dc.creatorHormeño-Holgadoa, Alberto J.
dc.creatorClemente Suárez, Vicente Javier
dc.date2019-06-05T13:12:05Z
dc.date2019-06-05T13:12:05Z
dc.date2019-05-23
dc.date.accessioned2023-10-03T19:39:50Z
dc.date.available2023-10-03T19:39:50Z
dc.identifierhttp://hdl.handle.net/11323/4788
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171178
dc.descriptionExtreme limits of the human body could be reached in air combat. We analysed 29 fighter pilots before and after offensive and defensive manoeuvres on heart rate (HR), heart rate variability, leg and hand strength, spirometry, temperature, blood oxygen saturation (BOS), lactate, hydration (USG), cortical activation, memory and psychological variables. The defensive manoeuvre produced a significative decrease in forced vital capacity from spirometry and USG post flight, a moderate effect in the decrease in cognitive anxiety and an increase in leg strength. A significant increase in mean HR and an increase with a large effect size was reported for Stress Subjective Perception and Rating of Perceived Exertion in both manoeuvres. With this data we can conclude that high level of physical fitness and specific training programs should be applied to fighter pilots.
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de la Costa
dc.relationhttps://doi.org/10.1016/j.physbeh.2019.112559
dc.relation[1] J. Sánchez-Molina, J.J. Robles-Pérez, V.J. Clemente-Suárez, Effect of parachute jump in the psychophysiological response of soldiers in urban combat, J. Med. Syst. 41 (2017), https://doi.org/10.1007/s10916-017-0749-9. [2] V.J. Clemente-Suárez, J.J. Robles-Pérez, Mechanical, physical, and physiological analysis of symmetrical and asymmetrical combat, J. Strength Cond. Res. 27 (2013) 2420–2426. [3] J. Sánchez-Molina, J.J. Robles-Pérez, V.J. Clemente-Suárez, Assessment of psychophysiological response and specific fine motor skills in combat units, J. Med. Syst. 42 (2018), https://doi.org/10.1007/s10916-018-0922-9. [4] M.W. Linakis, K.M. Job, X. Liu, et al., Riding (high) into the danger zone: a review of potential differences in chemical exposures in fighter pilots resulting from high altitude and G-forces, Expert Opin. Drug Metab. Toxicol. 13 (2017) 925–934, https://doi.org/10.1080/17425255.2017.1360867. [5] C. Lundby, J.A.L. Calbet, M. Sander, et al., Exercise economy does not change after acclimatization to moderate to very high altitude, Scand. J. Med. Sci. Sports 17 (2007) 281–291, https://doi.org/10.1111/j.1600-0838.2006.00530.x. [6] International Civil Aviation Organization I, Manual of Civil Aviation Medicine, (2012). [7] F.A. Petrassi, P.D. Hodkinson, P.L. Walters, S.J. Gaydos, Hypoxic hypoxia at moderate altitudes: review of the state of the science, Aviat. Sp Environ. Med. 83 (2012) 975–984, https://doi.org/10.3357/ASEM.3315.2012. [8] C. Neuhaus, J. Hinkelbein, Cognitive responses to hypobaric hypoxia: implications for aviation training, Psychol. Res. Behav. Manag. 7 (2014) 297–302, https://doi. org/10.2147/PRBM.S51844. [9] C.A. Rickards, D.G. Newman, G-induced visual and cognitive disturbances in a survey of 65 operational fighter pilots, Aviat. Sp. Environ. Med. 76 (2005) 496–500. [10] S. Guardiera, O. Bock, H. Pongratz, W. Krause, Acceleration effects on manual performance with isometric and displacement joysticks, Aviat. Sp Environ. Med. 78 (2007) 990–994, https://doi.org/10.3357/ASEM.2054.2007. [11] N.D.C. Green, L. Brown, Head positioning and neck muscle activation during air combat, Aviat. Sp Environ. Med. 75 (2004) 676–680. [12] E.M. Chumbley, A. Stolfi, J.C. McEachen, Risk factors for cervical pain in F-15C pilots, Aerosp. Med. Hum. Perform. 88 (2017) 1000–1007, https://doi.org/10. 3357/AMHP.4848.2017. [13] T. Honkanen, J. Oksa, M.J. Mäntysaari, et al., Neck and shoulder muscle activation among experienced and inexperienced pilots in +Gz exposure, Aerosp. Med. Hum. Perform. 88 (2017) 90–95, https://doi.org/10.3357/AMHP.4659.2017. [14] W.A. Bateman, I. Jacobs, F. Buick, Physical conditioning to enhance +Gz tolerance: issues and current understanding, Aviat. Sp. Environ. Med. 77 (2006) 573–580. [15] E. Slungaard, J. McLeod, N.D.C. Green, et al., Incidence of G-induced loss of consciousness and almost loss of consciousness in the Royal air Force, Aerosp. Med. Hum. Perform. 88 (2017) 550–555, https://doi.org/10.3357/AMHP.4752.2017. [16] M. Murray, B. Lange, B.R. Nørnberg, et al., Specific exercise training for reducing neck and shoulder pain among military helicopter pilots and crew members: a randomized controlled trial protocol, BMC Musculoskelet. Disord. 16 (2015) 1–11, https://doi.org/10.1186/s12891-015-0655-6. [17] M. Alricsson, K. Harms-Ringdahl, K. Schüldt, et al., Mobility, muscular strength and endurance in the cervical spine in Swedish air force pilots, Aviat. Sp Environ. Med. 72 (2001) 336–342. [18] V.J. Clemente-Suárez, R. Delgado-Moreno, B. González, et al., Amateur endurance triathletes' performance is improved independently of volume or intensity based training, Physiol. Behav. (2018), https://doi.org/10.1016/j.physbeh.2018.04.014. [19] L. Armstrong, J. Soto, F.J. Hacker, et al., Urinary indices during dehydration, exercise and rehydration, Occup. Heal. Ind. Med. 8 (1998) 345–355. [20] P. Belinchon-deMiguel, V.J. Clemente-Suárez, Psychophysiological, body composition, biomechanical and autonomic modulation analysis procedures in an Ultraendurance Mountain race, J. Med. Syst. 42 (2018), https://doi.org/10.1007/ s10916-017-0889-y. [21] R.H. Cox, M.P. Martens, W.D. Russell, Measuring anxiety in athletics: the revised competitive state anxiety inventory–2, J. Sport. Exerc. Psychol. 25 (2003) 519–533, https://doi.org/10.1123/jsep.25.4.519. [22] R. Delgado-Moreno, J.J. Robles-Pérez, V.J. Clemente-Suárez, Combat stress decreases memory of Warfighters in action, J. Med. Syst. 41 (2017) 1–7, https://doi. org/10.1007/s10916-017-0772-x. [23] J.W. Newcomer, S. Craft, T. Hershey, et al., Glucocorticoid-induced impairment in declarative memory performance in adult humans, J. Neurosci. 14 (1994) 2047–2053, https://doi.org/10.1523/JNEUROSCI.14-04-02047.1994. [24] V.J. Clemente-Suárez, R.J. Fernandes, J.J. Arroyo-Toledo, et al., Autonomic adaptation after traditional and reverse swimming training periodizations, Acta Physiol. Hung. 102 (2015) 105–113, https://doi.org/10.1556/APhysiol.102.2015.1.11. [25] A. Bustamante-Sánchez, V.M. Loarte-Herradón, J.F. Gallego-Saiz, et al., Psychophysiological response of fighter aircraft pilots in normobaric hypoxia training, Arch. Med. Del. Deport. 35 (2018) 99–102, https://doi.org/10.1080/ 00140139.2018.1510541. [26] O. Truszczyński, M. Wojtkowiak, M. Biernacki, K. Kowalczuk, The effect of hypoxia on the critical flicker fusion threshold in pilots, Int. J. Occup. Med. Environ. Health 22 (2009) 13–18, https://doi.org/10.2478/v10001-009-0002-y. [27] D.E. Vigo, S. Pérez Lloret, A.J. Videla, et al., Heart rate nonlinear dynamics during sudden hypoxia at 8230 m simulated altitude, Wilderness Environ Med. 21 (2010) 4–10, https://doi.org/10.1016/j.wem.2009.12.022. [28] V.J.C. Suárez, J.J.R. Pérez, Análisis de los marcadores fisiológicos, activación cortical y manifestaciones de la fuerza en una situación simulada de combate, Arch. Med. Del. Deport. 29 (2012) 680–686. [29] V.J. Clemente-Suarez, J.J. Robles-Perez, Psycho-physiological response of soldiers in urban combat, An Psicol. 29 (2013) 598–603, https://doi.org/10.6018/analesps. 29.2.150691. [30] J.F. Tornero-Aguilera, J.J. Robles-Pérez, V.J. Clemente-Suárez, Effect of combat stress in the psychophysiological response of elite and non-elite soldiers, J. Med. Syst. 41 (2017), https://doi.org/10.1007/s10916-017-0748-x. [31] V.J. Clemente-Suárez, Psychophysiological response and energy balance during a 14-h ultraendurance mountain running event, Appl. Physiol. Nutr. Metab. 40 (2015) 269–273, https://doi.org/10.1139/apnm-2014-0263. [32] Y. Barak, D. David, S. Akselrod, Autonomic control of the cardiovascular system during acute hypobaric hypoxia, assessed by time-frequency decomposition of the heart rate, Comput. Cardiol. 26 (1999) 627–630, https://doi.org/10.1109/CIC. 1999.826049 Cat No99CH37004. [33] B. Sandín, El estrés : un análisis basado en el papel de los factores sociales, IJCHP 3 (2003) 141–157. [34] M. Diaz-Manzano, J.J. Robles-Pérez, K. Herrera-Mendoza, et al., Effectiveness of psycho-physiological portable devices to analyse effect of ergogenic aids in military population, J. Med. Syst. 42 (2018), https://doi.org/10.1007/s10916-018-0945-2. [35] J.F. Tornero-Aguilera, J.J. Robles-Pérez, V.J. Clemente-Suárez, Use of psychophysiological portable devices to analyse stress response in different experienced soldiers, J. Med. Syst. 42 (2018), https://doi.org/10.1007/s10916-018-0929-2. [36] V.J. Clemente-Suárez, R. de la Vega, J.J. Robles-Pérez, et al., Experience modulates the psychophysiological response of airborne warfighters during a tactical combat parachute jump, Int. J. Psychophysiol. 110 (2016) 212–216, https://doi.org/10. 1016/j.ijpsycho.2016.07.502. [37] V.J. Clemente-Suárez, J.J. Robles-Pérez, J. Fernández-Lucas, Psychophysiological response in parachute jumps, the effect of experience and type of jump, Physiol. Behav. 179 (2017) 178–183, https://doi.org/10.1016/j.physbeh.2017.06.006.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectAutonomic modulation
dc.subjectCortical arousal
dc.subjectFighter aircraft
dc.subjectAnxiety
dc.titleEffect of different combat jet manoeuvres in the psychophysiological response of professional pilots
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución