dc.relation | 1. Sessa L, Gatti E, Zeni F, Antonelli A, Catucci A, Koch M, Pompilio
G, Fritz G et al (2014) The receptor for advanced glycation endproducts (RAGE) is only present in mammals, and belongs to a
family of cell adhesion molecules (CAMs). PLoS One 9(1):
e86903. https://doi.org/10.1371/journal.pone.0086903
2. Chuah YK, Basir R, Talib H, Tie TH, Nordin N (2013) Receptor for
advanced glycation end products and its involvement in inflammatory diseases. Int J Inflamm 2013:403460. https://doi.org/10.1155/
2013/403460
3. Gasparotto J, Ribeiro CT, Bortolin RC, Somensi N, Rabelo TK,
Kunzler A, Souza NC, Pasquali MAB et al (2017) Targeted inhibition of RAGE in substantia nigra of rats blocks 6-OHDA-induced
dopaminergic denervation. Sci Rep 7(1):8795. https://doi.org/10.
1038/s41598-017-09257-3
4. Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, Love R,
Perry S et al (2012) A multimodal RAGE-specific inhibitor reduces
amyloid beta-mediated brain disorder in a mouse model of
Alzheimer disease. J Clin Invest 122(4):1377–1392. https://doi.
org/10.1172/jci58642
5. Buckley ST, Ehrhardt C (2010) The receptor for advanced glycation
end products (RAGE) and the lung. J Biomed Biotechnol 2010:
917108–917111. https://doi.org/10.1155/2010/917108
6. Fritz G (2011) RAGE: a single receptor fits multiple ligands. Trends
Biochem Sci 36(12):625–632. https://doi.org/10.1016/j.tibs.2011.
08.008
7. Gasiorowski K, Brokos B, Echeverria V, Barreto GE, Leszek J
(2018) RAGE-TLR crosstalk sustains chronic inflammation in neurodegeneration. Mol Neurobiol 55(2):1463–1476. https://doi.org/
10.1007/s12035-017-0419-4
8. Yamamoto Y, Harashima A, Saito H, Tsuneyama K, Munesue S,
Motoyoshi S, Han D, Watanabe T et al (2011) Septic shock is
associated with receptor for advanced glycation end products ligation of LPS. J Immunol 186(5):3248–3257. https://doi.org/10.4049/
jimmunol.1002253
9. Somensi N, Brum PO, de Miranda RV, Gasparotto J, Zanotto-Filho
A, Rostirolla DC, da Silva MM, Moreira JCF et al (2017)
Extracellular HSP70 activates ERK1/2, NF-kB and proinflammatory gene transcription through binding with RAGE in
A549 human lung cancer cells. Cell Physiol and Biochem 42(6):
2507–2522. https://doi.org/10.1159/000480213
10. Grunwald MS, Ligabue-Braun R, Souza CS, Heimfarth L, Verli H,
Gelain DP, Moreira JC (2017) Putative model for heat shock protein
70 complexation with receptor of advanced glycation end products
Mol Neurobiol
through fluorescence proximity assays and normal mode analyses.
Cell Stress Chaperones 22(1):99–111. https://doi.org/10.1007/
s12192-016-0746-9
11. Zhang H, Wang Y, Yan S, Du F, Wu L, Yan SS (2014) Genetic
deficiency of neuronal RAGE protects against AGE-induced synaptic injury. Cell Death Dis 5:e1288. https://doi.org/10.1038/cddis.
2014.248
12. McKenzie JA, Spielman LJ, Pointer CB, Lowry JR, Bajwa E, Lee
CW, Klegeris A (2017) Neuroinflammation as a common mechanism associated with the modifiable risk factors for Alzheimer’s and
Parkinson’s diseases. Curr Aging Sci 10(3):158–176. https://doi.
org/10.2174/1874609810666170315113244
13. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ,
Crews FT (2007) Systemic LPS causes chronic neuroinflammation
and progressive neurodegeneration. Glia 55(5):453–462. https://
doi.org/10.1002/glia.20467
14. Gasparotto J, Girardi CS, Somensi N, Ribeiro CT, Moreira JCF,
Michels M, Sonai B, Rocha M et al (2018) Receptor for advanced
glycation end products mediates sepsis-triggered amyloid-beta accumulation, Tau phosphorylation, and cognitive impairment. J Biol
Chem 293(1):226–244. https://doi.org/10.1074/jbc.M117.786756
15. Gasparotto J, Ribeiro CT, Bortolin RC, Somensi N, Fernandes HS,
Teixeira AA, Guasselli MOR, Agani C et al (2017) Anti-RAGE
antibody selectively blocks acute systemic inflammatory responses
to LPS in serum, liver, CSF and striatum. Brain Behav Immun 62:
124–136. https://doi.org/10.1016/j.bbi.2017.01.008
16. National Research Council (2011). Guide laboratory animals for the
care and use of eighth edition. Accessed: 05/31/2018. Available:
https://grants.nih.gov/grants/olaw/guide-for-the-care-and-use-oflaboratory-animals.pdf
17. Gasparotto J, Senger MR, Kunzler A, Degrossoli A, de Simone SG,
Bortolin RC, Somensi N, Girardi CS et al (2015) Increased tau
phosphorylation and receptor for advanced glycation endproducts
(RAGE) in the brain of mice infected with Leishmania
amazonensis. Brain Behav Immun 43:37–45. https://doi.org/10.
1016/j.bbi.2014.06.204
18. Gage GJ, Kipke DR, Shain W (2012) Whole animal perfusion
fixation for rodents. J Vis Exp 65. https://doi.org/10.3791/3564
19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of
protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.
1016/0003-2697(76)90527-3
20. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Elsevier
21. Ray R, Juranek JK, Rai V (2016) RAGE axis in neuroinflammation, neurodegeneration and its emerging role in the pathogenesis of
amyotrophic lateral sclerosis. Neurosci Biobehav Rev 62:48–55.
https://doi.org/10.1016/j.neubiorev.2015.12.006
22. Candela P, Gosselet F, Saint-Pol J, Sevin E, Boucau MC, Boulanger
E, Cecchelli R, Fenart L (2010) Apical-to-basolateral transport of
amyloid-beta peptides through blood-brain barrier cells is mediated
by the receptor for advanced glycation end-products and is
restricted by P-glycoprotein. J Alzheimers Dis 22(3):849–859.
https://doi.org/10.3233/JAD-2010-100462
23. Ding Q, Keller JN (2005) Evaluation of rage isoforms, ligands, and
signaling in the brain. Biochim Biophys Acta 1746(1):18–27.
https://doi.org/10.1016/j.bbamcr.2005.08.006
24. Song J, Lee WT, Park KA, Lee JE (2014) Receptor for advanced
glycation end products (RAGE) and its ligands: focus on spinal
cord injury. Int J Mol Sci 15(8):13172–13191. https://doi.org/10.
3390/ijms150813172
25. Wang L, Wu J, Guo X, Huang X, Huang Q (2017) RAGE plays a
role in LPS-induced NF-κB activation and endothelial
hyperpermeability. Sensors (Basel) 17(4). https://doi.org/10.3390/
s17040722
26. Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T,
Nagashima M, Morser J et al (2003) The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel
pathway for inflammatory cell recruitment. J Exp Med 198(10):
1507–1515. https://doi.org/10.1084/jem.20030800
27. Aronson D, Rayfield EJ (2002) How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol 1:1.
https://doi.org/10.1186/1475-2840-1-1
28. Avignone E, Lepleux M, Angibaud J, Nägerl UV (2015) Altered
morphological dynamics of activated microglia after induction of
status epilepticus. J Neuroinflammation 12:202. https://doi.org/10.
1186/s12974-015-0421-6
29. Luo XG, Chen SD (2012) The changing phenotype of microglia
from homeostasis to disease. Transl Neurodegener 1:9. https://doi.
org/10.1186/2047-9158-1-9
30. Gasparotto J, Girardi CS, Somensi N, Ribeiro CT, Moreira JCF,
Michels M, Sonai B, Rocha M et al (2018) Receptor for advanced
glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol
Chem 293(1):226–244. https://doi.org/10.1074/jbc.M117.786756
31. Lopresti ST, Brown BN (2015) Chapter 4 - Host response to naturally derived biomaterials. In: Badylak SF (ed) Host response to
biomaterials. Academic Press, Oxford, pp. 53–79
32. Ishihara K, Tsutsumi K, Kawane S, Nakajima M, Kasaoka T (2003)
The receptor for advanced glycation end-products (RAGE) directly
binds to ERK by a D-domain-like docking site. FEBS Lett 550(1–
3):107–113. https://doi.org/10.1016/S0014-5793(03)00846-9
33. Tobon-Velasco JC, Cuevas E, Torres-Ramos MA (2014)
Receptor for AGEs (RAGE) as mediator of NF-kB pathway
activation in neuroinflammation and oxidative stress. CNS
Neurol Disord Drug Targets 13(9):1615–1626. https://doi.
org/10.2174/1871527313666140806144831
34. Hoban DB, Connaughton E, Connaughton C, Hogan G, Thornton
C, Mulcahy P, Moloney TC, Dowd E (2013) Further characterization of the LPS model of Parkinson’s disease: a comparison of intranigral and intra-striatal lipopolysaccharide administration on motor
function, microgliosis and nigrostriatal neurodegeneration in the
rat. Brain Behav Immun 27(1):91–100. https://doi.org/10.1016/j.
bbi.2012.10.001 | |