dc.creatoramelec, viloria
dc.creatorMartínez Sierra, David
dc.creatorFrasser Camargo, James Enrique
dc.creatorBatistas Zea, Karina
dc.creatorFuentes-Pacheco, Jorge
dc.creatorHernández Palma, Hugo
dc.creatorJ. Kamatkar, Sadhana
dc.date2020-01-30T13:37:30Z
dc.date2020-01-30T13:37:30Z
dc.date2019
dc.date.accessioned2023-10-03T19:39:27Z
dc.date.available2023-10-03T19:39:27Z
dc.identifierhttp://hdl.handle.net/11323/5945
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171106
dc.descriptionThe traditional business model of energy companies is changing in recent years. The introduction of smart meters has led to an exponential increase in the volume of data available, and their analysis can help find consumption patterns among electric customers to reduce costs and protect the environment. Power plants generate electricity to cover peak consumption at specific times. A set of techniques called “demand response” tries to solve this problem using artificial intelligence proposals. This document proposes a method for processing large volumes of data such as those generated by smart meters. Both for the preprocessing and for the optimization and realization of this analysis big data techniques are used. Specifically, a distributed version of the k-means algorithm and several indices of internal validation of clustering for big data in Spark. The source data correspond to the consumption of electric customers in Bogota, Colombia during the year 2018. The analysis carried out in this study about consumers helps their characterization. This greater knowledge about consumer habits and types of customers can enhance the work of utilities.
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidad de la Costa
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectBig data
dc.subjectResponse to demand
dc.subjectClustering
dc.subjectSmart meters
dc.subjectElectricity consumption
dc.titleDemand in the electricity market: analysis using big data
dc.typePre-Publicación
dc.typehttp://purl.org/coar/resource_type/c_816b
dc.typeText
dc.typeinfo:eu-repo/semantics/preprint
dc.typeinfo:eu-repo/semantics/draft
dc.typehttp://purl.org/redcol/resource_type/ARTOTR
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución