dc.relation | [1] J. Sánchez-Molina, J.J. Robles-Pérez, V.J. Clemente-Suárez, Effect of parachute
jump in the psychophysiological response of soldiers in urban combat, J. Med. Syst.
41 (2017), https://doi.org/10.1007/s10916-017-0749-9.
[2] V.J. Clemente-Suárez, J.J. Robles-Pérez, Mechanical, physical, and physiological
analysis of symmetrical and asymmetrical combat, J. Strength Cond. Res. 27 (2013)
2420–2426.
[3] J. Sánchez-Molina, J.J. Robles-Pérez, V.J. Clemente-Suárez, Assessment of psychophysiological response and specific fine motor skills in combat units, J. Med.
Syst. 42 (2018), https://doi.org/10.1007/s10916-018-0922-9.
[4] M.W. Linakis, K.M. Job, X. Liu, et al., Riding (high) into the danger zone: a review
of potential differences in chemical exposures in fighter pilots resulting from high
altitude and G-forces, Expert Opin. Drug Metab. Toxicol. 13 (2017) 925–934,
https://doi.org/10.1080/17425255.2017.1360867.
[5] C. Lundby, J.A.L. Calbet, M. Sander, et al., Exercise economy does not change after
acclimatization to moderate to very high altitude, Scand. J. Med. Sci. Sports 17
(2007) 281–291, https://doi.org/10.1111/j.1600-0838.2006.00530.x.
[6] International Civil Aviation Organization I, Manual of Civil Aviation Medicine,
(2012).
[7] F.A. Petrassi, P.D. Hodkinson, P.L. Walters, S.J. Gaydos, Hypoxic hypoxia at moderate altitudes: review of the state of the science, Aviat. Sp Environ. Med. 83 (2012)
975–984, https://doi.org/10.3357/ASEM.3315.2012.
[8] C. Neuhaus, J. Hinkelbein, Cognitive responses to hypobaric hypoxia: implications
for aviation training, Psychol. Res. Behav. Manag. 7 (2014) 297–302, https://doi.
org/10.2147/PRBM.S51844.
[9] C.A. Rickards, D.G. Newman, G-induced visual and cognitive disturbances in a
survey of 65 operational fighter pilots, Aviat. Sp. Environ. Med. 76 (2005) 496–500.
[10] S. Guardiera, O. Bock, H. Pongratz, W. Krause, Acceleration effects on manual
performance with isometric and displacement joysticks, Aviat. Sp Environ. Med. 78
(2007) 990–994, https://doi.org/10.3357/ASEM.2054.2007.
[11] N.D.C. Green, L. Brown, Head positioning and neck muscle activation during air
combat, Aviat. Sp Environ. Med. 75 (2004) 676–680.
[12] E.M. Chumbley, A. Stolfi, J.C. McEachen, Risk factors for cervical pain in F-15C
pilots, Aerosp. Med. Hum. Perform. 88 (2017) 1000–1007, https://doi.org/10.
3357/AMHP.4848.2017.
[13] T. Honkanen, J. Oksa, M.J. Mäntysaari, et al., Neck and shoulder muscle activation
among experienced and inexperienced pilots in +Gz exposure, Aerosp. Med. Hum.
Perform. 88 (2017) 90–95, https://doi.org/10.3357/AMHP.4659.2017.
[14] W.A. Bateman, I. Jacobs, F. Buick, Physical conditioning to enhance +Gz tolerance:
issues and current understanding, Aviat. Sp. Environ. Med. 77 (2006) 573–580.
[15] E. Slungaard, J. McLeod, N.D.C. Green, et al., Incidence of G-induced loss of consciousness and almost loss of consciousness in the Royal air Force, Aerosp. Med.
Hum. Perform. 88 (2017) 550–555, https://doi.org/10.3357/AMHP.4752.2017.
[16] M. Murray, B. Lange, B.R. Nørnberg, et al., Specific exercise training for reducing
neck and shoulder pain among military helicopter pilots and crew members: a randomized controlled trial protocol, BMC Musculoskelet. Disord. 16 (2015) 1–11,
https://doi.org/10.1186/s12891-015-0655-6.
[17] M. Alricsson, K. Harms-Ringdahl, K. Schüldt, et al., Mobility, muscular strength and
endurance in the cervical spine in Swedish air force pilots, Aviat. Sp Environ. Med.
72 (2001) 336–342.
[18] V.J. Clemente-Suárez, R. Delgado-Moreno, B. González, et al., Amateur endurance
triathletes' performance is improved independently of volume or intensity based
training, Physiol. Behav. (2018), https://doi.org/10.1016/j.physbeh.2018.04.014.
[19] L. Armstrong, J. Soto, F.J. Hacker, et al., Urinary indices during dehydration, exercise and rehydration, Occup. Heal. Ind. Med. 8 (1998) 345–355.
[20] P. Belinchon-deMiguel, V.J. Clemente-Suárez, Psychophysiological, body composition, biomechanical and autonomic modulation analysis procedures in an
Ultraendurance Mountain race, J. Med. Syst. 42 (2018), https://doi.org/10.1007/
s10916-017-0889-y.
[21] R.H. Cox, M.P. Martens, W.D. Russell, Measuring anxiety in athletics: the revised
competitive state anxiety inventory–2, J. Sport. Exerc. Psychol. 25 (2003) 519–533,
https://doi.org/10.1123/jsep.25.4.519.
[22] R. Delgado-Moreno, J.J. Robles-Pérez, V.J. Clemente-Suárez, Combat stress decreases memory of Warfighters in action, J. Med. Syst. 41 (2017) 1–7, https://doi.
org/10.1007/s10916-017-0772-x.
[23] J.W. Newcomer, S. Craft, T. Hershey, et al., Glucocorticoid-induced impairment in
declarative memory performance in adult humans, J. Neurosci. 14 (1994)
2047–2053, https://doi.org/10.1523/JNEUROSCI.14-04-02047.1994.
[24] V.J. Clemente-Suárez, R.J. Fernandes, J.J. Arroyo-Toledo, et al., Autonomic adaptation after traditional and reverse swimming training periodizations, Acta Physiol.
Hung. 102 (2015) 105–113, https://doi.org/10.1556/APhysiol.102.2015.1.11.
[25] A. Bustamante-Sánchez, V.M. Loarte-Herradón, J.F. Gallego-Saiz, et al.,
Psychophysiological response of fighter aircraft pilots in normobaric hypoxia
training, Arch. Med. Del. Deport. 35 (2018) 99–102, https://doi.org/10.1080/
00140139.2018.1510541.
[26] O. Truszczyński, M. Wojtkowiak, M. Biernacki, K. Kowalczuk, The effect of hypoxia
on the critical flicker fusion threshold in pilots, Int. J. Occup. Med. Environ. Health
22 (2009) 13–18, https://doi.org/10.2478/v10001-009-0002-y.
[27] D.E. Vigo, S. Pérez Lloret, A.J. Videla, et al., Heart rate nonlinear dynamics during
sudden hypoxia at 8230 m simulated altitude, Wilderness Environ Med. 21 (2010)
4–10, https://doi.org/10.1016/j.wem.2009.12.022.
[28] V.J.C. Suárez, J.J.R. Pérez, Análisis de los marcadores fisiológicos, activación cortical y manifestaciones de la fuerza en una situación simulada de combate, Arch.
Med. Del. Deport. 29 (2012) 680–686.
[29] V.J. Clemente-Suarez, J.J. Robles-Perez, Psycho-physiological response of soldiers
in urban combat, An Psicol. 29 (2013) 598–603, https://doi.org/10.6018/analesps.
29.2.150691.
[30] J.F. Tornero-Aguilera, J.J. Robles-Pérez, V.J. Clemente-Suárez, Effect of combat
stress in the psychophysiological response of elite and non-elite soldiers, J. Med.
Syst. 41 (2017), https://doi.org/10.1007/s10916-017-0748-x.
[31] V.J. Clemente-Suárez, Psychophysiological response and energy balance during a
14-h ultraendurance mountain running event, Appl. Physiol. Nutr. Metab. 40
(2015) 269–273, https://doi.org/10.1139/apnm-2014-0263.
[32] Y. Barak, D. David, S. Akselrod, Autonomic control of the cardiovascular system
during acute hypobaric hypoxia, assessed by time-frequency decomposition of the
heart rate, Comput. Cardiol. 26 (1999) 627–630, https://doi.org/10.1109/CIC.
1999.826049 Cat No99CH37004.
[33] B. Sandín, El estrés : un análisis basado en el papel de los factores sociales, IJCHP 3
(2003) 141–157.
[34] M. Diaz-Manzano, J.J. Robles-Pérez, K. Herrera-Mendoza, et al., Effectiveness of
psycho-physiological portable devices to analyse effect of ergogenic aids in military
population, J. Med. Syst. 42 (2018), https://doi.org/10.1007/s10916-018-0945-2.
[35] J.F. Tornero-Aguilera, J.J. Robles-Pérez, V.J. Clemente-Suárez, Use of psychophysiological portable devices to analyse stress response in different experienced soldiers, J. Med. Syst. 42 (2018), https://doi.org/10.1007/s10916-018-0929-2.
[36] V.J. Clemente-Suárez, R. de la Vega, J.J. Robles-Pérez, et al., Experience modulates
the psychophysiological response of airborne warfighters during a tactical combat
parachute jump, Int. J. Psychophysiol. 110 (2016) 212–216, https://doi.org/10.
1016/j.ijpsycho.2016.07.502.
[37] V.J. Clemente-Suárez, J.J. Robles-Pérez, J. Fernández-Lucas, Psychophysiological
response in parachute jumps, the effect of experience and type of jump, Physiol.
Behav. 179 (2017) 178–183, https://doi.org/10.1016/j.physbeh.2017.06.006. | |