dc.creatorNeira-Rodado, Dionicio
dc.creatorOrtiz Barrios, Miguel Angel
dc.creatorDe la Hoz-Escorcia, Sandra
dc.creatorPaggetti, Cristiano
dc.creatorNoffrini, Laura
dc.creatorFratea, Nicola
dc.date2020-04-13T15:12:42Z
dc.date2020-04-13T15:12:42Z
dc.date2020-03-05
dc.date.accessioned2023-10-03T19:39:30Z
dc.date.available2023-10-03T19:39:30Z
dc.identifier1454-5101
dc.identifierhttps://hdl.handle.net/11323/6177
dc.identifierdoi:10.3390/app10051792
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171119
dc.descriptionProduct design has become a critical process for the healthcare technology industry, given the ever-changing demands, vague customer requirements, and interrelations among design criteria. This paper proposed a novel integration of fuzzy Kano, Analytic Hierarchy Process (AHP), Decision Making Trial and Evaluation Laboratory (DEMATEL), and Quality Function Deployment (QFD) to translate customer needs into product characteristics and prioritize design alternatives considering interdependence and vagueness. First, the customer requirements were established. Second, the fuzzy KANO was applied to calculate the impact of each requirement, often vague, on customer satisfaction. Third,designalternativesweredefined,whiletherequirements’weightswerecalculated usingAHP.DEMATELwaslaterimplementedforevaluatingtheinterdependenceamongalternatives. Finally,QFDwasemployedtoselectthebestdesign. Ahipreplacementsurgeryaiddeviceforelderly people was used for validation. In this case, collateral issues were the most important requirement, while code change was the best-ranked design.
dc.formatapplication/pdf
dc.languageeng
dc.publisherApplied Sciences
dc.relation1. Pabinger, C.; Geissler, A. Utilization rates of hip arthroplasty in OECD countries. Osteoarthr. Cart. 2014, 22, 734–741. [CrossRef] [PubMed]
dc.relation2. Fiorenttino, A.; Zarattini, G.; Pazzaglia, U.; Ceretti, E. Hip Prosthesis Design. Market Analysis, New Perspectives and an Innovative Solution. Procedia Cirp 2013, 5, 310–314. [CrossRef]
dc.relation3. Wolf, A.; Digioia, A.M.; Mor, A.B.; Jaramaz, B. Cup alignment error model for total hip arthroplasty. Clin. Orthop. Relat. Res. 2005, 437, 132–137. [CrossRef] [PubMed]
dc.relation4. Duplantier, N.L.; McCulloch, P.C.; Nho, S.J.; Mather, R.C.; Lewis, B.D.; Harris, J.D. Hip Dislocation or Subluxation After Hip Arthroscopy: A Systematic Review. Arthrosc. J. Arthrosc. Relat. Surg. 2016, 32, 1428–1434. [CrossRef] [PubMed]
dc.relation5. Grosso, P.; Snider, M.; Muir, J.M. A Smart Tool for Intraoperative Leg Length Targeting in Total Hip Arthroplasty: A Retrospective Cohort Study. Open Orthop. J. 2016, 10, 490–499. [CrossRef]
dc.relation6. Martin, J.L.; Norris, B.J.; Murphy, E.; Crowe, J.A. Medical device development: The challenge for ergonomics. Appl. Ergon. 2008, 39, 271–283. [CrossRef]
dc.relation7. Mihoc, A.; Walters, A.; Eggbeer, D.; Gill, S. Barriers to user-centred design in the development of bespoke medical devices: A manufacturers’ view. In Proceedings of the 13th Conference on Rapid Design, Prototyping & Manufacturing, Lancaster, UK, 22 June 2012.
dc.relation8. Sharples, S.; Martin, J.; Lang, A.; Craven, M.; O’Neill, S.; Barnett, J. Medical device design in context: A model of user-device interaction and consequences. Displays 2012, 33, 221–232. [CrossRef]
dc.relation9. Hagedorn, T.J.; Krishnamurty, S.; Grosse, I.R. An information model to support user-centered design of medical devices. J. Biomed. Inf. 2016, 62, 181–194. [CrossRef]
dc.relation10. Willemsen, K.; Nizak, R.; Noordmans, H.J.; Castelein, R.M.; Weinans, H.; Kruyt, M.C. Challenges in the design and regulatory approval of 3D-printed surgical implants: A two-case series. Lancet Digit. Heal. 2019, 1, e163–e171. [CrossRef]
dc.relation11. Madzík, P. Increasing accuracy of the Kano model—a case study. Total Qual. Manag. Bus. Excell. 2016, 29, 387–409. [CrossRef]
dc.relation12. Wolniak, R. The use of QFD method advantages and limitation. Prod. Eng. Arch. 2018, 18, 14–17. [CrossRef]
dc.relation13. Ortiz-Barrios, M.A.; Aleman-Romero, B.A.; Rebolledo-Rudas, J.; Maldonado-Mestre, H.; Montes-Villa, L.; de Felice, F.; Petrillo, A. The analytic decision-making preference model to evaluate the disaster readiness in emergency departments: The ADT model. J. Multi Criteria Decis. Anal. 2017, 24, 204–226. [CrossRef]
dc.relation14. Si, S.-L.; You, X.-Y.; Liu, H.-C.; Zhang, P. DEMATEL Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies and Applications. Math. Probl. Eng. 2018, 2018, 1–33. [CrossRef]
dc.relation15. Moubachir, Y.; Bouami, D. ScienceDirect A new approach for the transition between QFD phases. Procedia Cirp 2015, 26, 82–86. [CrossRef]
dc.relation16. Lima-Junior, F.R.; Cesar, L.; Carpinetti, R. A multicriteria approach based on fuzzy QFD for choosing criteria for supplier selection. Comput. Ind. Eng. 2016, 101, 269–285. [CrossRef]
dc.relation17. Bhattacharya, A.; Geraghty, J.; Young, P. Supplier selection paradigm: An integrated hierarchical QFD methodology under multiple-criteria environment. Appl. Soft Comput. 2010, 10, 1013–1027. [CrossRef]
dc.relation18. Yazdani, M.; Chatterjee, P.; Zavadskas, E.K.; Zolfani, S.H. Integrated QFD-MCDM framework for green supplier selection. J. Clean. Prod. 2017, 142, 3728–3740. [CrossRef]
dc.relation19. Mistarihi, M.Z.; Okour, R.A.; Mumani, A.A. An integration of a QFD model with fuzzy-ANP approach for determining the importance weights for engineering characteristics of a proposed wheelchair design. Appl. Soft Comput. 2020, 90, 106136. [CrossRef]
dc.relation20. Lin, Y.; Pekkarinen, S. QFD-based modular logistics service design. J. Bus. Ind. Mark. 2011, 26, 344–356. [CrossRef]
dc.relation21. Bolar, A.A.; Tesfamariam, S.; Sadiq, R. Framework for prioritizing infrastructure user expectations using Quality Function Deployment (QFD). Int. J. Sustain. Built Environ. 2017, 6, 16–29. [CrossRef]
dc.relation22. Chan, L.-K.; Wu, M.-L. Quality function deployment: A literature review. Eur. J. Oper. Res. 2002, 143, 463–497. [CrossRef]
dc.relation23. Ortíz, M.A.; Cómbita, J.P.; la Hoz, Á.A.D.; de Felice, F.; Petrillo, A. An integrated approach of AHP-DEMATEL methods applied for the selection of allied hospitals in outpatient service. Int. J. Med. Eng. Inf. 2016, 8, 87. [CrossRef]
dc.relation24. Wu, M.; Wang, L. A continuous fuzzy Kano’s model for customer requirements analysis in product development. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2012, 226, 535–546. [CrossRef]
dc.relation25. Pakizehkar, H.; Sadrabadi, M.M.; Mehrjardi, R.Z.; Eshaghieh, A.E. ScienceDirect The application of integration of Kano’s model, AHP technique and QFD matrix in prioritizing the bank’s substructions. Procedia Soc. Behav. Sci. 2016, 230, 159–166. [CrossRef]
dc.relation26. Lee, C.K.M.; Tan, C.; Ru, Y.; Yeung, C.L.; Choy, K.L.; Ip, W.H. Analyze the healthcare service requirement using fuzzy QFD. Comput. Ind. 2015, 74, 1–15. [CrossRef]
dc.relation27. Violante, M.G.; Vezzetti, E. Kano qualitative vs. quantitative approaches: An assessment framework for products attributes analysis. Comput. Ind. 2017, 86, 15–25. [CrossRef]
dc.relation28. Wang, C.-H.; Wang, J. Combining fuzzy AHP and fuzzy Kano to optimize product varieties for smart cameras: A zero-one integer programming perspective. Appl. Soft Comput. 2014, 22, 410–416. [CrossRef]
dc.relation29. Lee, Y.-C.; Sheu, L.-C.; Tsou, Y.-G. Quality function deployment implementation based on Fuzzy Kano model: An application in PLM system. Comput. Ind. Eng. 2008, 55, 48–63. [CrossRef]
dc.relation30. Li, Y.; Tang, J.; Luo, X.; Xu, J. An integrated method of rough set, Kano’s model and AHP for rating customer requirements’ final importance. Expert Syst. Appl. 2009, 36, 7045–7053. [CrossRef]
dc.relation31. Ji, P.; Jin, J.; Wang, T.; Chen, Y. Quantification and integration of Kano’s model into QFD for optimising product design. Int. J. Prod. Res. 2014, 52, 6335–6348. [CrossRef]
dc.relation32. He, L.; Song, W.; Wu, Z.; Xu, Z.; Zheng, M.; Ming, X. Quantification and integration of an improved Kano model into QFD based on multi-population adaptive genetic algorithm. Comput. Ind. Eng. 2017, 114, 183–194. [CrossRef]
dc.relation33. Tontini, G.; Tontini, G.R. Integrating the Kano Model and QFD for Designing New Products Integrating the Kano Model and QFD for Designing New Products. Total Qual. Manag. 2007, 18, 599–612. [CrossRef]
dc.relation34. Materla, T.; Cudney, E.A.; Antony, J. The application of Kano model in the healthcare industry: A systematic literature review. Total Qual. Manag. Bus. Excell. 2019, 30, 660–681. [CrossRef]
dc.relation35. Yu, H.; Ko, H. Integrating Kano model with strategic experiential modules in developing ICT-enabled services. Manag. Decis. 2012, 50, 7–20. [CrossRef]
dc.relation36. Ortiz-Barrios, M.A.; Kucukaltan, B.; Carvajal-Tinoco, D.; Neira-Rodado, D.; Jiménez, G. Strategic hybrid approach for selecting suppliers of high-density polyethylene. J. Multi Criteria Decis. Anal. 2017, 24, 296–316. [CrossRef]
dc.relation37. Kubler, S.; Robert, J.; Derigent, W.; Voisin, A.; le Traon, Y. A state-of the-art survey & testb e d of fuzzy AHP (FAHP) applications. Expert Syst. Appl. 2016, 65, 398–422.
dc.relation38. De FSM Russo, R.; Camanho, R. Criteria in AHP: A Systematic Review of Literature. Procedia Comput. Sci. 2015, 55, 1123–1132. [CrossRef]
dc.relation39. Mardani, A.; Jusoh, A.; Nor, K.M.D.; Khalifah, Z.; Zakwan, N.; Valipour, A. Multiple criteria decision-making techniques and their applications—a review of the literature from 2000 to 2014. Econ. Res. Istraživanja 2015, 28, 516–571. [CrossRef]
dc.relation40. Oddershede, A.; Donoso, J.; Farias, F.; Jarufe, P. ICT Support Assessment in Primary School Teaching and Learning through AHP. Procedia Comput. Sci. 2015, 55, 149–158. [CrossRef]
dc.relation41. Sabu, M.; Shaijumon, C.S.; Rajesh, R. Factors influencing the adoption of ICT tools in Kerala marine fisheries sector: An analytic hierarchy process approach. Technol. Anal. Strateg. Manag. 2018, 30, 866–880. [CrossRef]
dc.relation42. Oddershede, A.M.; Córdova, F.M.; Carrasco, R.; Watkins, F.J. Decision Model for Assessing Healthcare ICT Support Implications: User Perception. Int. J. Comput. Commun. Control 2014, 9, 593–601. [CrossRef]
dc.relation43. Zaidan, A.A.; Zaidan, B.B.; Al-Haiqi, A.; Kiah, M.L.M.; Hussain, M.; Abdulnabi, M. Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS. J. Biomed. Inform. 2015, 53, 390–404. [CrossRef]
dc.relation44. Helingo, M.; Purwandari, B.; Satria, R.; Solichah, I. The Use of Analytic Hierarchy Process for Software Development Method Selection: A Perspective of e-Government in Indonesia. Procedia Comput. Sci. 2017, 124, 405–414. [CrossRef]
dc.relation45. Barrios, M.A.O.; de Felice, F.; Negrete, K.P.; Romero, B.A.; Arenas, A.Y.; Petrillo, A. An AHP-Topsis Integrated Model for Selecting the Most Appropriate Tomography Equipment. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 861–885. [CrossRef]
dc.relation46. Improta, G.; Russo, M.A.; Triassi, M.; Converso, G.; Murino, T.; Santillo, L.C. Use of the AHP methodology in system dynamics: Modelling and simulation for health technology assessments to determine the correct prosthesis choice for hernia diseases. Math. Biosci. 2018, 299, 19–27. [CrossRef]
dc.relation47. Büyüközkan, G.; Çifçi, G. A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers. Expert Syst. Appl. 2012, 39, 3000–3011. [CrossRef]
dc.relation48. Wu, W.-W.; Lee, Y.-T. Developing global managers’ competencies using the fuzzy DEMATEL method. Expert Syst. Appl. 2007, 32, 499–507. [CrossRef]
dc.relation49. Tzeng, G.-H.; Chiang, C.-H.; Li, C.-W. Evaluating intertwined effects in e-learning programs: A novel hybrid MCDM model based on factor analysis and DEMATEL. Expert Syst. Appl. 2007, 32, 1028–1044. [CrossRef]
dc.relation50. Dey, S.; Kumar, A.; Ray, A.; Pradhan, B.B. Supplier Selection: Integrated Theory using DEMATEL and Quality Function Deployment Methodology. Procedia Eng. 2012, 38, 2111–2116. [CrossRef]
dc.relation51. Chiu, Y.-J.; Chen, H.-C.; Tzeng, G.-H.; Shyu, J.Z. Marketing strategy based on customer behaviour for the LCD-TV. Int. J. Manag. Decis. Mak. 2006, 7, 143. [CrossRef]
dc.relation52. Cheng, C.-C.; Chen, C.-T.; Hsu, F.-S.; Hu, H.-Y. Enhancing service quality improvement strategies of fine-dining restaurants: New insights from integrating a two-phase decision-making model of IPGA and DEMATEL analysis. Int. J. Hosp. Manag. 2012, 31, 1155–1166. [CrossRef]
dc.relation53. Espinosa, F.F.; Salinas, G.E. Selección de Estrategias de Mejoramiento de las Condiciones de Trabajo para la Función Mantenimiento Utilizando la Metodología MCDA Constructivista. Inf. Tecnológica 2013, 24, 57–72. [CrossRef]
dc.relation54. Mehtap, D.; Zeynep, S¸. An Integrated DEMATEL-QFD Model for Medical Supplier Selection. Int. J. Ind. Manuf. Eng. 2014, 8, 592–596.
dc.relation55. Luthra, S.; Mangla, S.K.; Chan, F.T.S.; Venkatesh, V.G. Evaluating the Drivers to Information and Communication Technology for Effective Sustainability Initiatives in Supply Chains. Int. J. Inf. Technol. Decis. Mak. 2018, 17, 311–338. [CrossRef]
dc.relation56. Chen, Z.; Lu, M.; Ming, X.; Zhang, X.; Zhou, T. Explore and evaluate innovative value propositions for smart product service system: A novel graphics-based rough-fuzzy DEMATEL method. J. Clean. Prod. 2020, 243, 118672. [CrossRef]
dc.relation57. Barrios, M.O.; Jiménez, H.F.; Isaza, S.N. Comparative analysis between ANP and ANP-DEMATEL for six sigma project selection process in a healthcare provider. In International workshop on ambient assisted living, Belfast, Northern Ireland, 2 December-5 December; Springer: Cham, Switzerland, 2014; pp. 413–416.
dc.relation58. Kang, X.; Yang, M.; Wu, Y.; Ni, B. Integrating Evaluation Grid Method and Fuzzy Quality Function Deployment to New Product Development. Math. Probl. Eng. 2018, 2018, 1–15. [CrossRef]
dc.relation59. Chih-Hsuan, W.; Jiun-Nan, C. Using quality function deployment for collaborative product design and optimal selection of module mix. Comput. Ind. Eng. 2012, 63, 1030–1037.
dc.relation60. Tan, K.C.; Shen, X.X. Integrating Kano’s model in the planning matrix of quality function deployment. Total Qual. Manag. 2000, 11, 1141–1151. [CrossRef]
dc.relation61. Chen, L.-H.; Ko, W.-C. A fuzzy nonlinear model for quality function deployment considering Kano’s concept. Math. Comput. Model. 2008, 48, 581–593. [CrossRef]
dc.relation62. Saaty, T.L. The analytic hierarchy process in conflict management. Int. J. Confl. Manag. 1990, 1, 47–68. [CrossRef]
dc.relation63. Liou, J.J.H.; Tzeng, G.-H.; Chang, H.-C. Airline safety measurement using a hybrid model. J. Air Transp. Manag. 2007, 13, 243–249. [CrossRef]
dc.relation64. Ortiz-Barrios, M.A.; Herrera-Fontalvo, Z.; Rúa-Muñoz, J.; Ojeda-Gutiérrez, S.; De Felice, F.; Petrillo, A. An integrated approach to evaluate the risk of adverse events in hospital sector. Manage. Decis. 2018, 56, 2187–2224. [CrossRef]
dc.relation65. Lee, W.-S.; Huang, A.Y.; Chang, Y.-Y.; Cheng, C.-M. Analysis of decision making factors for equity investment by DEMATEL and Analytic Network Process. Expert Syst. Appl. 2011, 38, 8375–8383. [CrossRef]
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectProduct design
dc.subjectFuzzy Kano
dc.subjectAHP
dc.subjectDEMATEL
dc.subjectHealthcare technology industry
dc.subjectSmart manufacturing
dc.titleSmart product design process through the implementation of a fuzzy kano-AHP-DEMATEL-QFD approach
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución