv. 261 (2021), https://doi.
org/10.1016/j.biocon.2021.109251. | |
dc.relation | [30] F.O. Ribeiro, A.R. Fernandes, J.R. Galvao, ˜ G.S.B. de Matos, M.M. Lindolfo, C.R.
C. dos Santos, M.J.B. Pacheco, DRIS and geostatistics indices for nutritional
diagnosis and enhanced yield of fertirrigated acai palm, J. Plant Nutr. 43 (2020)
1875–1886, https://doi.org/10.1080/01904167.2020.1750643. | |
dc.relation | [31] P.S. Melo, M.M. Selani, R.H. Gonçalves, J. de, O. Paulino, A.P. Massarioli, S.M. de
Alencar, Açaí seeds: an unexplored agro-industrial residue as a potential source of
lipids, fibers, and antioxidant phenolic compounds, Ind. Crop. Prod. 161 (2021),
113204, https://doi.org/10.1016/j.indcrop.2020.113204. | |
dc.relation | [32] M.K. Sato, H.V. de Lima, A.N. Costa, S. Rodrigues, A.J.S. Pedroso, C.M.B. de Freitas
Maia, Biochar from Acai agroindustry waste: study of pyrolysis conditions, Waste
Manag. 96 (2019) 158–167, https://doi.org/10.1016/j.wasman.2019.07.022. | |
dc.relation | [33] A. Da Silva Vasconcelos De Almeida, W.T. Vieira, M.D. Bispo, S.F. De Melo, T.L. Da
Silva, T.L. Balliano, M.G.A. Vieira, J.I. Soletti, Caffeine removal using activated
biochar from acai seed (Euterpe oleracea Mart): experimental study and
description of adsorbate properties using Density Functional Theory (DFT),
J. Environ. Chem. Eng. 9 (2021), https://doi.org/10.1016/j.jece.2020.104891 | |
dc.relation | [34] A.C. Gonçalves Junior, G.F. Coelho, D. Schwantes, A.L. Rech, M.A. ˆ Campagnolo, A.
J. Miola, Biossorçao ˜ de Cu (II) e Zn (II) utilizando o endocarpo de açaí Euterpe
oleracea M. em soluç˜
ao aquosa contaminada, Acta Sci. Technol. 38 (2016)
361–370, https://doi.org/10.4025/actascitechnol.v38i3.28294. | |
dc.relation | [35] A.C. Gonçalves, D. Schwantes, M.A. Campagnolo, D.C. Dragunski, C.R.T. Tarley, A.
K. Dos Santos Silva, Removal of toxic metals using endocarp of açaí berry as
biosorbent, Water Sci. Technol. 77 (2018) 1547–1557, https://doi.org/10.2166/
wst.2018.032. | |
dc.relation | [36] L. Da, R. de Lima, O.F. Da Costa, B.S. Bianca, K. Das, G.F. Dantas, V.P. Lemos, M.H.
T. Pinheiro, Removal of Cu (II), Zn (II) and Ni (II) using açaí residue (Euterpe
oleracea Mart.) as a biosorbent in aqueous solution, Rev. Virtual Quim. 12 (2020)
1066–1078, https://doi.org/10.21577/1984-6835.20200086. | |
dc.relation | [37] Y.N. Dias, E.S. Souza, H.S.C. da Costa, L.C.A. Melo, E.S. Penido, C.B. do Amarante,
O.M.M. Teixeira, A.R. Fernandes, Biochar produced from Amazonian agroindustrial wastes: properties and adsorbent potential of Cd2+ and Cu2, Biochar 1
(2019) 389–400, https://doi.org/10.1007/s42773-019-00031-4. | |
dc.relation | [38] L.O. Santos, Adsorption of acid yellow dye 17 on activated carbon prepared from
Euterpe oleracea: kinetic and thermodynamic studies Adsorç˜
ao do corante amarelo
acido ´ 17 em carv˜
ao ativado preparado do cacho do açaí Euterpe oleracea: estudos
cin´eticos e termodinˆ
amico, 2022, 2022, pp. 1–16. | |
dc.relation | [39] A.A.O. de Sousa, T.S. Oliveira, L.E.C. de Azevedo, J.R.C. Nobre, W.F.R. Stefanelli,
T.A.P. de, S. Costa, J.P.S. da Silva, A.V.S. Barral, Adsorption of the basic dye
Malachite Green via activated carbon from açaí seed, Res. Soc. Dev. 10 (2021),
e49110212871, https://doi.org/10.33448/rsd-v10i2.12871. | |
dc.relation | [40] N.F. Cardoso, E.C. Lima, T. Calvete, I.S. Pinto, C.V. Amavisca, T.H.M. Fernandes, R.
B. Pinto, W.S. Alencar, Application of aqai stalks as biosorbents for the removal of
the dyes reactive black 5 and reactive orange 16 from aqueous solution, J. Chem.
Eng. Data 56 (2011) 1857–1868, https://doi.org/10.1021/je100866c. | |
dc.relation | [41] L.A. de Sousa Ribeiro, G.P. Thim, M.O. Alvarez-Mendez, A. dos Reis Coutinho, N.
P. de Moraes, L.A. Rodrigues, Preparation, characterization, and application of
low-cost açaí seed-based activated carbon for phenol adsorption, Int. J. Environ.
Res 12 (2018) 755–764, https://doi.org/10.1007/s41742-018-0128-5. | |
dc.relation | [42] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum,
J. Am. Chem. Soc. 40 (1918) 1361–1403, https://doi.org/10.1021/ja02242a004. | |
dc.relation | [43] H. Freundlich, Über die Adsorption in Losungen, ¨ Z. Phys. Chem. 57U (1907),
https://doi.org/10.1515/zpch-1907-5723. | |
dc.relation | [44] O. Redlich, D.L. Peterson, A useful adsorption isotherm, 1024–1024, J. Phys.
Chem. 63 (1959), https://doi.org/10.1021/j150576a611. | |
dc.relation | [45] H.N. Tran, E.C. Lima, R.-S. Juang, J.-C. Bollinger, H.-P. Chao, Thermodynamic
parameters of liquid–phase adsorption process calculated from different
equilibrium constants related to adsorption isotherms: a comparison study,
J. Environ. Chem. Eng. 9 (2021), 106674, https://doi.org/10.1016/j.
jece.2021.106674. | |
dc.relation | [46] E. Glueckauf, Theory of chromatography. Part 10.—Formulæ for diffusion into
spheres and their application to chromatography, Trans. Faraday Soc. 51 (1955)
1540–1551, https://doi.org/10.1039/TF9555101540. | |
dc.relation | [47] S.Y. Lagergren, Zur Theorie der sogenannten Adsorption, 1898. 〈http://books2eb
ooks.eu/odm/html/nls/en/agb.html〉. | |
dc.relation | [48] Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to
pollutant removal on various sorbents, Process Saf. Environ. Prot. 76 (1998)
332–340, https://doi.org/10.1205/095758298529696. | |
dc.relation | [49] D.S.P. Franco, J. Georgin, M.S. Netto, D. Allasia, M.L.S. Oliveira, E.L. Foletto, G.
L. Dotto, Highly effective adsorption of synthetic phenol effluent by a novel
activated carbon prepared from fruit wastes of the Ceiba speciosa forest species,
J. Environ. Chem. Eng. 9 (2021), 105927, https://doi.org/10.1016/j.
jece.2021.105927. | |
dc.relation | [50] P.T. Hernandes, D.S.P. Franco, J. Georgin, N.P.G. Salau, G.L. Dotto, Investigation of
biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from
an aqueous medium, J. Environ. Chem. Eng. 10 (2022), 107408, https://doi.org/
10.1016/j.jece.2022.107408. | |
dc.relation | [51] J.S. Lazarotto, K. da Boit Martinello, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.
A. Piccilli, L.F.O. Silva, E.C. Lima, G.L. Dotto, Preparation of activated carbon from
the residues of the mushroom (Agaricus bisporus) production chain for the
adsorption of the 2,4-dichlorophenoxyacetic herbicide, J. Environ. Chem. Eng. 9
(2021), https://doi.org/10.1016/j.jece.2021.106843. | |
dc.relation | [52] O. Üner, Y. Bayrak, The effect of carbonization temperature, carbonization time
and impregnation ratio on the properties of activated carbon produced from
Arundo donax, Microporous Mesoporous Mater. 268 (2018) 225–234, https://doi.
org/10.1016/j.micromeso.2018.04.037. | |
dc.relation | [53] M. Danish, T. Ahmad, R. Hashim, N. Said, M.N. Akhtar, J. Mohamad-Saleh,
O. Sulaiman, Comparison of Surface Properties of Wood Biomass Activated
Carbons and Their Application Against Rhodamine B and Methylene Blue Dye,
Elsevier B.V., 2018, https://doi.org/10.1016/j.surfin.2018.02.001. | |
dc.relation | [54] G.J.F. Cruz, M. Pirila, ¨ L. Matˇejov´
a, K. Ainassaari, J.L. Solis, R. Fajgar, O. Solcov ˇ ´
a, R.
L. Keiski, Two unconventional precursors to produce ZnCl2-based activated carbon
for water treatment applications, Chem. Eng. Technol. 41 (2018) 1649–1659,
https://doi.org/10.1002/ceat.201800150. | |
dc.relation | [55] A.T. Mohd Din, B.H. Hameed, A.L. Ahmad, Batch adsorption of phenol onto
physiochemical-activated coconut shell, J. Hazard. Mater. 161 (2009) 1522–1529,
https://doi.org/10.1016/j.jhazmat.2008.05.009. | |
dc.relation | [56] C. Anchieta, A. Cancelier, M. Mazutti, S. Jahn, R. Kuhn, A. Gündel, O. ChiavoneFilho, E. Foletto, Effects of solvent diols on the synthesis of ZnFe2O4 particles and
their use as heterogeneous photo-fenton catalysts, Materials 7 (2014) 6281–6290,
https://doi.org/10.3390/ma7096281. | |
dc.relation | [57] Y.L. de, O. Salomon, ´ J. Georgin, G.S. dos Reis, E.C. ´ Lima, M.L.S. Oliveira, D.S.
P. Franco, M.S. Netto, D. Allasia, G.L. Dotto, Utilization of Pacara Earpod tree (Enterolobium contortisilquum) and Ironwood (Caesalpinia leiostachya) seeds as
low-cost biosorbents for removal of basic fuchsin, Environ. Sci. Pollut. Res. 27
(2020) 33307–33320, https://doi.org/10.1007/s11356-020-09471-z. | |
dc.relation | [58] W. Li, W. Mo, C. Kang, M. Zhang, M. Meng, M. Chen, Adsorption of nitrate from
aqueous solution onto modified cassava (Manihot esculenta) straw, Ecol. Chem.
Eng. S 19 (2012) 629–638, https://doi.org/10.2478/v10216-011-0045-4. | |
dc.relation | [59] X. Chen, P. Wu, M. Rousseas, D. Okawa, Z. Gartner, A. Zettl, C.R. Bertozzi, Boron
nitride nanotubes are noncytotoxic and can be functionalized for interaction with
proteins and cells, J. Am. Chem. Soc. 131 (2009) 890–891, https://doi.org/
10.1021/ja807334b. | |
dc.relation | [60] A. Elena, I. Gozescu, A. Dabici, P. Sfirloaga, Z. Szabadai, Organic compounds FT-IR
spectroscopy, Macro To Nano Spectroscopy, InTech, 2012. 〈https://doi.org/10.5
772/50183〉. | |
dc.relation | [61] L. Muniandy, F. Adam, A.R. Mohamed, E.P. Ng, The synthesis and characterization
of high purity mixed microporous/mesoporous activated carbon from rice husk
using chemical activation with NaOH and KOH, Microporous Mesoporous Mater.
197 (2014) 316–323, https://doi.org/10.1016/j.micromeso.2014.06.020. | |
dc.relation | [62] S. Nanda, P. Mohanty, K.K. Pant, S. Naik, J.A. Kozinski, A.K. Dalai,
Characterization of North American lignocellulosic biomass and biochars in terms
of their candidacy for alternate renewable fuels, Bioenergy Res. 6 (2013) 663–677,
https://doi.org/10.1007/s12155-012-9281-4. | |
dc.relation | [63] R. Sharma, A. Sarswat, C.U. Pittman, D. Mohan, Cadmium and lead remediation
using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia
purpurea pods, RSC Adv. 7 (2017) 8606–8624, https://doi.org/10.1039/
C6RA25295H. | |
dc.relation | [64] S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, T.J. Morgan, An overview of
the organic and inorganic phase composition of biomass, Fuel 94 (2012) 1–33,
https://doi.org/10.1016/j.fuel.2011.09.030. | |
dc.relation | [65] Z. Wang, C. Wang, J. Yuan, C. Zhang, Adsorption characteristics of adsorbent resins
and antioxidant capacity for enrichment of phenolics from two-phase olive waste,
J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1040 (2017) 38–46, https://doi.
org/10.1016/j.jchromb.2016.11.023. | |
dc.relation | [66] J. Georgin, F.C. Drumm, P. Grassi, D. Franco, D. Allasia, G.L. Dotto, F. Caroline,
D. Patrícia, G. Dison, F. Guilherme, L. Dotto, Potential of Araucaria angustifolia
bark as adsorbent to remove Gentian Violet dye from aqueous effluents, Water Sci.
Technol. 78 (2018) 1693–1703, https://doi.org/10.2166/wst.2018.448. | |
dc.relation | [67] Y.A.B. Neolaka, Y. Lawa, J. Naat, A.A.P. Riwu, H. Darmokoesoemo, B.
A. Widyaningrum, M. Iqbal, H.S. Kusuma, Indonesian Kesambi wood (Schleichera
oleosa) activated with pyrolysis and H2SO4 combination methods to produce
mesoporous activated carbon for Pb(II) adsorption from aqueous solution, Environ.
Technol. Innov. 24 (2021), 101997, https://doi.org/10.1016/j.eti.2021.101997. | |
dc.relation | [68] P. Grassi, F.C. Drumm, J. Georgin, D.S.P. Franco, G.L. Dotto, E.L. Foletto, S.L. Jahn,
Application of Cordia trichotoma sawdust as an effective biosorbent for removal of
crystal violet from aqueous solution in batch system and fixed-bed column,
Environ. Sci. Pollut. Res. 28 (2021) 6771–6783, https://doi.org/10.1007/s11356-
020-11005-6. | |
dc.relation | [69] M.S. Netto, J. Georgin, D.S.P. Franco, E.S. Mallmann, E.L. Foletto, M. Godinho,
D. Pinto, G.L. Dotto, Effective adsorptive removal of atrazine herbicide in river
waters by a novel hydrochar derived from Prunus serrulata bark, Environ. Sci.
Pollut. Res. 29 (2022) 3672–3685, https://doi.org/10.1007/s11356-021-15366-4. | |
dc.relation | [70] A. Jain, S. Jayaraman, R. Balasubramanian, M.P. Srinivasan, Hydrothermal pretreatment for mesoporous carbon synthesis: enhancement of chemical activation,
J. Mater. Chem. A 2 (2014) 520–528, https://doi.org/10.1039/c3ta12648j. | |
dc.relation | [71] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso,
J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the
evaluation of surface area and pore size distribution (IUPAC technical report), Pure
Appl. Chem. 87 (2015) 1051–1069, https://doi.org/10.1515/pac-2014-1117. | |
dc.relation | [72] K.S.W. Sing, Reporting physisorption data for gas / solid systems with special
reference to the determination of S, Pure Appl. Chem. 54 (1982) 2201–2218,
https://doi.org/10.1515/iupac.57.0007. | |
dc.relation | [73] M. Paredes-Laverde, M. Salamanca, J.D. Diaz-Corrales, E. Florez, ´ J. Silva-Agredo,
R.A. Torres-Palma, Understanding the removal of an anionic dye in textile
wastewaters by adsorption on ZnCl2activated carbons from rice and coffee husk
wastes: a combined experimental and theoretical study, J. Environ. Chem. Eng. 9
(2021), https://doi.org/10.1016/j.jece.2021.105685. | |
dc.relation | [74] M.S. Netto, N. Favarin, M. Schadeck Netto, N.F. da Silva, E.S. Mallmann, G.
L. Dotto, E.L. Foletto, Effect of salinity on the adsorption behavior of methylene
blue onto comminuted raw avocado residue: CCD-RSM design, Water Air Soil
Pollut. 230 (2019), https://doi.org/10.1007/s11270-019-4230-x. | |
dc.relation | [75] A.H. Jawad, K. Ismail, M.A.M. Ishak, L.D. Wilson, Conversion of Malaysian lowrank coal to mesoporous activated carbon: structure characterization and
adsorption properties, Chin. J. Chem. Eng. 27 (2019) 1716–1727, https://doi.org/
10.1016/j.cjche.2018.12.006. | |
dc.relation | [76] H. Liu, G. Xu, G. Li, Preparation of porous biochar based on pharmaceutical sludge
activated by NaOH and its application in the adsorption of tetracycline, J. Colloid
Interface Sci. 587 (2021) 271–278, https://doi.org/10.1016/j.jcis.2020.12.014. | |
dc.relation | [77] Q.S. Liu, T. Zheng, P. Wang, J.P. Jiang, N. Li, Adsorption isotherm, kinetic and
mechanism studies of some substituted phenols on activated carbon fibers, Chem.
Eng. J. 157 (2010) 348–356, https://doi.org/10.1016/j.cej.2009.11.013. | |
dc.relation | [78] T.S. Anirudhan, C.D. Bringle, P.G. Radhakrishnan, Heavy metal interactions with
phosphatic clay: kinetic and equilibrium studies, Chem. Eng. J. 200–202 (2012)
149–157, https://doi.org/10.1016/j.cej.2012.06.024. | |
dc.relation | [79] M. Chauhan, V.K. Saini, S. Suthar, Ti-pillared montmorillonite clay for adsorptive
removal of amoxicillin, imipramine, diclofenac-sodium, and paracetamol from
water, J. Hazard. Mater. 399 (2020), 122832, https://doi.org/10.1016/j.
jhazmat.2020.122832. | |
dc.relation | [80] N. Alikhani, M. Farhadian, A. Goshadrou, S. Tangestaninejad, Photocatalytic
degradation and adsorption of herbicide 2, 4-dichlorophe - noxyacetic acid from
aqueous solution using TiO2/BiOBr/Bi2S3 nanostructure stabilized on the
activated carbon under v, Environ. Nanotechnol. Monit. Manag. 15 (2021),
100415, https://doi.org/10.1016/j.enmm.2020.100415. | |
dc.relation | [81] D. Ova, B. Ovez, 2,4-Dichlorophenoxyacetic acid removal from aqueous solutions
via adsorption in the presence of biological contamination, Biochem. Pharmacol. 1
(2013) 813–821, https://doi.org/10.1016/j.jece.2013.07.024. | |
dc.relation | [82] J. Lin, Y. Zhan, Z. Zhu, Y. Xing, Adsorption of tannic acid from aqueous solution
onto surfactant-modified zeolite, J. Hazard. Mater. 193 (2011) 102–111, https://
doi.org/10.1016/j.jhazmat.2011.07.035. | |
dc.relation | [83] J.S. Lazarotto, K. da Boit Martinello, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.
A. Piccilli, L.F.O. Silva, E.C. Lima, G.L. Dotto, Application of araç´
a fruit husks
(Psidium cattleianum) in the preparation of activated carbon with FeCl3 for
atrazine herbicide adsorption, Chem. Eng. Res. Des. 180 (2022) 67–78, https://doi.
org/10.1016/j.cherd.2022.01.044. | |
dc.relation | [84] D. Nagarajan, O.M. Varada, S. Venkatanarasimhan, Carbon dots coated on amine
functionalized cellulose sponge for the adsorption of the toxic herbicide atrazine,
Mater. Today Proc. 47 (2020) 790–799, https://doi.org/10.1016/j.
matpr.2020.08.071. | |
dc.relation | [85] T.S. Jamil, T.A. Gad-Allah, H.S. Ibrahim, T.S. Saleh, Adsorption and isothermal
models of atrazine by zeolite prepared from Egyptian kaolin, Solid State Sci. 13
(2011) 198–203, https://doi.org/10.1016/j.solidstatesciences.2010.11.014. | |
dc.relation | [86] E. Grundgeiger, Y.H. Lim, R.L. Frost, G.A. Ayoko, Y. Xi, Application of organobeidellites for the adsorption of atrazine, Appl. Clay Sci. 105–106 (2015) 252–258,
https://doi.org/10.1016/j.clay.2015.01.003. | |
dc.relation | [87] Y. Zhang, B. Cao, L. Zhao, L. Sun, Y. Gao, J. Li, F. Yang, Biochar-supported reduced
graphene oxide composite for adsorption and coadsorption of atrazine and lead
ions, Appl. Surf. Sci. 427 (2018) 147–155, https://doi.org/10.1016/j.
apsusc.2017.07.237. | |
dc.relation | [88] W. Tang, G. Zeng, J. Gong, Y. Liu, X. Wang, Simultaneous adsorption of atrazine
and Cu ( II) from wastewater by magnetic multi-walled carbon nanotube, Chem.
Eng. J. 211–212 (2012) 470–478, https://doi.org/10.1016/j.cej.2012.09.102. | |
dc.relation | [89] M.D. Urena-Amate, ˜ M. Socías-Viciana, E. Gonzalez-Pradas, ´ M. Saifi, Effects of ionic
strength and temperature on adsorption of atrazine by a heat treated kerolite,
Chemosphere 59 (2005) 69–74, https://doi.org/10.1016/j.
chemosphere.2004.09.098. | |
dc.relation | [90] G.-C. Chen, X.-Q. Shan, Y.-S. Wang, Z.-G. Pei, Effects of copper, lead, and cadmium
on the sorption and desorption of atrazine onto and from carbon nanotubes,
Environ. Sci. Technol. 42 (2008) 8297–8302. | |
dc.relation | [91] M.B. Chabalala, M.Z. Al-Abri, B.B. Mamba, E.N. Nxumalo, Mechanistic aspects for
the enhanced adsorption of bromophenol blue and atrazine over cyclodextrin
modified polyacrylonitrile nanofiber membranes, Chem. Eng. Res. Des. 169 (2021)
19–32, https://doi.org/10.1016/j.cherd.2021.02.010. | |
dc.relation | [92] B.Y. Yang, Y. Cao, F.F. Qi, X.Q. Li, Q. Xu, Atrazine adsorption removal with
nylon6/polypyrrole core-shell nanofibers mat: possible mechanism and
characteristics, Nanoscale Res. Lett. 10 (2015), https://doi.org/10.1186/s11671-
015-0903-6. | |
dc.relation | [93] A.A.A.A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila, ´ H.E. ReynelAvila, H.E. Reynel-Avila, ´ Adsorption processes for water treatment and
purification, Adsorpt. Process. Water Treat. Purif. (2017) 1–256, https://doi.org/
10.1007/978-3-319-58136-1. | |
dc.relation | [94] E.C. Lima, A. Hosseini-Bandegharaei, I. Anastopoulos, J.C. Moreno-Piraj´
an,
I. Anastopoulos, A critical review of the estimation of the thermodynamic
parameters on adsorption equilibria. Wrong use of equilibrium constant in the
Van’t Hoof equation for calculation of thermodynamic parameters of adsorption,
J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048. | |
dc.relation | [95] I. Ali, Z.A. Al-Othman, A. Alwarthan, Synthesis of composite iron nano adsorbent
and removal of ibuprofen drug residue from water, J. Mol. Liq. 219 (2016)
858–864, https://doi.org/10.1016/j.molliq.2016.04.031. | |
dc.relation | [96] X. Zhao, W. Ouyang, F. Hao, C. Lin, F. Wang, S. Han, X. Geng, Properties
comparison of biochars from corn straw with different pretreatment and sorption
behaviour of atrazine, Bioresour. Technol. 147 (2013) 338–344, https://doi.org/
10.1016/j.biortech.2013.08.042. | |
dc.relation | [97] E. Worch, Adsorption Technology in Water Treatment: Fundamentals, Processes,
and Modeling, 2012. 〈https://doi.org/10.1515/9783110240238〉. | |
dc.relation | [98] J. Georgin, Y.L. de, O. Salomon, ´ D.S.P. Franco, M.S. Netto, D.G.A. Piccilli,
D. Perondi, L.F.O. Silva, E.L. Foletto, G.L. Dotto, Development of highly porous
activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of
aqueous-phase ketoprofen, J. Environ. Chem. Eng. 9 (2021), 105676, https://doi.
org/10.1016/j.jece.2021.105676. | |
dc.relation | 12 | |
dc.relation | 1 | |
dc.relation | 3 | |
dc.relation | 11 | |
dc.rights | © 2023 Elsevier Ltd. All rights reserved. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.source | https://www.sciencedirect.com/science/article/pii/S2213343723007054 | |
dc.subject | Adsorption | |
dc.subject | Açaí residues | |
dc.subject | Herbicide removal | |
dc.subject | Activated carbon development | |
dc.title | Adsorptive properties of highly porous activated carbon from açaí (Euterpe oleracea) towards the toxic herbicide atrazine | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |