dc.creatordos Reis, Glaydson S.
dc.creatorSchnorr, Carlos Eduardo
dc.creatorDotto, Guilherme Luiz
dc.creatorVieillard, Julien
dc.creatorNetto, Matias S.
dc.creatorSilva Oliveira, Luis Felipe
dc.creatorDe Brum, Irineu A. S.
dc.creatorThyrel, Mikael
dc.creatorLima, Éder C.
dc.creatorLassi, Ulla
dc.date2023-09-18T16:17:45Z
dc.date2024
dc.date2023-09-18T16:17:45Z
dc.date2023
dc.date.accessioned2023-10-03T19:40:20Z
dc.date.available2023-10-03T19:40:20Z
dc.identifierdos Reis, G.S., Schnorr, C.E., Dotto, G.L. et al. Wood waste-based functionalized natural hydrochar for the effective removal of Ce(III) ions from aqueous solution. Environ Sci Pollut Res 30, 64067–64077 (2023). https://doi.org/10.1007/s11356-023-26921-6
dc.identifier0944-1344
dc.identifierhttps://hdl.handle.net/11323/10494
dc.identifier10.1007/s11356-023-26921-6
dc.identifier1614-7499
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171262
dc.descriptionIn this study, a sustainable and easily prepared hydrochar from wood waste was studied to adsorb and recover the rare earth element cerium (Ce(III)) from an aqueous solution. The results revealed that the hydrochar contains several surface functional groups (e.g., C–O, C = O, OH, COOH), which largely influenced its adsorption capacity. The effect of pH strongly influenced the Ce(III) removal, achieving its maximum removal efficiency at pH 6.0 and very low adsorption capacity under an acidic solution. The hydrochar proved to be highly efficient in Ce(III) adsorption reaching a maximum adsorption capacity of 327.9 mg g−1 at 298 K. The kinetic and equilibrium process were better fitted by the general order and Liu isotherm model, respectively. Possible mechanisms of Ce(III) adsorption on the hydrochar structure could be explained by electrostatic interactions and chelation between surface functional groups and the Ce(III). Furthermore, the hydrochar exhibited an excellent regeneration capacity upon using 1 mol L−1 of sulfuric acid (H2SO4) as eluent, and it was reused for three cycles without losing its adsorption performance. This research proposes a sustainable approach for developing an efficient adsorbent with excellent physicochemical and adsorption properties for Ce(III) removal.
dc.format1 página
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherSpringer Science + Business Media
dc.publisherGermany
dc.relationEnvironmental Science and Pollution Research
dc.relationAzzaz AA, Khiari B, Jellali S, Ghimbeu CM, Jeguirim M (2020) Hydrochars production, characterization and application for wastewater treatment: a review. Renew Sustain Energy Rev 127:109882. https://doi.org/10.1016/j.rser.2020.109882
dc.relationBalaram V (2019) Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci Front 10:1285–1303. https://doi.org/10.1016/j.gsf.2018.12.005
dc.relationBehdani FN, Rafsanjani AT, Torab-Mostaedi M, Mohammadpour SMAK (2013) Adsorption ability of oxidized multi-walled carbon nanotubes towards aqueous Ce(III) and Sm(III). Korean J Chem Eng 30:448–455. https://doi.org/10.1007/s11814-012-0126-9
dc.relationBhatnagar A, Kaczala F, Hogland W et al (2014) Valorization of solid waste products from the olive oil industry as potential adsorbents for water pollution control—a review. Environ Sci Pollut Res 21:268–298. https://doi.org/10.1007/s11356-013-2135-6
dc.relationCimirro NFGM, Lima EC, Cunha MR, Thue PS, Grimm A, dos Reis GS, Rabiee N, Saeb MR, Keivanimehr F, Habibzadeh S (2022) Removal of diphenols using pine biochar. Kinetics, equilibrium, thermodynamics, and mechanism of uptake. J Mol Liq 364:119979. https://doi.org/10.1016/j.molliq.2022.119979
dc.relationCunha MR, Lima EC, Lima DR, da Silva RS, Thue PS, Seliem MK, Sher F, dos Reis GS, Larsson SH (2020) Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: use of activated carbon derived from Butia catarinensis. J Environ Chem Eng 8:1–9. https://doi.org/10.1016/j.jece.2020.104506
dc.relationDos Reis GS, Larsson SH, Mathieu M, Thyrel M, Tung P (2021a) Application of design of experiments (DoE) for optimised production of micro-and mesoporous Norway spruce bark activated carbons. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01917-9
dc.relationDos Reis GS, de Oliveira HP, Larsson SH, Thyrel M, Lima EC (2021) A short review on the electrochemical performance of hierarchical and nitrogen-doped activated biocarbon-based electrodes for supercapacitors. Nanomaterials 11:424. https://doi.org/10.3390/nano11020424
dc.relationdos Reis GS, Guy M, Mathieu M, Jebrane M, Lima EC, Thyrel M, Dotto GL, Larsson SH (2022a) A comparative study of chemical treatment by MgCl2, ZnSO4, ZnCl2, and KOH on physicochemical properties and acetaminophen adsorption performance of biobased porous materials from tree bark residues. Colloids Surf A: Physicochem Eng Aspects 642:1–13. https://doi.org/10.1016/j.colsurfa.2022.128626
dc.relationdos Reis GS, Pinto D, Lima ÉC, Knani S, Grimm A, Silva LF, Cadaval TR, Dotto GL (2022b) Lanthanum uptake from water using chitosan with different configurations. React Funct Polym 180:105395. https://doi.org/10.1016/j.reactfunctpolym.2022.105395
dc.relationdos Reis GS, Subramaniyam CM, Cárdenas AD, Larsson SH, Thyrel M, Ulla Lassi F, García-Alvarado, (2022c) Facile synthesis of sustainable activated biochars with different pore structures as efficient additive-carbon-free anodes for lithium- and sodium-ion batteries. ACS Omega 7:42570–42581. https://doi.org/10.1021/acsomega.2c06054
dc.relationFeitoza US, Thue PS, Lima EC, dos Reis GS, Rabiee N, de Alencar WS, Mello BL, Dehmani Y, Rinklebe J, Dias SLP (2022) Use of biochar prepared from the açaí seed as adsorbent for the uptake of catechol from synthetic effluents. Molecules 27:7570. https://doi.org/10.3390/molecules27217570
dc.relationFeng Y, Sun H, Han L, Xue L, Chen Y, Yang L, Xing B (2019) Fabrication of hydrochar based on food waste (FWHTC) and its application in aqueous solution rare earth ions adsorptive removal: process, mechanisms and disposal methodology. J Clean Prod 212:1423–1433. https://doi.org/10.1016/j.jclepro.2018.12.094
dc.relationFernandez V (2017) Rare-earth elements market: a historical and financial perspective. Resour Policy 53:26–45. https://doi.org/10.1016/j.resourpol.2017.05.010
dc.relationGaete J, Molina L, Valenzuela F, Basualto C (2021) Recovery of lanthanum, praseodymium, and samarium by adsorption using magnetic nanoparticles functionalized with a phosphonic group. Hydrometallurgy 203:105698. https://doi.org/10.1016/j.hydromet.2021.105698
dc.relationGeorgin J, Franco DSP, Grassi P, Tonato D, Piccilli DGA, Meili L, Dotto GL (2019) Potential of Cedrella fissilis bark as an adsorbent for the removal of red 97 dye from aqueous effluents. Environ Sci Pollut Res 26:19207–19219. https://doi.org/10.1007/s11356-019-05321-9
dc.relationGeorgin J, Franco DSP, Netto MS, Allasia D, Oliveira MLS, Dotto GL (2020) Treatment of water containing methylene by biosorption using Brazilian berry seeds (Eugenia uniflora). Environ Sci Pollut Res 27:20831–20843. https://doi.org/10.1007/s11356-020-08496-8
dc.relationGonzález-Hourcade M, Simoes dos Reis G, Grimm A, Dinh VM, Lima EC, Larsson SH, Gentili FG (2022) Microalgae biomass as a sustainable precursor to produce nitrogen-doped biochar for efficient removal of emerging pollutants from aqueous media. J Clean Prod 348:131280. https://doi.org/10.1016/j.jclepro.2022.131280
dc.relationGuy M, Mathieu M, Anastopoulos IP, Martínez MG, Rousseau F, Dotto GL, de Oliveira HP, Lima EC, Thyrel M, Larsson SH, dos Reis GS (2022) Process parameters optimization, characterization, and application of KOH-activated Norway spruce bark graphitic biochars for efficient azo dye adsorption. Molecules 27:1–25. https://doi.org/10.3390/molecules27020456
dc.relationHuang T, Zhang S-W, Xie J, Zhou L, Liu L-F (2021) Effective adsorption of quadrivalent cerium by synthesized lauryl sulfonate green rust in a central composite design. J Environ Sci 107:14–25
dc.relationIftekhar S, Srivastava V, Sillanpää M (2017) Synthesis and application of LDH intercalated cellulose nanocomposite for separation of rare earth elements (REEs). Chem Eng J 309:130–139. https://doi.org/10.1016/j.cej.2016.10.028
dc.relationJiang L, Sheng L, Fan Z (2018) Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci China Mater 61:133–158. https://doi.org/10.1007/s40843-017-9169-4
dc.relationKabir MM, Ferdousi S, Rahman MM, Uddin MK (2019) Chromium (VI) removal efficacy from aqueous solution by modified tea wastes-polyvinyl alcohol (TW-PVA) composite adsorbent. Desalin Water Treat 174:311–323
dc.relationKabir MM, Mouna SSP, Akter S, Khandaker S, Didar-ul-Alam M, Bahadur NM, Mohinuzzaman M, Islam MA, Shenashen MA (2021) Tea waste based natural adsorbent for toxic pollutant removal from waste samples. J Mol Liq 322:115012. https://doi.org/10.1016/j.molliq.2020.115012
dc.relationKabir MM, Akter MM, Khandaker S, Gilroyed BH, Didar-ul-Alam M, Hakim M, Awual MR (2022a) Highly effective agro-waste based functional green adsorbents for toxic chromium(VI) ion removal from wastewater. J Mol Liq 347:118327. https://doi.org/10.1016/j.molliq.2021.118327
dc.relationKabir MM, Alam F, Akter MM, Gilroyed BH, Didar-ul-Alam M, Tijing L, Shon HK (2022b) Highly effective water hyacinth (Eichhornia crassipes) waste-based functionalized sustainable green adsorbents for antibiotic remediation from wastewater. Chemosphere 304:135293. https://doi.org/10.1016/j.chemosphere.2022.135293
dc.relationKeiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253. https://doi.org/10.1021/es9031419
dc.relationKhoshbouy R, Takahashi F, Yoshikawa K (2019) Preparation of high surface area sludge-based activated hydrochar via hydrothermal carbonization and application in the removal of basic dye. Environ Res 175:457–467. https://doi.org/10.1016/j.envres.2019.04.002
dc.relationKütahyali C, Sert S, Cetinkaya B, Inan S, Eral M (2010) Factors affecting lanthanum and cerium biosorption on Pinus brutia leaf powder. Sep Sci Technol 45:1456–1462. https://doi.org/10.1080/01496391003674266
dc.relationKütahyali C, Sert S, Cetinkaya B, Yalcintas E, Acar MB (2012) Biosorption of Ce(III) onto modified Pinus brutia leaf powder using central composite design. Wood Sci Technol 46:721–736. https://doi.org/10.1007/s00226-011-0437-8
dc.relationLi D, Cui H, Cheng Y, Xue L, Wang B, He H, Hua Y, Chu Q, Feng Y, Yang L (2021) Chemical aging of hydrochar improves the Cd2+ adsorption capacity from aqueous solution. Environ Pollut 287:117562
dc.relationLi B, Liu JL, Xu H (2022) Synthesis of polyaminophosphonated-functionalized hydrochar for efficient sorption of Pb(II). Environ Sci Pollut Res 29:49808–49815. https://doi.org/10.1007/s11356-022-19350-4
dc.relationLima ÉC, Pinto D, Schadeck Netto M, Dos Reis GS, Silva LFO, Dotto GL (2022b) Biosorption of Neodymium (Nd) from aqueous solutions using Spirulina platensis sp. Strains Polymers 14(21):4585. https://doi.org/10.3390/polym14214585
dc.relationLima EC, Naushad M, dos Reis GS, Dotto GL, Pavan FA, Guleria A, Seliem MK, Sher F (2022a) Production of carbon-based adsorbents from lignocellulosic biomass. In Biomass-derived materials for environmental applications; Anastopoulos I, Lima EC, Meili L, Giannakoudakis DA (Eds.) Elsevier: Amsterdam, The Netherlands, 2022a; pp. 169–191. ISBN 978–0–323–91914–2
dc.relationLütke SF, Oliveira MLS, Waechter SR, Silva LFO, Cadaval TRS Jr, Duarte FA, Dotto GL (2022) Leaching of rare earth elements from phosphogypsum. Chemosphere 301:134661. https://doi.org/10.1016/j.chemosphere.2022.134661
dc.relationNajafi Lahiji M, Keshtkar AR, Moosavian MA (2018) Adsorption of cerium and lanthanum from aqueous solutions by chitosan/polyvinyl alcohol/3- mercaptopropyltrimethoxysilane beads in batch and fixed-bed systems. Part Sci Technol 36:340–350. https://doi.org/10.1080/02726351.2016.1248262
dc.relationNetto MS, Georgin J, Franco DSP et al (2022) Effective adsorptive removal of atrazine herbicide in river waters by a novel hydrochar derived from Prunus serrulata bark. Environ Sci Pollut Res 29:3672–3685. https://doi.org/10.1007/s11356-021-15366-4
dc.relationTaelman SE, Tonini D, Wandl A, Dewulf J (2018) A holistic sustainability framework for waste management in European cities: concept development. Sustainability 10:2184. https://doi.org/10.3390/su10072184
dc.relationTeixeira RA, Lima EC, Benetti AD, Thue PS, Cunha MR, Cimirro NFGM, Sher F, Dehghani MH, dos Reis GS, Dotto GL (2021) Preparation of hybrids of wood sawdust with 3-aminopropyltriethoxysilane. Application as an adsorbent to remove Reactive Blue 4 dye from wastewater effluents. J Taiwan Inst Chem Eng 125:141–152. https://doi.org/10.1016/j.jtice.2021.06.007
dc.relationVarsihini C, Das JS, Das DN (2015) Recovery of cerium (III) from electronic industry effluent using novel biohydrogel: batch and column studies. Pharm Lett 7:166–179
dc.relationWang T, Zhai Y, Zhu Y, Li C, Zeng G (2018) A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew Sust Energ Rev 90:223–247. https://doi.org/10.1016/j.rser.2018.03.071
dc.relationXiao K, Liu H, Li Y, Yang G, Wang Y, Yao H (2020) Excellent performance of porous carbon from urea-assisted hydrochar of orange peel for toluene and iodine adsorption. Chem Eng J 382:122997. https://doi.org/10.1016/j.cej.2019.122997
dc.relationYamil YL, Georgin J, dos Reis GS et al (2020) Utilization of Pacara Earpod tree (Enterolobium contortisilquum) and Ironwood (Caesalpinia leiostachya) seeds as low-cost biosorbents for removal of basic fuchsin. Environ Sci Pollut Res 27:33307–33320. https://doi.org/10.1007/s11356-020-09471-z
dc.relationYan W, Zhang H, Sheng K, Mustafa AM, Yu Y (2018) Evaluation of engineered hydrochar from KMnO4 treated bamboo residues: physicochemical properties, hygroscopic dynamics, and morphology. Bioresour Technol 250:806–811. https://doi.org/10.1016/j.biortech.2017.11.052
dc.relationZhao F, Repo E, Meng Y, Wang X, Yin D, Sillanpää M (2016) An EDTA- -cyclodextrin material for the adsorption of rare earth elements and its application in preconcentration of rare earth elements in seawater. J Colloid Interface Sci 465:215–224
dc.relationZhou S, Li X, Shi Y, Alshameri A, Yan C (2015) Preparation, characterization, and Ce(III) adsorption performance of poly(allylamine)/silica composite. Desalin Water Treat 56:1321–1334. https://doi.org/10.1080/19443994.2014.944221
dc.relation64077
dc.relation64067
dc.relation30
dc.rights© 2023 Springer Nature
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourcehttps://link.springer.com/article/10.1007/s11356-023-26921-6
dc.subjectWood waste
dc.subjectHydrochar
dc.subjectSustainable material
dc.subjectRare earth element
dc.subjectCerium
dc.subjectAdsorption
dc.subjectRecovery
dc.titleWood waste-based functionalized natural hydrochar for the effective removal of Ce(III) ions from aqueous solution
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución