| dc.creator | Hernández-Fernández, Joaquín | |
| dc.creator | Puello, Esneyder | |
| dc.creator | Lopez, Juan | |
| dc.date | 2023-08-24T16:37:06Z | |
| dc.date | 2023-08-24T16:37:06Z | |
| dc.date | 2023-01-09 | |
| dc.date.accessioned | 2023-10-03T19:41:09Z | |
| dc.date.available | 2023-10-03T19:41:09Z | |
| dc.identifier | Hernández-Fernández, J.; Puello-Polo, E.; López-Martínez, J. Recovery of (Z)-13-Docosenamide from Industrial Wastewater and Its Application in the Production of Virgin Polypropylene to Improve the Coefficient of Friction in Film Type Applications. Sustainability 2023, 15, 1247. https://doi.org/10.3390/ su15021247 | |
| dc.identifier | https://hdl.handle.net/11323/10408 | |
| dc.identifier | 10.3390/su15021247 | |
| dc.identifier | 2071-1050 | |
| dc.identifier | Corporación Universidad de la Costa | |
| dc.identifier | REDICUC - Repositorio CUC | |
| dc.identifier | https://repositorio.cuc.edu.co/ | |
| dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9171407 | |
| dc.description | Additives play an important role in the production of plastic materials through their application, in which the mechanical, thermal, and physical properties of polymers are improved, making them last longer and be more resistant. During the synthesis of polypropylene resins, the remains of additives that are not absorbed by the resin are removed in the purification stage and end up in the wastewater. In this article, the recovery of (Z)-13-docosenamide from the wastewater from the process, its purification, and its application in the process was carried out. For the extraction of the additive, solid phase extraction (SPE) was used, and to guarantee the purity of (Z)-13-docosenamide, techniques such as high performance liquid chromatography (HPLC), Fourier transform infrared (FTIR), gas chromatography-mass spectrometry (GC/MS), thermogravimetric (TG) coupled with a gas chromatography-mass spectrometry (GC/MS), and differential scanning calorimetry (DSC) were used. The recovered erucamide was added to the PP between 0.05 and 0.3% w/w. The effects of the properties of the virgin polypropylene with the recovered additive were also evaluated to determine its effectiveness in improving the properties of the material by measuring the coefficient of friction (CoF) as well as the mechanical properties and wettability through atomic force microscopy (AFM) and the contact angle, respectively. It was discovered that using these techniques, it is possible to recover approximately 95% of the additive present in the water while keeping the material’s properties within the desired limits. | |
| dc.format | 16 páginas | |
| dc.format | application/pdf | |
| dc.format | application/pdf | |
| dc.language | eng | |
| dc.publisher | MDPI AG | |
| dc.publisher | Switzerland | |
| dc.relation | Sustainability | |
| dc.relation | 1. Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics
in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [CrossRef] | |
| dc.relation | 2. Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics:
Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. J. Hazard. Mater. 2018, 344,
179–199. [CrossRef] [PubMed] | |
| dc.relation | 3. Bashir, I.; Lone, F.A.; Bhat, R.A.; Mir, S.A.; Dar, Z.A.; Dar, S.A. Concerns and Threats of Contamination on Aquatic Ecosystems. In
Bioremediation and Biotechnology; Springer: Cham, Switzerland, 2020; pp. 1–26. [CrossRef] | |
| dc.relation | 4. Jaiswal, S.; Kumar Gupta, G.; Panchal, K.; Mandeep; Shukla, P. Synthetic Organic Compounds from Paper Industry Wastes:
Integrated Biotechnological Interventions. Front. Bioeng. Biotechnol. 2021, 8, 592939. [CrossRef] [PubMed] | |
| dc.relation | 5. US EPA. Persistent Organic Pollutants: A Global Issue, A Global Response. Available online: https://www.epa.gov/internationalcooperation/persistent-organic-pollutants-global-issue-global-response (accessed on 11 August 2022). | |
| dc.relation | 6. Grobelak, A.; Kowalska, A. Chapter 2—Emerging Environmental Contaminants—Current Status, Challenges, and Technological
Solutions. In Emerging Contaminants in the Environment; Sarma, H., Dominguez, D.C., Lee, W.-Y., Eds.; Elsevier: Amsterdam, The
Netherlands, 2022; pp. 39–53. ISBN 978-0-323-85160-2. | |
| dc.relation | 7. Hernández-Fernandez, J.; Rodríguez, E. Determination of Phenolic Antioxidants Additives in Industrial Wastewater from
Polypropylene Production Using Solid Phase Extraction with High-Performance Liquid Chromatography. J. Chromatogr. A 2019,
1607, 460442. [CrossRef] | |
| dc.relation | 8. Daughton, C.G. Non-Regulated Water Contaminants: Emerging Research. Environ. Impact Assess. Rev. 2004, 24, 711–732.
[CrossRef] | |
| dc.relation | 9. Hurtado, C.; Domínguez, C.; Pérez-Babace, L.; Cañameras, N.; Comas, J.; Bayona, J.M. Estimate of Uptake and Translocation of
Emerging Organic Contaminants from Irrigation Water Concentration in Lettuce Grown under Controlled Conditions. J. Hazard.
Mater. 2016, 305, 139–148. [CrossRef] | |
| dc.relation | 10. Khetan, S.K.; Collins, T.J. Human Pharmaceuticals in the Aquatic Environment: A Challenge to Green Chemistry. Chem. Rev.
2007, 107, 2319–2364. [CrossRef] | |
| dc.relation | 11. Richardson, S.D.; Ternes, T.A. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2018, 90, 398–428.
[CrossRef] | |
| dc.relation | 12. Botalova, O.; Schwarzbauer, J.; Frauenrath, T.; Dsikowitzky, L. Identification and Chemical Characterization of Specific Organic
Constituents of Petrochemical Effluents. Water Res. 2009, 43, 3797–3812. [CrossRef] | |
| dc.relation | 13. Förstner, U. Elements and Compounds in Waste Materials. In Elements and Their Compounds in the Environment: Occurrence,
Analysis and Biological Relevance, 2nd ed.; Wiley Online Library: Hoboken, NJ, USA, 2004; pp. 163–197. ISBN 978-3-527-30459-2. | |
| dc.relation | 14. Ahmed, J.; Thakur, A.; Goyal, A. Chapter 1 Industrial Wastewater and Its Toxic Effects. In Biological Treatment of Industrial
Wastewater; Royal Society of Chemistry: London, UK, 2021; pp. 1–14. [CrossRef] | |
| dc.relation | 15. Bart, J.C. Appendix II: Functionality of Common Additives Used in Commercial Thermoplastics, Rubbers and Thermosetting
Resins. In Additives in Polymers; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005; pp. 773–791. ISBN 978-0-470-01206-2. | |
| dc.relation | 16. National Research Council. Polymer Science and Engineering: The Shifting Research Frontiers; National Academies Press: Washington,
DC, USA, 1994. | |
| dc.relation | 17. De Paoli, M.A.; Aurelio, M.; Waldman, W. Bio-Based Additives for Thermoplastics. Polímeros 2019, 29, e2019030. [CrossRef] | |
| dc.relation | 18. Pfaendner, R. Polymer Additives. In Handbook of Polymer Synthesis, Characterization, and Processing; Saldívar-Guerra, E., VivaldoLima, E., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 225–247. ISBN 978-1-118-48079-3. | |
| dc.relation | 19. Gómez-Contreras, P.; Figueroa-Lopez, K.J.; Hernández-Fernández, J.; Cortés Rodríguez, M.; Ortega-Toro, R. Effect of Different
Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea rotundata L.) Starch and Its Application in Strawberry
(Fragaria vesca L.) Preservation. Appl. Sci. 2021, 11, 11057. [CrossRef] | |
| dc.relation | 20. Pavon, C.; Aldas, M.; López-Martínez, J.; Hernández-Fernández, J.; Arrieta, M.P. Films Based on Thermoplastic Starch Blended
with Pine Resin Derivatives for Food Packaging. Foods 2021, 10, 1171. [CrossRef] | |
| dc.relation | 21. Shao, J.; He, Y.; Li, F.; Zhang, H.; Chen, A.; Luo, S.; Gu, J.-D. Growth Inhibition and Possible Mechanism of Oleamide against the
Toxin-Producing Cyanobacterium Microcystis Aeruginosa NIES-843. Ecotoxicol. Lond. Engl. 2016, 25, 225–233. [CrossRef] | |
| dc.relation | 22. Getachew, P.; Getachew, M.; Joo, J.; Choi, Y.S.; Hwang, D.S.; Hong, Y.K. The Slip Agents Oleamide and Erucamide Reduce
Biofouling by Marine Benthic Organisms (Diatoms, Biofilms and Abalones). Toxicol. Environ. Health Sci. 2016, 8, 341–348.
Available online: https://link.springer.com/article/10.1007/s13530-016-0295-8 (accessed on 11 August 2022). [CrossRef] | |
| dc.relation | 23. Mitchell, C.A.; Davies, M.J.; Grounds, M.D.; McGeachie, J.K.; Crawford, G.J.; Hong, Y.; Chirila, T.V. Enhancement of Neovascularization in Regenerating Skeletal Muscle by the Sustained Release of Erucamide from a Polymer Matrix. J. Biomater. Appl. 1996, 10,
230–249. [CrossRef] | |
| dc.relation | 24. Wakamatsu, K.; Masaki, T.; Itoh, F.; Kondo, K.; Sudo, K. Isolation of Fatty Acid Amide as an Angiogenic Principle from Bovine
Mesentery. Biochem. Biophys. Res. Commun. 1990, 168, 423–429. [CrossRef] | |
| dc.relation | 25. Hamberger, A.; Stenhagen, G. Erucamide Compounds for the Treatment and Prevention to Disturbances of the Secretory System.
WIPO (PCT) WO2003002112A1, 9 January 2003. | |
| dc.relation | 26. Henzel, R.P.; Vanier, N.R. Slipping Layer Containing Functionalized Siloxane and Wax for Dye-Donor Element Used in Thermal
Dye Transfer. U.S. Patent 4,866,026, 12 September 1989. | |
| dc.relation | 27. Catarino-Centeno, R.; Waldo-Mendoza, M.A.; Garcia-Hernandez, E.; Perez-Lopez, J.E. Relationship between the Coefficient of
Friction of Additive in the Bulk and Chain Graft Surface Density through a Diffusion Process: Erucamide–Stearyl Erucamide
Mixtures in Polypropylene Films. J. Vinyl Addit. Technol. 2021, 27, 459–466. Available online: https://onlinelibrary.wiley.com/
doi/10.1002/vnl.21820 (accessed on 11 August 2022). [CrossRef] | |
| dc.relation | 28. Kawamura, Y.; Miura, M.; Sugita, T.; Yamada, T.; Takeda, M. Simultaneous Determination of Antioxidants and Ultraviolet
Stabilizers in Polyethylene by HPLC. J. Food Hyg. Soc. Jpn. 1996, 37, 272–279. [CrossRef] | |
| dc.relation | 29. Kawamura, Y.; Miura, M.; Sugita, T.; Yamada, T.; Takeda, M. Simultaneous Determination of Polymer Additives in Polyethylene
by GC/MS. J. Food Hyg. Soc. Jpn. 1997, 38, 307–318. [CrossRef] | |
| dc.relation | 30. Kawamura, Y.; Yonezawa, R.; Maehara, T.; Yamada, T. Determination of additives in food contact polypropylene. J. Food Hyg. Soc.
Jpn. 1997, 41, 154. [CrossRef] | |
| dc.relation | 31. Vandenburg, H.; Clifford, A.; Bartle, K.; Carroll, J.; Newton, I.; Garden, L.; Dean, J.; Costley, C. Critical Review: Analytical
Extraction of Additives from Polymers. Analyst 1997, 122, 101–115. [CrossRef] | |
| dc.relation | 32. Roosen, M.; De Somer, T.; Demets, R.; Ugduler, S.; Meesseman, V.; Gorp, B.; Ragaert, K.; Van Geem, K.; Walgraeve, C.;
Dumoulin, A.; et al. Towards a Better Understanding of Odor Removal from Post-Consumer Plastic Film Waste: A Kinetic Study
on Deodorization Efficiencies with Different Washing Media. Waste Manag. 2020, 120, 564–575. [CrossRef] [PubMed] | |
| dc.relation | 33. Odor Removal—An Overview | ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/engineering/
odor-removal (accessed on 11 August 2022). | |
| dc.relation | 34. Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and Elimination of Substituted Synthetic Phenols
and Volatile Organic Compounds in the Wastewater Treatment Plant during the Production of Industrial Scale Polypropylene.
Chemosphere 2021, 263, 128027. [CrossRef] [PubMed] | |
| dc.relation | 35. Fernández, J.H.; Guerra, Y.; Cano, H. Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in Petrochemical
Complexes Producing Polypropylene in South America. Molecules 2022, 27, 4832. [CrossRef] [PubMed] | |
| dc.relation | 36. Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and Validation of a Methodology for Quantifying Partsper-Billion Levels of Arsine and Phosphine in Nitrogen, Hydrogen and Liquefied Petroleum Gas Using a Variable Pressure
Sampler Coupled to Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2021, 1637, 461833. [CrossRef] | |
| dc.relation | 37. Hernández Fernández, J.; Cano, H.; Guerra, Y.; Puello Polo, E.; Ríos-Rojas, J.F.; Vivas-Reyes, R.; Oviedo, J. Identification
and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC).
Sustainability 2022, 14, 4920. [CrossRef] | |
| dc.relation | 38. Hernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis
and Final Properties of Polypropylene. Polymers 2022, 14, 3123. [CrossRef] | |
| dc.relation | 39. Hernández-Fernández, J.; López-Martínez, J. Experimental Study of the Auto-Catalytic Effect of Triethylaluminum and TiCl4
Residuals at the Onset of Non-Additive Polypropylene Degradation and Their Impact on Thermo-Oxidative Degradation and
Pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052. [CrossRef] | |
| dc.relation | 40. Hernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with
Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379. [CrossRef] | |
| dc.relation | 41. Standard Test Method for Static and Kinetic Coefficients of Friction of Plastic Film and Sheeting. Available online:
https://www.astm.org/d1894-08.html (accessed on 11 August 2022). | |
| dc.relation | 42. Joshi, N.B.; Hirt, D.E. Evaluating Bulk-to-Surface Partitioning of Erucamide in LLDPE Films Using FT-IR Microspectroscopy.
Appl. Spectrosc. 1999, 53, 11–16. [CrossRef] | |
| dc.relation | 43. Huang, Y.; Xiong, Y.; Liu, C.; Li, L.; Xu, D.; Lin, Y.-H.; Nan, C.-W. Single-Crystalline 2D Erucamide with Low Friction and
Enhanced Thermal Conductivity. Colloids Surf. Physicochem. Eng. Asp. 2018, 540, 29–35. [CrossRef] | |
| dc.relation | 44. Har-Even, E.; Brown, A.; Meletis, E.I. Effect of Friction on the Microstructure of Compacted Solid Additive Blends for Polymers.
Wear 2015, 328–329, 160–166. [CrossRef] | |
| dc.relation | 45. Soliman, M.; Essers, F.E.J.; Degenhart, P. Scratch-Resistant Moulded Article Made from a Filled Polypropylene Composition. U.S.
Patent US8163378B2, 19 November 2009. | |
| dc.relation | 16 | |
| dc.relation | 1 | |
| dc.relation | 2 | |
| dc.relation | 15 | |
| dc.rights | © 2023 by the authors. Licensee MDPI, Basel, Switzerland. | |
| dc.rights | Atribución 4.0 Internacional (CC BY 4.0) | |
| dc.rights | https://creativecommons.org/licenses/by/4.0/ | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.rights | http://purl.org/coar/access_right/c_abf2 | |
| dc.source | https://www.mdpi.com/2071-1050/15/2/1247 | |
| dc.subject | Erucamide | |
| dc.subject | Polypropylene | |
| dc.subject | Coefficient of friction | |
| dc.subject | Recovery | |
| dc.subject | Wastewater | |
| dc.title | Recovery of (z)-13-docosenamide from industrial wastewater and its application in the production of virgin polypropylene to improve the coefficient of friction in film type applications | |
| dc.type | Artículo de revista | |
| dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
| dc.type | Text | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | http://purl.org/redcol/resource_type/ART | |
| dc.type | info:eu-repo/semantics/publishedVersion | |
| dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |