dc.creatorRamírez, Rolando
dc.creatorPinto, Diana
dc.creatorgeorgin, jordana
dc.creatorde Oliveira, Anelise H.P.
dc.creatorDison S.P., Franco
dc.creatorWolff, Delmira
dc.creatorCarissimi, Elvis
dc.creatorNaushad, Mu.
dc.creatorSilva Oliveira, Luis Felipe
dc.creatorLima, Éder C.
dc.creatorDotto, Guilherme Luiz
dc.date2023-09-18T16:17:22Z
dc.date2025
dc.date2023-09-18T16:17:22Z
dc.date2023
dc.date.accessioned2023-10-03T19:41:30Z
dc.date.available2023-10-03T19:41:30Z
dc.identifierRolando Ramirez, Diana Pinto, Jordana Georgin, Anelise H.P. de Oliveira, Dison S.P. Franco, Delmira Wolff, Elvis Carissimi, Mu. Naushad, Luis F.O. Siva, Éder C. Lima, Guilherme L. Dotto, Adsorptive properties of highly porous activated carbon from açaí (Euterpe oleracea) towards the toxic herbicide atrazine, Journal of Environmental Chemical Engineering, Volume 11, Issue 3, 2023, 109966, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2023.109966.
dc.identifierhttps://hdl.handle.net/11323/10492
dc.identifier10.1016/j.jece.2023.109966
dc.identifier2213-3437
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171468
dc.descriptionThe great variety and possibilities of consumption of açaí pulp (Euterpe oleracea) have made its consumption increase considerably in recent years, mainly in Brazilian territory. The big problem is the generation of tons of waste that characterizes the fruit stone. This waste was converted into a highly porous activated carbon and employed to remove the herbicide atrazine. The characterization analyses confirmed that the applied methodology generated an adsorbent with good textural characteristics (specific surface area 920.56 m² g−1, pore volume 0.467 cm3 g−1; average pore diameter 1.13 nm). Furthermore, it was found that the adsorption of atrazine reached satisfactory results at natural pH and with an adsorbent mass of 0.54 g for each liter of solution. The Redlich-Peterson model presented the most satisfactory fit with the equilibrium data. This study found that the evolution of system temperature increased the concentration in the solid phase of 178 mg g−1 at 328 K. Regarding adsorption kinetics, the linear driving force model can represent the experimental data. Also, the predicted adsorption data of the model follows the experimental data. The application of the adsorbent in the removal of the herbicide mixture presented an efficiency of 81.45%. Therefore, using residual açaí fruit seeds as biomass for producing activated carbon employing zinc chloride as an agent activator is the possible application of the material. The material showed high efficiency and affinity with the target molecule.
dc.format12 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherElsevier BV
dc.publisherUnited Kingdom
dc.relationJournal of Environmental Chemical Engineering
dc.relation[1] F. Suo, X. You, Y. Ma, Y. Li, Rapid removal of triazine pesticides by P doped biochar and the adsorption mechanism, Chemosphere 235 (2019) 918–925, https://doi. org/10.1016/j.chemosphere.2019.06.158.
dc.relation[2] D.S.P. Franco, J. Georgin, E.C. Lima, L.F.O. Silva, Advances made in removing paraquat herbicide by adsorption technology: a review, J. Water Process Eng. 49 (2022), 102988, https://doi.org/10.1016/j.jwpe.2022.102988.
dc.relation[3] S.E. Lewis, J.E. Brodie, Z.T. Bainbridge, K.W. Rohde, A.M. Davis, B.L. Masters, M. Maughan, M.J. Devlin, J.F. Mueller, B. Schaffelke, Herbicides: a new threat to the Great Barrier Reef, Environ. Pollut. 157 (2009) 2470–2484, https://doi.org/ 10.1016/J.ENVPOL.2009.03.006.
dc.relation[4] Y. Gao, Z. Jiang, J. Li, W. Xie, Q. Jiang, M. Bi, Y. Zhang, A comparison of the characteristics and atrazine adsorption capacity of co-pyrolysed and mixed biochars generated from corn straw and sawdust, Environ. Res. 172 (2019) 561–568, https://doi.org/10.1016/j.envres.2019.03.010.
dc.relation[5] R. Grillo, A.E.S. Pereira, C.S. Nishisaka, R. De Lima, K. Oehlke, R. Greiner, L. F. Fraceto, Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control, J. Hazard. Mater. 278 (2014) 163–171, https://doi.org/10.1016/j.jhazmat.2014.05.079.
dc.relation[6] V. Kumar, P. Jha, Influence of herbicides applied postharvest in wheat stubble on control, fecundity, and progeny fitness of Kochia scoparia in the US Great Plains, Crop Prot. 71 (2015) 144–149, https://doi.org/10.1016/j.cropro.2015.02.016.
dc.relation[7] P. Vanraes, G. Willems, A. Nikiforov, P. Surmont, F. Lynen, J. Vandamme, J. Van Durme, Y.P. Verheust, S.W.H. Van Hulle, A. Dumoulin, C. Leys, Removal of atrazine in water by combination of activated carbon and dielectric barrier discharge, J. Hazard. Mater. 299 (2015) 647–655, https://doi.org/10.1016/j. jhazmat.2015.07.075.
dc.relation[8] M. Kica, S. Ronka, The removal of atrazine from water using specific polymeric adsorbent, Sep. Sci. Technol. 49 (2014) 1634–1642, https://doi.org/10.1080/ 01496395.2014.906461.
dc.relation[9] S.S. Caldas, J.L.O. Arias, C. Rombaldi, L.L. Mello, M.B.R. Cerqueira, A.F. Martins, E. G. Primel, Occurrence of pesticides and PPCPs in surface and drinking water in southern Brazil: data on 4-year monitoring, J. Braz. Chem. Soc. 30 (2019) 71–80, https://doi.org/10.21577/0103-5053.20180154.
dc.relation[10] C. Steffens, S.C. Ballen, E. Scapin, D.M. da Silva, J. Steffens, R.A. Jacques, Advances of nanobiosensors and its application in atrazine detection in water: a review, Sens. Actuators Rep. 4 (2022), 100096, https://doi.org/10.1016/j.snr.2022.100096.
dc.relation[11] T. Bohn, E. Cocco, L. Gourdol, C. Guignard, L. Hoffmann, Determination of atrazine and degradation products in luxembourgish drinking water: origin and fate of potential endocrine-disrupting pesticides, Food Addit. Contam. Part A 28 (2011) 1041–1054, https://doi.org/10.1080/19440049.2011.580012.
dc.relation[12] J. Georgin, D.S.P. Franco, K. Da Boit Martinello, E.C. Lima, L.F.O. Silva, A review of the toxicology presence and removal of ketoprofen through adsorption technology, J. Environ. Chem. Eng. 10 (2022), 107798, https://doi.org/10.1016/j. jece.2022.107798.
dc.relation[13] A.K. Arya, A. Singh, D. Bhatt, Pesticide applications in agriculture and their effects on birds: an overview, Contam. Agric. Environ. Heal. Risks Remediat. 249404 (2019) 129–137, https://doi.org/10.26832/aesa-2019-cae-0163-010.
dc.relation[14] S. Salvestrini, P. Sagliano, P. Iovino, S. Capasso, C. Colella, Atrazine adsorption by acid-activated zeolite-rich tuffs, Appl. Clay Sci. 49 (2010) 330–335, https://doi. org/10.1016/j.clay.2010.04.008.
dc.relation[15] X.M. Yan, B.Y. Shi, J.J. Lu, C.H. Feng, D.S. Wang, H.X. Tang, Adsorption and desorption of atrazine on carbon nanotubes, J. Colloid Interface Sci. 321 (2008) 30–38, https://doi.org/10.1016/j.jcis.2008.01.047.
dc.relation[16] Y. Jia, R. Wang, A.G. Fane, Atrazine adsorption from aqueous solution using powdered activated carbon - improved mass transfer by air bubbling agitation, Chem. Eng. J. 116 (2006) 53–59, https://doi.org/10.1016/j.cej.2005.10.014.
dc.relation[17] M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review, Desalination 280 (2011) 1–13, https://doi.org/10.1016/j.desal.2011.07.019.
dc.relation[18] C.M. Kerkhoff, K. da Boit Martinello, D.S.P. Franco, M.S. Netto, J. Georgin, E. L. Foletto, D.G.A. Piccilli, L.F.O. Silva, G.L. Dotto, Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp, J. Mol. Liq. 339 (2021), 117184, https://doi.org/ 10.1016/j.molliq.2021.117184.
dc.relation[19] S. Hokkanen, A. Bhatnagar, M. Sillanpa¨¨ a, A review on modification methods to cellulose-based adsorbents to improve adsorption capacity, Water Res. 91 (2016) 156–173, https://doi.org/10.1016/j.watres.2016.01.008.
dc.relation[20] N. Eibisch, R. Schroll, R. Fuß, R. Mikutta, M. Helfrich, H. Flessa, Pyrochars and hydrochars differently alter the sorption of the herbicide isoproturon in an agricultural soil, Chemosphere 119 (2015) 155–162, https://doi.org/10.1016/j. chemosphere.2014.05.059.
dc.relation[21] Y. Liu, S.P. Sohi, F. Jing, J. Chen, Oxidative ageing induces change in the functionality of biochar and hydrochar: mechanistic insights from sorption of atrazine, Environ. Pollut. 249 (2019) 1002–1010, https://doi.org/10.1016/j. envpol.2019.03.035.
dc.relation[22] X. Wei, Z. Wu, Z. Wu, B.-C. Ye, Adsorption behaviors of atrazine and Cr(III) onto different activated carbons in single and co-solute systems, Powder Technol. 329 (2018) 207–216, https://doi.org/10.1016/j.powtec.2018.01.060.
dc.relation[23] J.S. Lazarotto, C. Schnorr, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, L.F. O. Silva, C.R.B. Rhoden, G.L. Dotto, Microporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters, J. Mol. Liq. 364 (2022), 120014, https://doi.org/10.1016/j. molliq.2022.120014.
dc.relation[24] Y. Vieira, C. Schnorr, A.C. Piazzi, M.S. Netto, W.M. Piccini, D.S.P. Franco, E. S. Mallmann, J. Georgin, L.F.O. Silva, G.L. Dotto, An advanced combination of density functional theory simulations and statistical physics modeling in the unveiling and prediction of adsorption mechanisms of 2,4-D pesticide to activated carbon, J. Mol. Liq. 361 (2022), 119639, https://doi.org/10.1016/j. molliq.2022.119639.
dc.relation[25] J. Georgin, D. Pinto, D.S.P. Franco, M.S. Netto, J.S. Lazarotto, D.G. Allasia, R. Tassi, L.F.O. Silva, G.L. Dotto, Improved Adsorption of the Toxic Herbicide Diuron Using Activated Carbon Obtained from Residual Cassava Biomass, 2022.
dc.relation[26] Y.L. Salomon, ´ J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, D. Pinto, M.L.S. Oliveira, G.L. Dotto, Adsorption of atrazine herbicide from water by Diospyros kaki fruit waste activated carbon, J. Mol. Liq. 347 (2022), 117990, https://doi.org/10.1016/j.molliq.2021.117990.
dc.relation[27] Y.L. de, O. Salomon, ´ J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E. L. Foletto, L.F.S. Oliveira, G.L. Dotto, High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana), J. Environ. Chem. Eng. 9 (2021), 104911, https://doi.org/10.1016/j.jece.2020.104911.
dc.relation[28] Q.A. Binh, H.H. Nguyen, Investigation the isotherm and kinetics of adsorption mechanism of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on corn cob biochar, Bioresour. Technol. Rep. 11 (2020), 100520, https://doi.org/10.1016/j. biteb.2020.100520.
dc.relation[29] M.A.B. Freitas, J.L.L. Magalh˜ aes, C.P. Carmona, V. Arroyo-Rodríguez, I.C.G. Vieira, M. Tabarelli, Intensification of açaí palm management largely impoverishes tree assemblages in the Amazon estuarine forest, Biol. Conserv. 261 (2021), https://doi. org/10.1016/j.biocon.2021.109251.
dc.relation[30] F.O. Ribeiro, A.R. Fernandes, J.R. Galvao, ˜ G.S.B. de Matos, M.M. Lindolfo, C.R. C. dos Santos, M.J.B. Pacheco, DRIS and geostatistics indices for nutritional diagnosis and enhanced yield of fertirrigated acai palm, J. Plant Nutr. 43 (2020) 1875–1886, https://doi.org/10.1080/01904167.2020.1750643.
dc.relation[31] P.S. Melo, M.M. Selani, R.H. Gonçalves, J. de, O. Paulino, A.P. Massarioli, S.M. de Alencar, Açaí seeds: an unexplored agro-industrial residue as a potential source of lipids, fibers, and antioxidant phenolic compounds, Ind. Crop. Prod. 161 (2021), 113204, https://doi.org/10.1016/j.indcrop.2020.113204.
dc.relation[32] M.K. Sato, H.V. de Lima, A.N. Costa, S. Rodrigues, A.J.S. Pedroso, C.M.B. de Freitas Maia, Biochar from Acai agroindustry waste: study of pyrolysis conditions, Waste Manag. 96 (2019) 158–167, https://doi.org/10.1016/j.wasman.2019.07.022.
dc.relation[33] A. Da Silva Vasconcelos De Almeida, W.T. Vieira, M.D. Bispo, S.F. De Melo, T.L. Da Silva, T.L. Balliano, M.G.A. Vieira, J.I. Soletti, Caffeine removal using activated biochar from acai seed (Euterpe oleracea Mart): experimental study and description of adsorbate properties using Density Functional Theory (DFT), J. Environ. Chem. Eng. 9 (2021), https://doi.org/10.1016/j.jece.2020.104891
dc.relation[34] A.C. Gonçalves Junior, G.F. Coelho, D. Schwantes, A.L. Rech, M.A. ˆ Campagnolo, A. J. Miola, Biossorçao ˜ de Cu (II) e Zn (II) utilizando o endocarpo de açaí Euterpe oleracea M. em soluç˜ ao aquosa contaminada, Acta Sci. Technol. 38 (2016) 361–370, https://doi.org/10.4025/actascitechnol.v38i3.28294.
dc.relation[35] A.C. Gonçalves, D. Schwantes, M.A. Campagnolo, D.C. Dragunski, C.R.T. Tarley, A. K. Dos Santos Silva, Removal of toxic metals using endocarp of açaí berry as biosorbent, Water Sci. Technol. 77 (2018) 1547–1557, https://doi.org/10.2166/ wst.2018.032.
dc.relation[36] L. Da, R. de Lima, O.F. Da Costa, B.S. Bianca, K. Das, G.F. Dantas, V.P. Lemos, M.H. T. Pinheiro, Removal of Cu (II), Zn (II) and Ni (II) using açaí residue (Euterpe oleracea Mart.) as a biosorbent in aqueous solution, Rev. Virtual Quim. 12 (2020) 1066–1078, https://doi.org/10.21577/1984-6835.20200086.
dc.relation[37] Y.N. Dias, E.S. Souza, H.S.C. da Costa, L.C.A. Melo, E.S. Penido, C.B. do Amarante, O.M.M. Teixeira, A.R. Fernandes, Biochar produced from Amazonian agroindustrial wastes: properties and adsorbent potential of Cd2+ and Cu2, Biochar 1 (2019) 389–400, https://doi.org/10.1007/s42773-019-00031-4.
dc.relation[38] L.O. Santos, Adsorption of acid yellow dye 17 on activated carbon prepared from Euterpe oleracea: kinetic and thermodynamic studies Adsorç˜ ao do corante amarelo acido ´ 17 em carv˜ ao ativado preparado do cacho do açaí Euterpe oleracea: estudos cin´eticos e termodinˆ amico, 2022, 2022, pp. 1–16.
dc.relation[39] A.A.O. de Sousa, T.S. Oliveira, L.E.C. de Azevedo, J.R.C. Nobre, W.F.R. Stefanelli, T.A.P. de, S. Costa, J.P.S. da Silva, A.V.S. Barral, Adsorption of the basic dye Malachite Green via activated carbon from açaí seed, Res. Soc. Dev. 10 (2021), e49110212871, https://doi.org/10.33448/rsd-v10i2.12871.
dc.relation[40] N.F. Cardoso, E.C. Lima, T. Calvete, I.S. Pinto, C.V. Amavisca, T.H.M. Fernandes, R. B. Pinto, W.S. Alencar, Application of aqai stalks as biosorbents for the removal of the dyes reactive black 5 and reactive orange 16 from aqueous solution, J. Chem. Eng. Data 56 (2011) 1857–1868, https://doi.org/10.1021/je100866c.
dc.relation[41] L.A. de Sousa Ribeiro, G.P. Thim, M.O. Alvarez-Mendez, A. dos Reis Coutinho, N. P. de Moraes, L.A. Rodrigues, Preparation, characterization, and application of low-cost açaí seed-based activated carbon for phenol adsorption, Int. J. Environ. Res 12 (2018) 755–764, https://doi.org/10.1007/s41742-018-0128-5.
dc.relation[42] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403, https://doi.org/10.1021/ja02242a004.
dc.relation[43] H. Freundlich, Über die Adsorption in Losungen, ¨ Z. Phys. Chem. 57U (1907), https://doi.org/10.1515/zpch-1907-5723.
dc.relation[44] O. Redlich, D.L. Peterson, A useful adsorption isotherm, 1024–1024, J. Phys. Chem. 63 (1959), https://doi.org/10.1021/j150576a611.
dc.relation[45] H.N. Tran, E.C. Lima, R.-S. Juang, J.-C. Bollinger, H.-P. Chao, Thermodynamic parameters of liquid–phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: a comparison study, J. Environ. Chem. Eng. 9 (2021), 106674, https://doi.org/10.1016/j. jece.2021.106674.
dc.relation[46] E. Glueckauf, Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography, Trans. Faraday Soc. 51 (1955) 1540–1551, https://doi.org/10.1039/TF9555101540.
dc.relation[47] S.Y. Lagergren, Zur Theorie der sogenannten Adsorption, 1898. 〈http://books2eb ooks.eu/odm/html/nls/en/agb.html〉.
dc.relation[48] Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Process Saf. Environ. Prot. 76 (1998) 332–340, https://doi.org/10.1205/095758298529696.
dc.relation[49] D.S.P. Franco, J. Georgin, M.S. Netto, D. Allasia, M.L.S. Oliveira, E.L. Foletto, G. L. Dotto, Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species, J. Environ. Chem. Eng. 9 (2021), 105927, https://doi.org/10.1016/j. jece.2021.105927.
dc.relation[50] P.T. Hernandes, D.S.P. Franco, J. Georgin, N.P.G. Salau, G.L. Dotto, Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium, J. Environ. Chem. Eng. 10 (2022), 107408, https://doi.org/ 10.1016/j.jece.2022.107408.
dc.relation[51] J.S. Lazarotto, K. da Boit Martinello, J. Georgin, D.S.P. Franco, M.S. Netto, D.G. A. Piccilli, L.F.O. Silva, E.C. Lima, G.L. Dotto, Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide, J. Environ. Chem. Eng. 9 (2021), https://doi.org/10.1016/j.jece.2021.106843.
dc.relation[52] O. Üner, Y. Bayrak, The effect of carbonization temperature, carbonization time and impregnation ratio on the properties of activated carbon produced from Arundo donax, Microporous Mesoporous Mater. 268 (2018) 225–234, https://doi. org/10.1016/j.micromeso.2018.04.037.
dc.relation[53] M. Danish, T. Ahmad, R. Hashim, N. Said, M.N. Akhtar, J. Mohamad-Saleh, O. Sulaiman, Comparison of Surface Properties of Wood Biomass Activated Carbons and Their Application Against Rhodamine B and Methylene Blue Dye, Elsevier B.V., 2018, https://doi.org/10.1016/j.surfin.2018.02.001.
dc.relation[54] G.J.F. Cruz, M. Pirila, ¨ L. Matˇejov´ a, K. Ainassaari, J.L. Solis, R. Fajgar, O. Solcov ˇ ´ a, R. L. Keiski, Two unconventional precursors to produce ZnCl2-based activated carbon for water treatment applications, Chem. Eng. Technol. 41 (2018) 1649–1659, https://doi.org/10.1002/ceat.201800150.
dc.relation[55] A.T. Mohd Din, B.H. Hameed, A.L. Ahmad, Batch adsorption of phenol onto physiochemical-activated coconut shell, J. Hazard. Mater. 161 (2009) 1522–1529, https://doi.org/10.1016/j.jhazmat.2008.05.009.
dc.relation[56] C. Anchieta, A. Cancelier, M. Mazutti, S. Jahn, R. Kuhn, A. Gündel, O. ChiavoneFilho, E. Foletto, Effects of solvent diols on the synthesis of ZnFe2O4 particles and their use as heterogeneous photo-fenton catalysts, Materials 7 (2014) 6281–6290, https://doi.org/10.3390/ma7096281.
dc.relation[57] Y.L. de, O. Salomon, ´ J. Georgin, G.S. dos Reis, E.C. ´ Lima, M.L.S. Oliveira, D.S. P. Franco, M.S. Netto, D. Allasia, G.L. Dotto, Utilization of Pacara Earpod tree (Enterolobium contortisilquum) and Ironwood (Caesalpinia leiostachya) seeds as low-cost biosorbents for removal of basic fuchsin, Environ. Sci. Pollut. Res. 27 (2020) 33307–33320, https://doi.org/10.1007/s11356-020-09471-z.
dc.relation[58] W. Li, W. Mo, C. Kang, M. Zhang, M. Meng, M. Chen, Adsorption of nitrate from aqueous solution onto modified cassava (Manihot esculenta) straw, Ecol. Chem. Eng. S 19 (2012) 629–638, https://doi.org/10.2478/v10216-011-0045-4.
dc.relation[59] X. Chen, P. Wu, M. Rousseas, D. Okawa, Z. Gartner, A. Zettl, C.R. Bertozzi, Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells, J. Am. Chem. Soc. 131 (2009) 890–891, https://doi.org/ 10.1021/ja807334b.
dc.relation[60] A. Elena, I. Gozescu, A. Dabici, P. Sfirloaga, Z. Szabadai, Organic compounds FT-IR spectroscopy, Macro To Nano Spectroscopy, InTech, 2012. 〈https://doi.org/10.5 772/50183〉.
dc.relation[61] L. Muniandy, F. Adam, A.R. Mohamed, E.P. Ng, The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH, Microporous Mesoporous Mater. 197 (2014) 316–323, https://doi.org/10.1016/j.micromeso.2014.06.020.
dc.relation[62] S. Nanda, P. Mohanty, K.K. Pant, S. Naik, J.A. Kozinski, A.K. Dalai, Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels, Bioenergy Res. 6 (2013) 663–677, https://doi.org/10.1007/s12155-012-9281-4.
dc.relation[63] R. Sharma, A. Sarswat, C.U. Pittman, D. Mohan, Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods, RSC Adv. 7 (2017) 8606–8624, https://doi.org/10.1039/ C6RA25295H.
dc.relation[64] S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, T.J. Morgan, An overview of the organic and inorganic phase composition of biomass, Fuel 94 (2012) 1–33, https://doi.org/10.1016/j.fuel.2011.09.030.
dc.relation[65] Z. Wang, C. Wang, J. Yuan, C. Zhang, Adsorption characteristics of adsorbent resins and antioxidant capacity for enrichment of phenolics from two-phase olive waste, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1040 (2017) 38–46, https://doi. org/10.1016/j.jchromb.2016.11.023.
dc.relation[66] J. Georgin, F.C. Drumm, P. Grassi, D. Franco, D. Allasia, G.L. Dotto, F. Caroline, D. Patrícia, G. Dison, F. Guilherme, L. Dotto, Potential of Araucaria angustifolia bark as adsorbent to remove Gentian Violet dye from aqueous effluents, Water Sci. Technol. 78 (2018) 1693–1703, https://doi.org/10.2166/wst.2018.448.
dc.relation[67] Y.A.B. Neolaka, Y. Lawa, J. Naat, A.A.P. Riwu, H. Darmokoesoemo, B. A. Widyaningrum, M. Iqbal, H.S. Kusuma, Indonesian Kesambi wood (Schleichera oleosa) activated with pyrolysis and H2SO4 combination methods to produce mesoporous activated carbon for Pb(II) adsorption from aqueous solution, Environ. Technol. Innov. 24 (2021), 101997, https://doi.org/10.1016/j.eti.2021.101997.
dc.relation[68] P. Grassi, F.C. Drumm, J. Georgin, D.S.P. Franco, G.L. Dotto, E.L. Foletto, S.L. Jahn, Application of Cordia trichotoma sawdust as an effective biosorbent for removal of crystal violet from aqueous solution in batch system and fixed-bed column, Environ. Sci. Pollut. Res. 28 (2021) 6771–6783, https://doi.org/10.1007/s11356- 020-11005-6.
dc.relation[69] M.S. Netto, J. Georgin, D.S.P. Franco, E.S. Mallmann, E.L. Foletto, M. Godinho, D. Pinto, G.L. Dotto, Effective adsorptive removal of atrazine herbicide in river waters by a novel hydrochar derived from Prunus serrulata bark, Environ. Sci. Pollut. Res. 29 (2022) 3672–3685, https://doi.org/10.1007/s11356-021-15366-4.
dc.relation[70] A. Jain, S. Jayaraman, R. Balasubramanian, M.P. Srinivasan, Hydrothermal pretreatment for mesoporous carbon synthesis: enhancement of chemical activation, J. Mater. Chem. A 2 (2014) 520–528, https://doi.org/10.1039/c3ta12648j.
dc.relation[71] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report), Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/10.1515/pac-2014-1117.
dc.relation[72] K.S.W. Sing, Reporting physisorption data for gas / solid systems with special reference to the determination of S, Pure Appl. Chem. 54 (1982) 2201–2218, https://doi.org/10.1515/iupac.57.0007.
dc.relation[73] M. Paredes-Laverde, M. Salamanca, J.D. Diaz-Corrales, E. Florez, ´ J. Silva-Agredo, R.A. Torres-Palma, Understanding the removal of an anionic dye in textile wastewaters by adsorption on ZnCl2activated carbons from rice and coffee husk wastes: a combined experimental and theoretical study, J. Environ. Chem. Eng. 9 (2021), https://doi.org/10.1016/j.jece.2021.105685.
dc.relation[74] M.S. Netto, N. Favarin, M. Schadeck Netto, N.F. da Silva, E.S. Mallmann, G. L. Dotto, E.L. Foletto, Effect of salinity on the adsorption behavior of methylene blue onto comminuted raw avocado residue: CCD-RSM design, Water Air Soil Pollut. 230 (2019), https://doi.org/10.1007/s11270-019-4230-x.
dc.relation[75] A.H. Jawad, K. Ismail, M.A.M. Ishak, L.D. Wilson, Conversion of Malaysian lowrank coal to mesoporous activated carbon: structure characterization and adsorption properties, Chin. J. Chem. Eng. 27 (2019) 1716–1727, https://doi.org/ 10.1016/j.cjche.2018.12.006.
dc.relation[76] H. Liu, G. Xu, G. Li, Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline, J. Colloid Interface Sci. 587 (2021) 271–278, https://doi.org/10.1016/j.jcis.2020.12.014.
dc.relation[77] Q.S. Liu, T. Zheng, P. Wang, J.P. Jiang, N. Li, Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers, Chem. Eng. J. 157 (2010) 348–356, https://doi.org/10.1016/j.cej.2009.11.013.
dc.relation[78] T.S. Anirudhan, C.D. Bringle, P.G. Radhakrishnan, Heavy metal interactions with phosphatic clay: kinetic and equilibrium studies, Chem. Eng. J. 200–202 (2012) 149–157, https://doi.org/10.1016/j.cej.2012.06.024.
dc.relation[79] M. Chauhan, V.K. Saini, S. Suthar, Ti-pillared montmorillonite clay for adsorptive removal of amoxicillin, imipramine, diclofenac-sodium, and paracetamol from water, J. Hazard. Mater. 399 (2020), 122832, https://doi.org/10.1016/j. jhazmat.2020.122832.
dc.relation[80] N. Alikhani, M. Farhadian, A. Goshadrou, S. Tangestaninejad, Photocatalytic degradation and adsorption of herbicide 2, 4-dichlorophe - noxyacetic acid from aqueous solution using TiO2/BiOBr/Bi2S3 nanostructure stabilized on the activated carbon under v, Environ. Nanotechnol. Monit. Manag. 15 (2021), 100415, https://doi.org/10.1016/j.enmm.2020.100415.
dc.relation[81] D. Ova, B. Ovez, 2,4-Dichlorophenoxyacetic acid removal from aqueous solutions via adsorption in the presence of biological contamination, Biochem. Pharmacol. 1 (2013) 813–821, https://doi.org/10.1016/j.jece.2013.07.024.
dc.relation[82] J. Lin, Y. Zhan, Z. Zhu, Y. Xing, Adsorption of tannic acid from aqueous solution onto surfactant-modified zeolite, J. Hazard. Mater. 193 (2011) 102–111, https:// doi.org/10.1016/j.jhazmat.2011.07.035.
dc.relation[83] J.S. Lazarotto, K. da Boit Martinello, J. Georgin, D.S.P. Franco, M.S. Netto, D.G. A. Piccilli, L.F.O. Silva, E.C. Lima, G.L. Dotto, Application of araç´ a fruit husks (Psidium cattleianum) in the preparation of activated carbon with FeCl3 for atrazine herbicide adsorption, Chem. Eng. Res. Des. 180 (2022) 67–78, https://doi. org/10.1016/j.cherd.2022.01.044.
dc.relation[84] D. Nagarajan, O.M. Varada, S. Venkatanarasimhan, Carbon dots coated on amine functionalized cellulose sponge for the adsorption of the toxic herbicide atrazine, Mater. Today Proc. 47 (2020) 790–799, https://doi.org/10.1016/j. matpr.2020.08.071.
dc.relation[85] T.S. Jamil, T.A. Gad-Allah, H.S. Ibrahim, T.S. Saleh, Adsorption and isothermal models of atrazine by zeolite prepared from Egyptian kaolin, Solid State Sci. 13 (2011) 198–203, https://doi.org/10.1016/j.solidstatesciences.2010.11.014.
dc.relation[86] E. Grundgeiger, Y.H. Lim, R.L. Frost, G.A. Ayoko, Y. Xi, Application of organobeidellites for the adsorption of atrazine, Appl. Clay Sci. 105–106 (2015) 252–258, https://doi.org/10.1016/j.clay.2015.01.003.
dc.relation[87] Y. Zhang, B. Cao, L. Zhao, L. Sun, Y. Gao, J. Li, F. Yang, Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions, Appl. Surf. Sci. 427 (2018) 147–155, https://doi.org/10.1016/j. apsusc.2017.07.237.
dc.relation[88] W. Tang, G. Zeng, J. Gong, Y. Liu, X. Wang, Simultaneous adsorption of atrazine and Cu ( II) from wastewater by magnetic multi-walled carbon nanotube, Chem. Eng. J. 211–212 (2012) 470–478, https://doi.org/10.1016/j.cej.2012.09.102.
dc.relation[89] M.D. Urena-Amate, ˜ M. Socías-Viciana, E. Gonzalez-Pradas, ´ M. Saifi, Effects of ionic strength and temperature on adsorption of atrazine by a heat treated kerolite, Chemosphere 59 (2005) 69–74, https://doi.org/10.1016/j. chemosphere.2004.09.098.
dc.relation[90] G.-C. Chen, X.-Q. Shan, Y.-S. Wang, Z.-G. Pei, Effects of copper, lead, and cadmium on the sorption and desorption of atrazine onto and from carbon nanotubes, Environ. Sci. Technol. 42 (2008) 8297–8302.
dc.relation[91] M.B. Chabalala, M.Z. Al-Abri, B.B. Mamba, E.N. Nxumalo, Mechanistic aspects for the enhanced adsorption of bromophenol blue and atrazine over cyclodextrin modified polyacrylonitrile nanofiber membranes, Chem. Eng. Res. Des. 169 (2021) 19–32, https://doi.org/10.1016/j.cherd.2021.02.010.
dc.relation[92] B.Y. Yang, Y. Cao, F.F. Qi, X.Q. Li, Q. Xu, Atrazine adsorption removal with nylon6/polypyrrole core-shell nanofibers mat: possible mechanism and characteristics, Nanoscale Res. Lett. 10 (2015), https://doi.org/10.1186/s11671- 015-0903-6.
dc.relation[93] A.A.A.A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila, ´ H.E. ReynelAvila, H.E. Reynel-Avila, ´ Adsorption processes for water treatment and purification, Adsorpt. Process. Water Treat. Purif. (2017) 1–256, https://doi.org/ 10.1007/978-3-319-58136-1.
dc.relation[94] E.C. Lima, A. Hosseini-Bandegharaei, I. Anastopoulos, J.C. Moreno-Piraj´ an, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048.
dc.relation[95] I. Ali, Z.A. Al-Othman, A. Alwarthan, Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water, J. Mol. Liq. 219 (2016) 858–864, https://doi.org/10.1016/j.molliq.2016.04.031.
dc.relation[96] X. Zhao, W. Ouyang, F. Hao, C. Lin, F. Wang, S. Han, X. Geng, Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine, Bioresour. Technol. 147 (2013) 338–344, https://doi.org/ 10.1016/j.biortech.2013.08.042.
dc.relation[97] E. Worch, Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling, 2012. 〈https://doi.org/10.1515/9783110240238〉.
dc.relation[98] J. Georgin, Y.L. de, O. Salomon, ´ D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, D. Perondi, L.F.O. Silva, E.L. Foletto, G.L. Dotto, Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen, J. Environ. Chem. Eng. 9 (2021), 105676, https://doi. org/10.1016/j.jece.2021.105676.
dc.relation12
dc.relation1
dc.relation3
dc.relation11
dc.rights© 2023 Elsevier Ltd. All rights reserved.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S2213343723007054
dc.subjectAdsorption
dc.subjectAçaí residues
dc.subjectHerbicide removal
dc.subjectActivated carbon development
dc.titleAdsorptive properties of highly porous activated carbon from açaí (Euterpe oleracea) towards the toxic herbicide atrazine
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución