dc.creator | dos Reis, Glaydson S. | |
dc.creator | Schnorr, Carlos Eduardo | |
dc.creator | Dotto, Guilherme Luiz | |
dc.creator | Vieillard, Julien | |
dc.creator | Netto, Matias S. | |
dc.creator | Silva Oliveira, Luis Felipe | |
dc.creator | De Brum, Irineu A. S. | |
dc.creator | Thyrel, Mikael | |
dc.creator | Lima, Éder C. | |
dc.creator | Lassi, Ulla | |
dc.date | 2023-09-18T16:17:45Z | |
dc.date | 2024 | |
dc.date | 2023-09-18T16:17:45Z | |
dc.date | 2023 | |
dc.date.accessioned | 2023-10-03T19:40:20Z | |
dc.date.available | 2023-10-03T19:40:20Z | |
dc.identifier | dos Reis, G.S., Schnorr, C.E., Dotto, G.L. et al. Wood waste-based functionalized natural hydrochar for the effective removal of Ce(III) ions from aqueous solution. Environ Sci Pollut Res 30, 64067–64077 (2023). https://doi.org/10.1007/s11356-023-26921-6 | |
dc.identifier | 0944-1344 | |
dc.identifier | https://hdl.handle.net/11323/10494 | |
dc.identifier | 10.1007/s11356-023-26921-6 | |
dc.identifier | 1614-7499 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9171262 | |
dc.description | In this study, a sustainable and easily prepared hydrochar from wood waste was studied to adsorb and recover the rare earth element cerium (Ce(III)) from an aqueous solution. The results revealed that the hydrochar contains several surface functional groups (e.g., C–O, C = O, OH, COOH), which largely influenced its adsorption capacity. The effect of pH strongly influenced the Ce(III) removal, achieving its maximum removal efficiency at pH 6.0 and very low adsorption capacity under an acidic solution. The hydrochar proved to be highly efficient in Ce(III) adsorption reaching a maximum adsorption capacity of 327.9 mg g−1 at 298 K. The kinetic and equilibrium process were better fitted by the general order and Liu isotherm model, respectively. Possible mechanisms of Ce(III) adsorption on the hydrochar structure could be explained by electrostatic interactions and chelation between surface functional groups and the Ce(III). Furthermore, the hydrochar exhibited an excellent regeneration capacity upon using 1 mol L−1 of sulfuric acid (H2SO4) as eluent, and it was reused for three cycles without losing its adsorption performance. This research proposes a sustainable approach for developing an efficient adsorbent with excellent physicochemical and adsorption properties for Ce(III) removal. | |
dc.format | 1 página | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Springer Science + Business Media | |
dc.publisher | Germany | |
dc.relation | Environmental Science and Pollution Research | |
dc.relation | Azzaz AA, Khiari B, Jellali S, Ghimbeu CM, Jeguirim M (2020) Hydrochars production, characterization and application for wastewater treatment: a review. Renew Sustain Energy Rev 127:109882. https://doi.org/10.1016/j.rser.2020.109882 | |
dc.relation | Balaram V (2019) Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci Front 10:1285–1303. https://doi.org/10.1016/j.gsf.2018.12.005 | |
dc.relation | Behdani FN, Rafsanjani AT, Torab-Mostaedi M, Mohammadpour SMAK (2013) Adsorption ability of oxidized multi-walled carbon nanotubes towards aqueous Ce(III) and Sm(III). Korean J Chem Eng 30:448–455. https://doi.org/10.1007/s11814-012-0126-9 | |
dc.relation | Bhatnagar A, Kaczala F, Hogland W et al (2014) Valorization of solid waste products from the olive oil industry as potential adsorbents for water pollution control—a review. Environ Sci Pollut Res 21:268–298. https://doi.org/10.1007/s11356-013-2135-6 | |
dc.relation | Cimirro NFGM, Lima EC, Cunha MR, Thue PS, Grimm A, dos Reis GS, Rabiee N, Saeb MR, Keivanimehr F, Habibzadeh S (2022) Removal of diphenols using pine biochar. Kinetics, equilibrium, thermodynamics, and mechanism of uptake. J Mol Liq 364:119979. https://doi.org/10.1016/j.molliq.2022.119979 | |
dc.relation | Cunha MR, Lima EC, Lima DR, da Silva RS, Thue PS, Seliem MK, Sher F, dos Reis GS, Larsson SH (2020) Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: use of activated carbon derived from Butia catarinensis. J Environ Chem Eng 8:1–9. https://doi.org/10.1016/j.jece.2020.104506 | |
dc.relation | Dos Reis GS, Larsson SH, Mathieu M, Thyrel M, Tung P (2021a) Application of design of experiments (DoE) for optimised production of micro-and mesoporous Norway spruce bark activated carbons. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01917-9 | |
dc.relation | Dos Reis GS, de Oliveira HP, Larsson SH, Thyrel M, Lima EC (2021) A short review on the electrochemical performance of hierarchical and nitrogen-doped activated biocarbon-based electrodes for supercapacitors. Nanomaterials 11:424. https://doi.org/10.3390/nano11020424 | |
dc.relation | dos Reis GS, Guy M, Mathieu M, Jebrane M, Lima EC, Thyrel M, Dotto GL, Larsson SH (2022a) A comparative study of chemical treatment by MgCl2, ZnSO4, ZnCl2, and KOH on physicochemical properties and acetaminophen adsorption performance of biobased porous materials from tree bark residues. Colloids Surf A: Physicochem Eng Aspects 642:1–13. https://doi.org/10.1016/j.colsurfa.2022.128626 | |
dc.relation | dos Reis GS, Pinto D, Lima ÉC, Knani S, Grimm A, Silva LF, Cadaval TR, Dotto GL (2022b) Lanthanum uptake from water using chitosan with different configurations. React Funct Polym 180:105395. https://doi.org/10.1016/j.reactfunctpolym.2022.105395 | |
dc.relation | dos Reis GS, Subramaniyam CM, Cárdenas AD, Larsson SH, Thyrel M, Ulla Lassi F, García-Alvarado, (2022c) Facile synthesis of sustainable activated biochars with different pore structures as efficient additive-carbon-free anodes for lithium- and sodium-ion batteries. ACS Omega 7:42570–42581. https://doi.org/10.1021/acsomega.2c06054 | |
dc.relation | Feitoza US, Thue PS, Lima EC, dos Reis GS, Rabiee N, de Alencar WS, Mello BL, Dehmani Y, Rinklebe J, Dias SLP (2022) Use of biochar prepared from the açaí seed as adsorbent for the uptake of catechol from synthetic effluents. Molecules 27:7570. https://doi.org/10.3390/molecules27217570 | |
dc.relation | Feng Y, Sun H, Han L, Xue L, Chen Y, Yang L, Xing B (2019) Fabrication of hydrochar based on food waste (FWHTC) and its application in aqueous solution rare earth ions adsorptive removal: process, mechanisms and disposal methodology. J Clean Prod 212:1423–1433. https://doi.org/10.1016/j.jclepro.2018.12.094 | |
dc.relation | Fernandez V (2017) Rare-earth elements market: a historical and financial perspective. Resour Policy 53:26–45. https://doi.org/10.1016/j.resourpol.2017.05.010 | |
dc.relation | Gaete J, Molina L, Valenzuela F, Basualto C (2021) Recovery of lanthanum, praseodymium, and samarium by adsorption using magnetic nanoparticles functionalized with a phosphonic group. Hydrometallurgy 203:105698. https://doi.org/10.1016/j.hydromet.2021.105698 | |
dc.relation | Georgin J, Franco DSP, Grassi P, Tonato D, Piccilli DGA, Meili L, Dotto GL (2019) Potential of Cedrella fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents. Environ Sci Pollut Res 26:19207–19219. https://doi.org/10.1007/s11356-019-05321-9 | |
dc.relation | Georgin J, Franco DSP, Netto MS, Allasia D, Oliveira MLS, Dotto GL (2020) Treatment of water containing methylene by biosorption using Brazilian berry seeds (Eugenia uniflora). Environ Sci Pollut Res 27:20831–20843. https://doi.org/10.1007/s11356-020-08496-8 | |
dc.relation | González-Hourcade M, Simoes dos Reis G, Grimm A, Dinh VM, Lima EC, Larsson SH, Gentili FG (2022) Microalgae biomass as a sustainable precursor to produce nitrogen-doped biochar for efficient removal of emerging pollutants from aqueous media. J Clean Prod 348:131280. https://doi.org/10.1016/j.jclepro.2022.131280 | |
dc.relation | Guy M, Mathieu M, Anastopoulos IP, Martínez MG, Rousseau F, Dotto GL, de Oliveira HP, Lima EC, Thyrel M, Larsson SH, dos Reis GS (2022) Process parameters optimization, characterization, and application of KOH-activated Norway spruce bark graphitic biochars for efficient azo dye adsorption. Molecules 27:1–25. https://doi.org/10.3390/molecules27020456 | |
dc.relation | Huang T, Zhang S-W, Xie J, Zhou L, Liu L-F (2021) Effective adsorption of quadrivalent cerium by synthesized lauryl sulfonate green rust in a central composite design. J Environ Sci 107:14–25 | |
dc.relation | Iftekhar S, Srivastava V, Sillanpää M (2017) Synthesis and application of LDH intercalated cellulose nanocomposite for separation of rare earth elements (REEs). Chem Eng J 309:130–139. https://doi.org/10.1016/j.cej.2016.10.028 | |
dc.relation | Jiang L, Sheng L, Fan Z (2018) Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci China Mater 61:133–158. https://doi.org/10.1007/s40843-017-9169-4 | |
dc.relation | Kabir MM, Ferdousi S, Rahman MM, Uddin MK (2019) Chromium (VI) removal efficacy from aqueous solution by modified tea wastes-polyvinyl alcohol (TW-PVA) composite adsorbent. Desalin Water Treat 174:311–323 | |
dc.relation | Kabir MM, Mouna SSP, Akter S, Khandaker S, Didar-ul-Alam M, Bahadur NM, Mohinuzzaman M, Islam MA, Shenashen MA (2021) Tea waste based natural adsorbent for toxic pollutant removal from waste samples. J Mol Liq 322:115012. https://doi.org/10.1016/j.molliq.2020.115012 | |
dc.relation | Kabir MM, Akter MM, Khandaker S, Gilroyed BH, Didar-ul-Alam M, Hakim M, Awual MR (2022a) Highly effective agro-waste based functional green adsorbents for toxic chromium(VI) ion removal from wastewater. J Mol Liq 347:118327. https://doi.org/10.1016/j.molliq.2021.118327 | |
dc.relation | Kabir MM, Alam F, Akter MM, Gilroyed BH, Didar-ul-Alam M, Tijing L, Shon HK (2022b) Highly effective water hyacinth (Eichhornia crassipes) waste-based functionalized sustainable green adsorbents for antibiotic remediation from wastewater. Chemosphere 304:135293. https://doi.org/10.1016/j.chemosphere.2022.135293 | |
dc.relation | Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253. https://doi.org/10.1021/es9031419 | |
dc.relation | Khoshbouy R, Takahashi F, Yoshikawa K (2019) Preparation of high surface area sludge-based activated hydrochar via hydrothermal carbonization and application in the removal of basic dye. Environ Res 175:457–467. https://doi.org/10.1016/j.envres.2019.04.002 | |
dc.relation | Kütahyali C, Sert S, Cetinkaya B, Inan S, Eral M (2010) Factors affecting lanthanum and cerium biosorption on Pinus brutia leaf powder. Sep Sci Technol 45:1456–1462. https://doi.org/10.1080/01496391003674266 | |
dc.relation | Kütahyali C, Sert S, Cetinkaya B, Yalcintas E, Acar MB (2012) Biosorption of Ce(III) onto modified Pinus brutia leaf powder using central composite design. Wood Sci Technol 46:721–736. https://doi.org/10.1007/s00226-011-0437-8 | |
dc.relation | Li D, Cui H, Cheng Y, Xue L, Wang B, He H, Hua Y, Chu Q, Feng Y, Yang L (2021) Chemical aging of hydrochar improves the Cd2+ adsorption capacity from aqueous solution. Environ Pollut 287:117562 | |
dc.relation | Li B, Liu JL, Xu H (2022) Synthesis of polyaminophosphonated-functionalized hydrochar for efficient sorption of Pb(II). Environ Sci Pollut Res 29:49808–49815. https://doi.org/10.1007/s11356-022-19350-4 | |
dc.relation | Lima ÉC, Pinto D, Schadeck Netto M, Dos Reis GS, Silva LFO, Dotto GL (2022b) Biosorption of Neodymium (Nd) from aqueous solutions using Spirulina platensis sp. Strains Polymers 14(21):4585. https://doi.org/10.3390/polym14214585 | |
dc.relation | Lima EC, Naushad M, dos Reis GS, Dotto GL, Pavan FA, Guleria A, Seliem MK, Sher F (2022a) Production of carbon-based adsorbents from lignocellulosic biomass. In Biomass-derived materials for environmental applications; Anastopoulos I, Lima EC, Meili L, Giannakoudakis DA (Eds.) Elsevier: Amsterdam, The Netherlands, 2022a; pp. 169–191. ISBN 978–0–323–91914–2 | |
dc.relation | Lütke SF, Oliveira MLS, Waechter SR, Silva LFO, Cadaval TRS Jr, Duarte FA, Dotto GL (2022) Leaching of rare earth elements from phosphogypsum. Chemosphere 301:134661. https://doi.org/10.1016/j.chemosphere.2022.134661 | |
dc.relation | Najafi Lahiji M, Keshtkar AR, Moosavian MA (2018) Adsorption of cerium and lanthanum from aqueous solutions by chitosan/polyvinyl alcohol/3- mercaptopropyltrimethoxysilane beads in batch and fixed-bed systems. Part Sci Technol 36:340–350. https://doi.org/10.1080/02726351.2016.1248262 | |
dc.relation | Netto MS, Georgin J, Franco DSP et al (2022) Effective adsorptive removal of atrazine herbicide in river waters by a novel hydrochar derived from Prunus serrulata bark. Environ Sci Pollut Res 29:3672–3685. https://doi.org/10.1007/s11356-021-15366-4 | |
dc.relation | Taelman SE, Tonini D, Wandl A, Dewulf J (2018) A holistic sustainability framework for waste management in European cities: concept development. Sustainability 10:2184. https://doi.org/10.3390/su10072184 | |
dc.relation | Teixeira RA, Lima EC, Benetti AD, Thue PS, Cunha MR, Cimirro NFGM, Sher F, Dehghani MH, dos Reis GS, Dotto GL (2021) Preparation of hybrids of wood sawdust with 3-aminopropyltriethoxysilane. Application as an adsorbent to remove Reactive Blue 4 dye from wastewater effluents. J Taiwan Inst Chem Eng 125:141–152. https://doi.org/10.1016/j.jtice.2021.06.007 | |
dc.relation | Varsihini C, Das JS, Das DN (2015) Recovery of cerium (III) from electronic industry effluent using novel biohydrogel: batch and column studies. Pharm Lett 7:166–179 | |
dc.relation | Wang T, Zhai Y, Zhu Y, Li C, Zeng G (2018) A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew Sust Energ Rev 90:223–247. https://doi.org/10.1016/j.rser.2018.03.071 | |
dc.relation | Xiao K, Liu H, Li Y, Yang G, Wang Y, Yao H (2020) Excellent performance of porous carbon from urea-assisted hydrochar of orange peel for toluene and iodine adsorption. Chem Eng J 382:122997. https://doi.org/10.1016/j.cej.2019.122997 | |
dc.relation | Yamil YL, Georgin J, dos Reis GS et al (2020) Utilization of Pacara Earpod tree (Enterolobium contortisilquum) and Ironwood (Caesalpinia leiostachya) seeds as low-cost biosorbents for removal of basic fuchsin. Environ Sci Pollut Res 27:33307–33320. https://doi.org/10.1007/s11356-020-09471-z | |
dc.relation | Yan W, Zhang H, Sheng K, Mustafa AM, Yu Y (2018) Evaluation of engineered hydrochar from KMnO4 treated bamboo residues: physicochemical properties, hygroscopic dynamics, and morphology. Bioresour Technol 250:806–811. https://doi.org/10.1016/j.biortech.2017.11.052 | |
dc.relation | Zhao F, Repo E, Meng Y, Wang X, Yin D, Sillanpää M (2016) An EDTA- -cyclodextrin material for the adsorption of rare earth elements and its application in preconcentration of rare earth elements in seawater. J Colloid Interface Sci 465:215–224 | |
dc.relation | Zhou S, Li X, Shi Y, Alshameri A, Yan C (2015) Preparation, characterization, and Ce(III) adsorption performance of poly(allylamine)/silica composite. Desalin Water Treat 56:1321–1334. https://doi.org/10.1080/19443994.2014.944221 | |
dc.relation | 64077 | |
dc.relation | 64067 | |
dc.relation | 30 | |
dc.rights | © 2023 Springer Nature | |
dc.rights | Atribución 4.0 Internacional (CC BY 4.0) | |
dc.rights | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.source | https://link.springer.com/article/10.1007/s11356-023-26921-6 | |
dc.subject | Wood waste | |
dc.subject | Hydrochar | |
dc.subject | Sustainable material | |
dc.subject | Rare earth element | |
dc.subject | Cerium | |
dc.subject | Adsorption | |
dc.subject | Recovery | |
dc.title | Wood waste-based functionalized natural hydrochar for the effective removal of Ce(III) ions from aqueous solution | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |