dc.creatorPOLO MENDOZA, RODRIGO ERNESTO
dc.creatorMora, Otto
dc.creatorDuque, Jose
dc.creatorTurbay, Emilio
dc.creatorMartínez-Arguelles, Gilberto
dc.creatorFuentes, Luis
dc.creatorGuerrero, Oswaldo
dc.creatorPérez, Sergio
dc.date2023-09-26T20:24:38Z
dc.date2023-09-26T20:24:38Z
dc.date2023
dc.date.accessioned2023-10-03T19:39:19Z
dc.date.available2023-10-03T19:39:19Z
dc.identifierRodrigo Polo-Mendoza, Otto Mora, Jose Duque, Emilio Turbay, Gilberto Martinez-Arguelles, Luis Fuentes, Oswaldo Guerrero, Sergio Perez, Environmental and economic feasibility of implementing perpetual pavements (PPs) against conventional pavements: A case study of Barranquilla city, Colombia, Case Studies in Construction Materials, Volume 18, 2023, e02112, ISSN 2214-5095, https://doi.org/10.1016/j.cscm.2023.e02112
dc.identifierhttps://hdl.handle.net/11323/10517
dc.identifier10.1016/j.cscm.2023.e02112
dc.identifier2214-5095
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171079
dc.descriptionThe road infrastructure industry consumes elevated economic resources and generates vast environmental impacts on the planet. Nevertheless, the construction and maintenance of pavements are necessary to guarantee the economic growth of the communities. In this way, finding novel methods, materials, and techniques is essential to achieve a more sustainable industry. One of the most promising alternatives is the implementation of Perpetual Pavements (PPs). Contrary to the Conventional Flexible Pavements (CFPs) and Conventional Rigid Pavements (CRPs), the PPs are designed for a long service life (even superior to 50 years). During this time, the PPs do not require major Maintenance and Rehabilitation (M&R) activities. Due to this characteristic, PPs could present greater sustainability attributes than conventional pavement structures. However, minimal literature is focused on examining these hypotheses since the state-of-the-art has concentrated on studying the mechanical behavior of materials and layers for PPs laying. Moreover, it is most worrying that few investigations have done this in the context of developing countries, where it is more decisive to perform better decisions in terms of economic-environmental sustainability. Consequently, this research conducts a case study on Barranquilla city (Colombia) to estimate the environmental burdens and monetary costs associated with the life cycle of three pavement alternatives, i.e., a PP, a CFP, and a CRP. The Life Cycle Assessment (LCA) and Life Cycle Cost Analysis (LCCA) methodologies were employed for these purposes. The results of this investigation demonstrated that PP provides less environmental damage and higher cost-efficiency than the CFP and CRP alternatives. Notably, the most significant contamination potential is provoked by the CRP structure. Meanwhile, the fewer financial profitability is caused by the CFP structure. Therefore, this study indicates that under the typical circumstances of underdeveloped nations, PPs are a more advantageous alternative than traditional ones regarding sustainability performance.
dc.format21 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherElsevier BV
dc.publisherNetherlands
dc.relationCase Studies in Construction Materials
dc.relation[1] D. Abudinen, L.G. Fuentes, J.S. Carvajal Munoz, ˜ Travel quality assessment of urban roads based on international roughness index: case study in Colombia, Transp. Res. Rec. 2612 (2017) 1–10, https://doi.org/10.3141/2612-01.
dc.relation[2] L. Fuentes, R. Camargo, J. Arellana, C. Velosa, G. Martinez-Arguelles, Modelling pavement serviceability of urban roads using deterministic and probabilistic approaches, Int. J. Pavement Eng. 22 (1) (2019) 77–86, https://doi.org/10.1080/10298436.2019.1577422.
dc.relation[3] C.D.A. Loureiro, C.F.N. Moura, M. Rodrigues, F.C.G. Martinho, H.M.R.D. Silva, J.R.M. Oliveira, Steel slag and recycled concrete aggregates: replacing quarries to supply sustainable materials for the asphalt paving industry, Sustainability 14 (5022) (2022) 1–31, https://doi.org/10.3390/su14095022.
dc.relation[4] C. Plati, Sustainability factors in pavement materials, design, and preservation strategies: a literature review, Constr. Build. Mater. 211 (2019) 539–555, https://doi.org/10.1016/j.conbuildmat.2019.03.242.
dc.relation[5] Y. Wardeh, E. Kinab, G. Escadeillas, P. Rahme, S. Ginestet, Review of the optimization techniques for cool pavements solutions to mitigate Urban Heat Islands, Build. Environ. 223 (109482) (2022) 1–29, https://doi.org/10.1016/j.buildenv.2022.109482.
dc.relation[6] J. Chen, et al., New innovations in pavement materials and engineering: a review on pavement engineering research 2021, J. Traffic Transp. Eng. 8 (6) (2021) 815–999, https://doi.org/10.1016/j.jtte.2021.10.001.
dc.relation[7] B. Goenaga, L. Fuentes, O. Mora, A practical approach to incorporate roughness-induced dynamic loads in pavement design and performance prediction, Arab. J. Sci. Eng. 44 (5) (2019) 4339–4348, https://doi.org/10.1007/s13369-018-3414-9.
dc.relation[8] R. Polo-Mendoza, T. Navarro-Donado, D. Ortega-Martinez, E. Turbay, G. Martinez-Arguelles, R. Penabaena-Niebles, ˜ Properties and characterization techniques of graphene modified asphalt binders, Nanomaterials 13 (955) (2023) 1–27, https://doi.org/10.3390/nano13050955.
dc.relation[9] N. Liu, et al., Road life-cycle carbon dioxide emissions and emission reduction technologies: a review, J. Traffic Transp. Eng. 9 (4) (2022) 532–555, https://doi. org/10.1016/j.jtte.2022.06.001.
dc.relation[10] D. Newcomb, M. Buncher, I. Huddleston, Concepts of perpetual pavements, Transp. Res. Circ. 503 Perpetual Bitum. Pavements, 2001.
dc.relation[11] D. Newcomb, R. Willis, D. Timm, Perpetual asphalt pavements: a synthesis, Asph. Pavement Alliance (2002) 3–36.
dc.relation[12] S. Kulkarni, M.S. Ranadive, The parametric comparison of perpetual pavements with respect to Life-cycle cost and greenhouse gas emissions, Mater. Today Proc. 52 (2022) 1147–1152, https://doi.org/10.1016/j.matpr.2021.11.018.
dc.relation[13] M. Mazumder, H. Kim, S.-J. Lee, Perpetual pavement: future pavement network, J. Adv. Constr. Mater. 19 (1) (2015) 35–49.
dc.relation[14] R. Gao, L. Zhao, Perpetual pavement - absorbing stress and functional maintenance, Res. Mod. High. Educ. 2 02015 (2017) 233–239.
dc.relation[15] L.F. Walubita, T. Scullion, J. Leidy, W. Liu, Non-destructive testing technologies: application of the ground penetrating radar (GPR) to perpetual pavements, Road. Mater. Pavement Des. 10 (2) (2009) 259–286, https://doi.org/10.1080/14680629.2009.9690195.
dc.relation[16] P. Gopinath, C.Naveen Kumar, Performance evaluation of HMAC mixes produced with gilsonite modified bitumen for heavily trafficked roads, Mater. Today Proc. 43 (2021) 941–946, https://doi.org/10.1016/j.matpr.2020.07.224.
dc.relation[17] A.S. Mohamed, W. Wang, H. Weng, Y. Fang, F. Xiao, Potential of project level construction and rehabilitation plans to attenuate the economic and environmental burdens of flexible road pavements: a review study, J. Clean. Prod. 354 (131713) (2022) 1–26, https://doi.org/10.1016/j.jclepro.2022.131713.
dc.relation[18] D.B. Casey, J.R. Grenfell, Modelling of perpetual pavement performance subjected to varying European three-dimensional truck tire loading, Int. J. Pavement Res. Technol. 14 (5) (2021) 588–594, https://doi.org/10.1007/s42947-020-0090-4.
dc.relation[19] M.Y. El-Hakim, S.L. Tighe, Sustainability of perpetual pavement designs: Canadian perspective, Transp. Res. Rec. 2304 (2012) 10–16, https://doi.org/ 10.3141/2304-02.
dc.relation[20] L.F. Walubita, G. Martinez-Arguelles, R. Polo-Mendoza, S. Ick-Lee, L. Fuentes, Comparative environmental assessment of rigid, flexible, and perpetual pavement: a case study of Texas, Sustainability 14 (9983) (2022) 1–22, https://doi.org/10.3390/su14169983.
dc.relation[21] S.A. Sultan, Z. Guo, Evaluating life cycle costs of perpetual pavements in China using operational pavement management system, Int. J. Transp. Sci. Technol. 5 (2016) 103–109, https://doi.org/10.1016/j.ijtst.2016.09.007.
dc.relation[22] S.I. Lee, L.F. Walubita, S. Hu, T. Scullion, Technical Report 0–6856-1: Sustainable Perpetual Asphalt Pavements and Comparative Analysis of Lifecycle Cost to Traditional 20-Year Pavement, Texas A&M Transp. Inst., 2018.
dc.relation[23] P. Jitsangiam, H. Nikraz, and C. Leek, Development of hot-mix asphalt layer thickness design for longer-life asphalt pavements, in: Proceedings of the Sixth PATREC Research Forum, 2010.
dc.relation[24] A.A. Amini, M. Mashayekhi, H. Ziari, S. Nobakht, Life cycle cost comparison of highways with perpetual and conventional pavements, Int. J. Pavement Eng. 13 (6) (2012) 553–568, https://doi.org/10.1080/10298436.2011.628020.
dc.relation[25] S.I. Lee, G. Carrasco, E. Mahmoud, L.F. Walubita, Alternative structure and material designs for cost-effective perpetual pavements in Texas, J. Transp. Eng. Part B Pavements 146 (4) (2020) 04020071, https://doi.org/10.1061/JPEODX.0000226.
dc.relation[26] D.H. Timm, D.E. Newcomb, Perpetual pavement design for flexible pavements in the US, Int. J. Pavement Eng. 7 (2) (2006) 111–119, https://doi.org/ 10.1080/10298430600619182.
dc.relation[27] M. Sabouri, An investigation on perpetual asphalt pavements in Minnesota, Int. J. Pavement Res. Technol. 13 (3) (2020) 247–254, https://doi.org/10.1007/ s42947-020-0149-2.
dc.relation[28] M.M. Robbins, N.H. Tran, D.H. Timm, J.R. Willis, Adaptation and validation of stochastic limiting strain distribution and fatigue ratio concepts for perpetual pavement design, Road. Mater. Pavement Des. 16 (S2) (2015) 100–124, https://doi.org/10.1080/14680629.2015.1077001.
dc.relation[29] K.A. Tutu, D.H. Timm, Asphalt fatigue endurance limit estimation and impact on perpetual pavement design, Int. J. Pavement Eng. 23 (4) (2022) 1239–1247, https://doi.org/10.1080/10298436.2020.1797735.
dc.relation[30] B. Beriha, U.C. Sahoo, W.J. Steyn, Determination of endurance limit for different bound materials used in pavements: a review, Int. J. Transp. Sci. Technol. 8 (3) (2019) 263–279, https://doi.org/10.1016/j.ijtst.2019.05.002.
dc.relation[31] A. Szwed, I. Kaminska, ´ Two-step method of designing distribution of material stiffness in perpetual pavement to prevent structural rutting and fatigue, Procedia Eng. 153 (2016) 706–714, https://doi.org/10.1016/j.proeng.2016.08.230.
dc.relation[32] A.M. Babalghaith, et al., A systematic review of the utilization of waste materials as aggregate replacement in stone matrix asphalt mixes, Environ. Sci. Pollut. Res. 29 (24) (2022) 35557–35582, https://doi.org/10.1007/s11356-022-19447-w.
dc.relation[33] Z. Yang, L. Wang, X. Bin, D. Cao, J. Li, K. Zhao, Performance of SBS modifier-crumb rubber composite modified asphalt used as an anti-wear layer of perpetual pavement, Int. J. Pavement Eng. (2021) 1–15, https://doi.org/10.1080/10298436.2021.1932882.
dc.relation[34] S.A. Sultan, Z. Guo, Evaluating the performance of sustainable perpetual pavements using recycled asphalt pavement in China, Int. J. Transp. Sci. Technol. 5 (3) (2016) 200–209, https://doi.org/10.1016/j.ijtst.2017.01.001.
dc.relation[35] S. Islam, A. Sufian, M. Hossain, R. Miller, C. Leibrock, Mechanistic-empirical design of perpetual pavement, Road. Mater. Pavement Des. 21 (5) (2020) 1224–1237, https://doi.org/10.1080/14680629.2018.1546218.
dc.relation[36] S. Anand, A. Gaur, G. Singh, Evaluation of fatigue endurance limit of dense bituminous mix using different failure theories for the design of perpetual pavement, Int. J. Pavement Res. Technol. 14 (3) (2021) 318–326, https://doi.org/10.1007/s42947-020-0024-1.
dc.relation[37] L.F. Walubita, W. Liu, T. Scullion, Technical Report 0–4822-3: The Texas perpetual pavements: Experience Overview and the Way Forward, Texas A&M Transp. Inst., 2010.
dc.relation[38] D.E. Wegman, M. Sabouri. MN/RC 2016-33: Minnesota Perpetual Pavement Analysis and Review, Minnesota Department of Transportation, Saint Paul, Minnesota, USA, 2016, pp. 1–151.
dc.relation[39] J. Zhu, S. Sargand, I. Khoury, D. Tarawneh, T. Ma, F. Chen, Dynamic load responses of perpetual pavement test roads on U.S. 23: full-scale instrumentation and evaluation, Constr. Build. Mater. 331 (127326) (2022) 1–12, https://doi.org/10.1016/j.conbuildmat.2022.127326.
dc.relation[40] S. Yousefdoost, E. Denneman, A. Beecroft, B. Vuong, Development of a national database of asphalt material performance properties in support of perpetual pavement design implementation in Australia, Constr. Build. Mater. 188 (2018) 68–87, https://doi.org/10.1016/j.conbuildmat.2018.08.078.
dc.relation[41] Y. Yang, J. Wei, W. Lin, D. Timm, G. Huber, Binzhou perpetual pavement test road: dynamic response of pavement under very heavy loads, Road Mater. Pavement Des. ICAM 10 (2009) 151–165, https://doi.org/10.3166/RMPD.10HS.151-165.
dc.relation[42] Y. Zhu, F. Ni, Research of different perpetual pavement structures based on performance comparison and LCCA in Jiangsu Province, China, Airfield Highw. Pavements (2015) 640–651, https://doi.org/10.1061/9780784479216.057.
dc.relation[43] C. Basu, A. Das, P. Thirumalasetty, T. Das, Perpetual pavement – a boon for the indian roads, Procedia Soc. Behav. Sci. 104 (2013) 139–148, https://doi.org/ 10.1016/j.sbspro.2013.11.106.
dc.relation[44] H. Behbahani, A.M. Khaki, A.A. Amini, Assessment of Perpetual pavement performance using mechanistic-empirical pavement design guide (M-E PDG) and perroad software models, Int. Conf. Perpetual Pavement (2009) 1–13.
dc.relation[45] W. Cao, A. Norouzi, Y.R. Kim, Application of viscoelastic continuum damage approach to predict fatigue performance of Binzhou perpetual pavements, J. Traffic Transp. Eng. 3 (2) (2016) 104–115, https://doi.org/10.1016/j.jtte.2016.03.002.
dc.relation[46] Z. Guo, S.A. Sultan, Feasibility of perpetual pavement stage construction in China: a life cycle cost analysis, Int. J. Transp. Sci. Technol. 5 (2016) 239–247, https://doi.org/10.1016/j.ijtst.2017.01.005.
dc.relation[47] B.A. Priyanka, G. Sarang, A.U. Ravi Shankar, Evaluation of superpave mixtures for perpetual asphalt pavements, Road. Mater. Pavement Des. 20 (8) (2019) 1952–1965, https://doi.org/10.1080/14680629.2018.1474794.
dc.relation[48] A. Sidess, J. Uzan, A design method of perpetual flexible pavement in Israel, Int. J. Pavement Eng. 10 (4) (2009) 241–249, https://doi.org/10.1080/ 10298430701830225.
dc.relation[49] R.A. Tarefder, D. Bateman, Design of Optimal Perpetual Pavement Structure, J. Transp. Eng. 138 (2) (2012) 157–175, https://doi.org/10.1061/(ASCE) TE.1943-5436.0000259.
dc.relation[50] L.F. Walubita, T. Scullion, Texas perpetual pavements - new design guidelines, Tex. AM Transp. Inst. (2010).
dc.relation[51] S. Hu, S.-I. Lee, L.F. Walubita, F. Zhou, T. Scullion, Incorporation of endurance limit in the mechanistic-empirical flexible perpetual pavement design, Transp. Res. Rec. 2672 (40) (2018) 108–121, https://doi.org/10.1177/0361198118797781.
dc.relation[52] L.F. Walubita, S.-I. Lee, A. Faruk, T. Scullion, S. Nazarian, I. Abdallah, Texas Flexible Pavements and Overlays: Year 5 Report - Complete Data Documentation, Texas A&M Transp. Inst., 2017.
dc.relation[53] L.F. Walubita , T. Scullion, FHWA/TX-07/0–4822-2: Perpetual Pavements in Texas - The Fort Worth SH 114 project in Wise County, Texas A&M Transp. Inst., 2007.
dc.relation[54] L. Uzarowski, G. Moore, Sustainable pavements - Making the case for longer design lives for flexible pavements, Annu. Conf. Transp. Assoc. Can. (2008).
dc.relation[55] G. Flintsch, J. Meijer, K. Smith, FHWA-HIF-19–080: the Improved Asphalt Pavement Sustainability Throught Perpetual Pavement Desing, Fed. Highw. Adm., 2020.
dc.relation[56] O.F. Hamim, S.S. Aninda, M.S. Hoque, M. Hadiuzzaman, Suitability of pavement type for developing countries from an economic perspective using life cycle cost analysis, Int. J. Pavement Res. Technol. 14 (3) (2021) 259–266, https://doi.org/10.1007/s42947-020-0107-z.
dc.relation[57] E.M. Alejandre, S.G. Potts, J.B. Guin´ee, P.M. van Bodegom, Characterisation model approach for LCA to estimate land use impacts on pollinator abundance and illustrative characterisation factors, J. Clean. Prod. 346 (131043) (2022) 1–9, https://doi.org/10.1016/j.jclepro.2022.131043.
dc.relation[58] E. Asres, T. Ghebrab, S. Ekwaro-Osire, Framework for design of sustainable flexible pavement, Infrastructures 7 (6) (2022) 1–23, https://doi.org/10.3390/ infrastructures7010006.
dc.relation[59] H. Assaf, A.A. Abdo, Life cycle assessment of incorporating recycled materials in pavement design, J. King Saud. Univ. Eng. Sci. (2022) 1–12, https://doi.org/ 10.1016/j.jksues.2022.04.001.
dc.relation[60] N. Bamber, R. Johnson, E. Laage, G. Dias, P. Tyedmers, N. Pelletier, Life cycle inventory and emissions modelling in organic field crop LCA studies: review and recommendations, Resour. Conserv. Recycl. 185 (106465) (2022) 1–23, https://doi.org/10.1016/j.resconrec.2022.106465.
dc.relation[61] S. Bressi, M. Primavera, J. Santos, A comparative life cycle assessment study with uncertainty analysis of cement treated base (CTB) pavement layers containing recycled asphalt pavement (RAP) materials, Resour. Conserv. Recycl. 180 (106160) (2022) 1–26, https://doi.org/10.1016/j. resconrec.2022.106160.
dc.relation[62] R. Polo-Mendoza, G. Martinez-Arguelles, R. Penabaena-Niebles, ˜ Environmental optimization of warm mix asphalt (WMA) design with recycled concrete aggregates (RCA) inclusion through artificial intelligence (AI) techniques, Results Eng. 17 (100984) (2023) 1–15, https://doi.org/10.1016/j. rineng.2023.100984.
dc.relation[63] X. Xu, et al., Potential use of recycled concrete aggregate (RCA) for sustainable asphalt pavements of the future: a state-of-the-art review, J. Clean. Prod. 344 (130893) (2022) 1–13, https://doi.org/10.1016/j.jclepro.2022.130893.
dc.relation[64] K.K. Razman, M.M. Hanafiah, A.W. Mohammad, An overview of LCA applied to various membrane technologies: progress, challenges, and harmonization, Environ. Technol. Innov. 27 (102803) (2022) 1–23, https://doi.org/10.1016/j.eti.2022.102803.
dc.relation[65] M. Sukhija, N. Saboo, A. Pani, Economic and environmental aspects of warm mix asphalt mixtures: a comparative analysis, Transp. Res. Part D Transp. Environ. 109 (103355) (2022) 1–17, https://doi.org/10.1016/j.trd.2022.103355.
dc.relation[66] S. Füchsl, F. Rheude, H. Roder, ¨ Life cycle assessment (LCA) of thermal insulation materials: a critical review, Clean. Mater. 5 (100119) (2022) 1–14, https:// doi.org/10.1016/j.clema.2022.100119.
dc.relation[67] A. Hicks, Seeing the people in LCA: agent based models as one possibility, Resour. Conserv. Recycl. Adv. 15 (200091) (2022) 1–7, https://doi.org/10.1016/j. rcradv.2022.200091.
dc.relation[68] ISO, ISO 14040: environmental management - life cycle assessment - principles and framework, Int. Organ. Stand (2006) 1–20.
dc.relation[69] ISO, ISO 14044: environmental management - life cycle assessment - requirements and guidelines, Int. Organ. Stand (2006) 1–46.
dc.relation[70] G. Finnveden, R. Arvidsson, A. Bjorklund, ¨ J. Guin´ee, R. Heijungs, M. Martin, Six areas of methodological debate on attributional life cycle assessment, E3S Web Conf. 349 (03007) (2022) 1–6, https://doi.org/10.1051/e3sconf/202234903007.
dc.relation[71] C. Ingrao, A. Lo Giudice, C. Tricase, C. Mbohwa, R. Rana, The use of basalt aggregates in the production of concrete for the prefabrication industry: Environmental impact assessment, interpretation and improvement, J. Clean. Prod. 75 (2014) 195–204, https://doi.org/10.1016/j.jclepro.2014.04.002.
dc.relation[72] W. Xing, V.W.Y. Tam, K.N. Le, A. Butera, J.L. Hao, J. Wang, Effects of mix design and functional unit on life cycle assessment of recycled aggregate concrete: evidence from CO2 concrete, Constr. Build. Mater. 348 (128712) (2022) 1–15, https://doi.org/10.1016/j.conbuildmat.2022.128712.
dc.relation[73] E. Hoxha, et al., Life cycle assessment of roads: Exploring research trends and harmonization challenges, Sci. Total Environ. 759 (143506) (2021) 1–16, https://doi.org/10.1016/j.scitotenv.2020.143506.
dc.relation[74] J.T. Harvey, J. Meijer, H. Ozer, I.L. Al-Qadi, A. Saboori, A. Kendall, FHWA-HIF-16-014: pavement life cycle assessment framework, Fed. Highw. Adm. (2016) 1–244.
dc.relation[75] R. Polo-Mendoza, G. Martinez-Arguelles, R. Penabaena-Niebles, ˜ A multi-objective optimization based on genetic algorithms for the sustainable design of Warm Mix Asphalt (WMA, Int. J. Pavement Eng. (2022) 1–21, https://doi.org/10.1080/10298436.2022.2074417.
dc.relation[76] R. Polo-Mendoza, R. Penabaena-Niebles, ˜ F. Giustozzi, G. Martinez-Arguelles, Eco-friendly design of Warm Mix Asphalt (WMA) with recycled concrete aggregate (RCA): a case study from a developing country, Constr. Build. Mater. 326 (126890) (2022) 1–16, https://doi.org/10.1016/j. conbuildmat.2022.126890.
dc.relation[77] I. Zaabar , K. Chatti, A field investigation of the effect of pavement type on fuel consumption, in: Proceedings of the First Congress of Transportation and Development Institute (TDI), 2011, 772–781. doi: 10.1061/41167(398)74.
dc.relation[78] K. Villadiego, M.A. Velay-Dabat, Outdoor thermal comfort in a hot and humid climate of Colombia: a field study in Barranquilla, Build. Environ. 75 (2014) 142–152, https://doi.org/10.1016/j.buildenv.2014.01.017.
dc.relation[79] J.G. Rueda-Bayona, C.J. Elles-Perez, E.H. S´ anchez-Cotte, A.L. ´ Gonzalez-Ariza, ´ G.D. Rivillas-Ospina, Identifying patterns of climate variability from principal component analysis – PCA, Fourier y k-means clustering, Tecnura 20 (50) (2016) 55–68, https://doi.org/10.14483/udistrital.jour.tecnura.2016.4.a04.
dc.relation[80] AASHTO. T307-99: Standard Method of Test for Determining the Resilient Modulus of Soils and Aggregate Materials, American Association of State Highway and Transportation Officials, Washington, DC., 2021, pp. 1–41.
dc.relation[81] NCHRP. NCHRP 1-37A: Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, National Cooperative Highway Research Program, Champaign, Illinois, 2004, pp. 1–4384.
dc.relation[82] S.-I. Lee, S. Hu, L.F. Walubita. Technical Report 0-6856-P1: Texas Perpetual Pavement Design and Construction Guidelines, Texas A&M Transportation Institute, College Station, Texas, USA, 2021, pp. 1–44.
dc.relation[83] S. Eskandarsefat, G. Dondi, C. Sangiorgi, Recycled and rubberized SMA modified mixtures: a comparison between polymer modified bitumen and modified fibre, Constr. Build. Mater. 202 (2019) 681–691, https://doi.org/10.1016/j.conbuildmat.2019.01.045.
dc.relation[84] L. Devulapalli, G. Sarang, S. Kothandaraman, Characteristics of aggregate gradation, drain down and stabilizing agents in stone matrix asphalt mixtures: a state of art review, J. Traffic Transp. Eng. 9 (2) (2022) 167–179, https://doi.org/10.1016/j.jtte.2021.10.007.
dc.relation[85] N.S. Mashaan, A.H. Ali, S. Koting, M.R. Karim, Performance evaluation of crumb rubber modified stone mastic asphalt pavement in Malaysia, Adv. Mater. Sci. Eng. (304676) (2013) 1–8, https://doi.org/10.1155/2013/304676.
dc.relation[86] M.J. Al-Kheetan, T. Azim, J. Byzyka, S.H. Ghaffar, M.M. Rahman, Performance of magnetite-based stone mastic asphalt (SMA) as a superior surface course material, Constr. Build. Mater. 322 (126463) (2022) 1–7, https://doi.org/10.1016/j.conbuildmat.2022.126463.
dc.relation[87] T. Mattinzioli, M. Sol-Sanchez, F. Moreno-Navarro, M.C. Rubio-Gamez, G. Martinez, Benchmarking the embodied environmental impacts of the design parameters for asphalt mixtures, Sustain. Mater. Technol. 32 (e00395) (2022) 1–16, https://doi.org/10.1016/j.susmat.2022.e00395.
dc.relation[88] M.T. Rahman, A. Mohajerani, Use of bitumen encapsulated cigarette butts in stone mastic asphalt, Constr. Build. Mater. 261 (120530) (2020) 1–10, https:// doi.org/10.1016/j.conbuildmat.2020.120530.
dc.relation[89] A. Chelovian, G. Shafabakhsh, Laboratory evaluation of Nano Al2O3 effect on dynamic performance of stone mastic asphalt, Int. J. Pavement Res. Technol. 10 (2) (2017) 131–138, https://doi.org/10.1016/j.ijprt.2016.11.004.
dc.relation[90] V. Yadykina, S. Tobolenko, A. Trautvain, A. Zhukova, The influence of stabilizing additives on physical and mechanical properties of stone mastic asphalt concrete, Procedia Eng. 117 (1) (2015) 376–381, https://doi.org/10.1016/j.proeng.2015.08.181.
dc.relation[91] E. Turbay, G. Martinez-Arguelles, T. Navarro-Donado, E. Sanchez-Cotte, R. Polo-Mendoza, E. Covilla-Valera, Rheological behaviour of WMA-modified asphalt binders with crumb rubber, Polymers 14 (4148) (2022) 1–22, https://doi.org/10.3390/polym14194148.
dc.relation[92] R.A. Assaggaf, M.R. Ali, S.U. Al-Dulaijan, M. Maslehuddin, Properties of concrete with untreated and treated crumb rubber – a review, J. Mater. Res. Technol. 11 (2021) 1753–1798, https://doi.org/10.1016/j.jmrt.2021.02.019.
dc.relation[93] L.G. Picado-Santos, S.D. Capit˜ ao, J.M.C. Neves, Crumb rubber asphalt mixtures: a literature review, Constr. Build. Mater. 247 (118577) (2020) 1–13, https:// doi.org/10.1016/j.conbuildmat.2020.118577.
dc.relation[94] R. Polo-Mendoza, et al., Ultraviolet ageing of bituminous materials: a comprehensive literature review from 2011 to 2022, Constr. Build. Mater. 350 (128889) (2022) 1–32, https://doi.org/10.1016/j.conbuildmat.2022.128889.
dc.relation[95] K.S.S. Chissama, L.G. Picado-Santos, Assessment of crumb rubber Stone Mastic asphalt potential to be used in Angola, Case Stud. Constr. Mater. 15 (e00598) (2021) 1–14, https://doi.org/10.1016/j.cscm.2021.e00598.
dc.relation[96] G. Malarvizhi, N. Senthil, C. Kamaraj, A study on recycling of crumb rubber and low density polyethylene blend on stone matrix asphalt, Int. J. Sci. Res. Publ. 2 (10) (2012) 1–16 [Online]. Available: ISSN 2250-3153.
dc.relation[97] G. Kumar, U.C. Sahoo, R.K. Rao, S. Bose, Design and evaluation of stone matrix asphalt using stiffer grade crumb rubber modified bitumen, Roads Bridg. Drog. i Most. 18 (2) (2019) 151–165, https://doi.org/10.7409/rabdim.019.010.
dc.relation[98] A. Ameli, J. Maher, A. Mosavi, N. Nabipour, R. Babagoli, N. Norouzi, Performance evaluation of binders and Stone Matrix Asphalt (SMA) mixtures modified by ground tire rubber (GTR), waste polyethylene terephthalate (PET) and anti stripping agents (ASAs, Constr. Build. Mater. 251 (118932) (2020) 1–15, https:// doi.org/10.1016/j.conbuildmat.2020.118932.
dc.relation[99] H. Ziari, H. Divandari, S.M. Seyed Ali Akbar, S.M. Hosseinian, Investigation of the effect of crumb rubber powder and warm additives on moisture resistance of SMA mixtures, Adv. Civ. Eng. (6653594) (2021) 1–12, https://doi.org/10.1155/2021/6653594.
dc.relation[100] C. Sangiorgi, P. Tataranni, A. Simone, V. Vignali, C. Lantieri, G. Dondi, Stone mastic asphalt (SMA) with crumb rubber according to a new dry-hybrid technology: a laboratory and trial field evaluation, Constr. Build. Mater. 182 (2018) 200–209, https://doi.org/10.1016/j.conbuildmat.2018.06.128.
dc.relation[101] Y. Dong, Y. Tan, Laboratory evaluation on performance of crumb rubber SMA, Adv. Mater. Res. 168–170 (2011) 1749–1755, https://doi.org/10.4028/www. scientific.net/AMR.168-170.1749.
dc.relation[102] Y. Luo, Z. Zhang, K. Zhang, B. Yang, J. Yang, Test evaluation on vibration reduction effect of compacted stone mastic asphalt mixture, J. Mater. Civ. Eng. 33 (5) (2021) 04021092, https://doi.org/10.1061/(ASCE)MT.1943-5533.0003675.
dc.relation[103] A. Subhy, D. Lo Presti, G. Airey, P. Edwards, Rubberised stone mastic asphalt mixtures: a performance-related evaluation, Road. Mater. Pavement Des. (2022) 1–21, https://doi.org/10.1080/14680629.2022.2136580.
dc.relation[104] INVIAS. Manual de Mantenimiento de Carreteras: Volumen 1 - Aspectos Informativos, Instituto Nacional de Vias, Bogota, Colombia, 2016, pp. 1–500.
dc.relation[105] D.L. Vega A, J. Santos, G. Martinez-Arguelles, Life cycle assessment of hot mix asphalt with recycled concrete aggregates for road pavements construction, Int. J. Pavement Eng. 23 (4) (2020) 923–936, https://doi.org/10.1080/10298436.2020.1778694.
dc.relation[106] D.L. Vega A, J. Santos, G. Martinez-Arguelles, Environmental performance evaluation of warm mix asphalt with recycled concrete aggregate for road pavements, Int. J. Pavement Eng. (2022) 1–14, https://doi.org/10.1080/10298436.2022.2064999.
dc.relation[107] G. Martinez-Arguelles, M.P. Acosta, M. Dugarte, L. Fuentes, Life cycle assessment of natural and recycled concrete aggregate production for road pavements applications in the northern region of colombia: case study, Transp. Res. Rec. 2673 (5) (2019) 397–406, https://doi.org/10.1177/0361198119839955.
dc.relation[108] S. Suh, M. Leighton, S. Tomar, C. Chen, Interoperability between ecoinvent ver. 3 and US LCI database: a case study, Int. J. Life Cycle Assess. 21 (9) (2016) 1290–1298, https://doi.org/10.1007/s11367-013-0592-2.
dc.relation[109] PR´e Sustainability. SimaPro Database Manual: Methods Library, SimaPro Website, Amersfoort, The Netherlands, 2020, pp. 1–98.
dc.relation[110] B.P. Weidema, et al.. Overview and Methodology: Data Quality Guideline for the Ecoinvent Database Version 3, Ecoinvent Association, Sankt Gallen, Switzerland, 2013, pp. 1–169.
dc.relation[111] E. Moreno-Ruiz, et al.. Documentation of Changes Implemented in the Ecoinvent Database v3.7 & v3.7.1, Ecoinvent Association, Sankt Gallen, Switzerland, 2020, pp. 1–126.
dc.relation[112] M. Deru, U.S. Life. U.S. Life Cycle Inventory Database Roadmap, National Renewable Energy Laboratory (NREL), Washington, D.C., USA, 2009, pp. 1–9.
dc.relation[113] J. Santos, S. Bressi, V. Cerezo, D. Lo Presti, M. Dauvergne, Life cycle assessment of low temperature asphalt mixtures for road pavement surfaces: a comparative analysis, Resour. Conserv. Recycl. 138 (2018) 283–297, https://doi.org/10.1016/j.resconrec.2018.07.012.
dc.relation[114] S. Suh, B.C. Lippiatt, Framework for hybrid life cycle inventory databases: a case study on the Building for Environmental and Economic Sustainability (BEES) database, Int. J. Life Cycle Assess. 17 (5) (2012) 604–612, https://doi.org/10.1007/s11367-012-0393-z.
dc.relation[115] M.A. Curran, J.G. Overly, P. Hofstetter, R. Muller, B.C. Lippiatt, BEES 2.0: building for environmental and economic sustainability peer review report, Natl. Inst. Stand. Technol. 6865 (2002) 1–38.
dc.relation[116] H. Babaizadeh, N. Haghighi, S. Asadi, R. Broun, D. Riley, Life cycle assessment of exterior window shadings in residential buildings in different climate zones, Build. Environ. 90 (2015) 168–177, https://doi.org/10.1016/j.buildenv.2015.03.038.
dc.relation[117] T.P. Gloria, B.C. Lippiatt, J. Cooper, Life cycle impact assessment weights to support environmentally preferable purchasing in the United States, Environ. Sci. Technol. 41 (21) (2007) 7551–7557, https://doi.org/10.1021/es070750.
dc.relation[118] S. Sackey, B.-S. Kim, Environmental and economic performance of asphalt shingle and clay tile roofing sheets using life cycle assessment approach and TOPSIS, J. Constr. Eng. Manag. 144 (11) (2018) 04018104, https://doi.org/10.1061/(ASCE)CO.1943-7862.0001564.
dc.relation[119] H.L. Tuomisto, I.D. Hodge, P. Riordan, D.W. MacDonald, Exploring a safe operating approach to weighting in life cycle impact assessment - a case study of organic, conventional and integrated farming systems, J. Clean. Prod. 37 (2012) 147–153, https://doi.org/10.1016/j.jclepro.2012.06.025.
dc.relation[120] S. Su, C. Zhu, X. Li, A dynamic weighting system considering temporal variations using the DTT approach in LCA of buildings, J. Clean. Prod. 220 (2019) 398–407, https://doi.org/10.1016/j.jclepro.2019.02.140.
dc.relation[121] J. Miao, X. Wang, S. Bai, Y. Xiang, L. Li, Distance-to-target weighting factor sets in LCA for China under 2030 vision, J. Clean. Prod. 314 (128010) (2021) 1–9, https://doi.org/10.1016/j.jclepro.2021.128010.
dc.relation[122] A. Nikkhah, S. Firouzi, M. El Haj Assad, S. Ghnimi, Application of analytic hierarchy process to develop a weighting scheme for life cycle assessment of agricultural production, Sci. Total Environ. 665 (2019) 538–545, https://doi.org/10.1016/j.scitotenv.2019.02.170.
dc.relation[123] C. Du, L.C. Dias, F. Freire, Robust multi-criteria weighting in comparative LCA and S-LCA: A case study of sugarcane production in Brazil, J. Clean. Prod. 218 (2019) 708–717, https://doi.org/10.1016/j.jclepro.2019.02.035.
dc.relation[124] A. Ferreira, J. Santos, LCCA system for pavement management: sensitivity analysis to the discount rate, Procedia Soc. Behav. Sci. 53 (2012) 1174–1183, https://doi.org/10.1016/j.sbspro.2012.09.966.
dc.relation[125] J. Krastina, F. Romagnoli, K. Balina, SWOT analysis for a further LCCA-based techno-economic feasibility of a biogas system using seaweeds feedstock, Energy Procedia 128 (2017) 491–496, https://doi.org/10.1016/j.egypro.2017.09.065.
dc.relation[126] E. Kyriaki, C. Konstantinidou, E. Giama, A.M. Papadopoulos, Life cycle analysis (LCA) and life cycle cost analysis (LCCA) of phase change materials (PCM) for thermal applications: a review, Int. J. Energy Res. 42 (9) (2018) 3068–3077, https://doi.org/10.1002/er.3945.
dc.relation[127] D. Wu, C. Yuan, H. Liu, A risk-based optimisation for pavement preventative maintenance with probabilistic LCCA: a Chinese case, Int. J. Pavement Eng. 18 (1) (2017) 11–25, https://doi.org/10.1080/10298436.2015.1030743.
dc.relation[128] C. Kim, E.-B. Lee, J.T. Harvey, A. Fong, R. Lott, Automated sequence selection and cost calculation for maintenance and rehabilitation in highway life-cycle cost analysis (LCCA, Int. J. Transp. Sci. Technol. 4 (1) (2015) 61–75, https://doi.org/10.1260/2046-0430.4.1.61.
dc.relation[129] H. Gholami, H.N. Røstvik, N.M. Kumar, S.S. Chopra, Lifecycle cost analysis (LCCA) of tailor-made building integrated photovoltaics (BIPV) façade: Solsmaragden case study in Norway, Sol. Energy 211 (2020) 488–502, https://doi.org/10.1016/j.solener.2020.09.087.
dc.relation[130] USDOT. Life-Cycle Cost Analysis Prime, U.S. Department of Transportation Federal Highway Administration - Office of Asset Management, Washington, DC, USA, 2002, pp. 1–24.
dc.relation[131] J. Walls III, M.R. Smith. FHWA-SA-98-079: Life-Cycle Cost Analysis in Pavement Design, Federal Highway Administration, Washington, DC, USA, 1998, pp. 1–107.
dc.relation[132] C. Luerssen, O. Gandhi, T. Reindl, C. Sekhar, D. Cheong, Life cycle cost analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications, Appl. Energy 273 (115145) (2020) 1–18, https://doi.org/10.1016/j.apenergy.2020.115145.
dc.relation[133] M. Altaf, et al., Evaluating the awareness and implementation level of LCCA in the construction industry of Malaysia, Ain Shams Eng. J. 13 (101686) (2022) 1–9, https://doi.org/10.1016/j.asej.2021.101686.
dc.relation[134] R. Liu, B.W. Smartz, B. Descheneaux, LCCA and environmental LCA for highway pavement selection in Colorado, Int. J. Sustain. Eng. 8 (2) (2015) 102–110, https://doi.org/10.1080/19397038.2014.958602.
dc.relation[135] Y.-S. Shin, K. Cho, BIM application to select appropriate design alternative with consideration of LCA and LCCA, Math. Probl. Eng. 281640 (2015) 1–14, https://doi.org/10.1155/2015/281640.
dc.relation[136] B. Yu, Q. Lu, J. Xu, An improved pavement maintenance optimization methodology: Integrating LCA and LCCA, Transp. Res. Part A Policy Pract. 55 (2013) 1–11, https://doi.org/10.1016/j.tra.2013.07.004.
dc.relation[137] J. Wennstrom, ¨ R. Karlsson, Possibilities to reduce pavement rehabilitation cost of a collision-free road investment using an LCCA design procedure, Int. J. Pavement Eng. 17 (4) (2014) 331–342, https://doi.org/10.1080/10298436.2014.993191.
dc.relation[138] V. Mandapaka, I. Basheer, K. Sahasi, P. Ullidtz, J.T. Harvey, N. Sivaneswaran, Mechanistic-empirical and life-cycle cost analysis for optimizing flexible pavement maintenance and rehabilitation, J. Transp. Eng. 138 (5) (2012) 625–633, https://doi.org/10.1061/(ASCE)TE.1943-5436.0000367.
dc.relation[139] J. Li, F. Xiao, L. Zhang, S.N. Amirkhanian, Life cycle assessment and life cycle cost analysis of recycled solid waste materials in highway pavement: a review, J. Clean. Prod. 233 (2019) 1182–1206, https://doi.org/10.1016/j.jclepro.2019.06.061.
dc.relation[140] INVIAS, Analisis ´ de Precios Unitarios (APUS) para Atl´ antico-Colombia, Inst. Nac. Vias (2022) 1–7.
dc.relation[141] P. Babashamsi, et al., A comparative study of probabilistic and deterministic methods for the direct and indirect costs in life-cycle cost analysis for airport pavements, Sustainability 14 (3819) (2022) 1–20, https://doi.org/10.3390/su14073819.
dc.relation[142] P. Babashamsi, et al., Perspective of life-cycle cost analysis and risk assessment for airport pavement in delaying preventive maintenance, Sustainability 14 (2905) (2022) 1–14, https://doi.org/10.3390/su14052905.
dc.relation[143] Banco de la República - Colombia (BRC), Precios e inflacion, ´ BRC Website, 2022. https://www.banrep.gov.co/es/estadisticas/precios-e-inflacion (Accessed 15 November 2022).
dc.relation[144] A. Copeland, FHWA-HRT-11–021: reclaimed asphalt pavement in asphalt mixtures: state of the practice, Fed. Highw. Adm., 2011.
dc.relation[145] N. Saboo, N. Prasad, M. Sukhija, M. Chaudhary, A.K. Chandrappa, Effect of the use of recycled asphalt pavement (RAP) aggregates on the performance of pervious paver blocks (PPB, Constr. Build. Mater. 262 (2020), 120581, https://doi.org/10.1016/j.conbuildmat.2020.120581.
dc.relation[146] M. Hoy, S. Horpibulsuk, A. Arulrajah, Strength development of Recycled Asphalt Pavement - Fly ash geopolymer as a road construction material, Constr. Build. Mater. 117 (2016) 209–219, https://doi.org/10.1016/j.conbuildmat.2016.04.136.
dc.relation[147] M. Guo, et al., Effect of WMA-RAP technology on pavement performance of asphalt mixture: a state-of-the-art review, J. Clean. Prod. 266 (2020), 121704, https://doi.org/10.1016/j.jclepro.2020.121704.
dc.relation[148] D.X. Lu, M. Saleh, Laboratory evaluation of warm mix asphalt incorporating high RAP proportion by using evotherm and sylvaroad additives, Constr. Build. Mater. 114 (2016) 580–587, https://doi.org/10.1016/j.conbuildmat.2016.03.200.
dc.relation[149] J. Habbouche, et al., Review from multiple perspectives for the state of the practice on the use of recycled asphalt materials and recycling agents in asphalt concrete surface mixtures, Transp. Res. Rec. (2021) 1–14, https://doi.org/10.1177/03611981211061130.
dc.relation[150] A. Stimilli, A. Virgili, F. Canestrari, New method to estimate the ‘re-activated’ binder amount in recycled hot-mix asphalt, Road. Mater. Pavement Des. 16 (S1) (2015) 442–459, https://doi.org/10.1080/14680629.2015.1029678.
dc.relation[151] L.P. Ingrassia, F. Cardone, G. Ferrotti, F. Canestrari, Monitoring the evolution of the structural properties of warm recycled pavements with falling weight deflectometer and laboratory tests, Road. Mater. Pavement Des. 22 (S1) (2021) S69–S82, https://doi.org/10.1080/14680629.2021.1906302.
dc.relation[152] R. Miro, ´ G. Vald´es, A. Martínez, P. Segura, C. Rodríguez, Evaluation of high modulus mixture behaviour with high reclaimed asphalt pavement (RAP) percentages for sustainable road construction, Constr. Build. Mater. 25 (10) (2011) 3854–3862, https://doi.org/10.1016/j.conbuildmat.2011.04.006.
dc.relation[153] T.J. Van Dam et al., FHWA-HIF-15–002: Towards sustainable pavement systems: a reference document, Fed. Highw. Adm., 2015.
dc.relation[154] D. Salazar-Carreno, ˜ R.G. Garcia-Caceres, A. Santa, High volume fly ash concrete activated with naoh, sodium sulfate and limestone, INGE CUC 18 (1) (2022) 243–250, https://doi.org/10.17981/ingecuc.18.1.2022.17.
dc.relation[155] N.A. Brake, S. Oruji, L. Haselbach, Increasing compressive strength of recycled aggregate concrete using high fineness bottom ash blended cement, Int. Conf. Transp. Dev. (2018) 401–410, https://doi.org/10.1061/9780784481554.041.
dc.relation[156] H. Tan, et al., Compressive strength and hydration of high-volume wet-grinded coal fly ash cementitious materials, Constr. Build. Mater. 206 (2019) 248–260, https://doi.org/10.1016/j.conbuildmat.2019.02.038.
dc.relation[157] E.R. Teixeira, A. Camoes, ˜ F.G. Branco, J.B. Aguiar, R. Fangueiro, Recycling of biomass and coal fly ash as cement replacement material and its effect on hydration and carbonation of concrete, Waste Manag. 94 (2019) 39–48, https://doi.org/10.1016/j.wasman.2019.05.044.
dc.relation[158] K. Coopamootoo, R. Rughooputh, Effects of sulphate salts on concrete with untreated coal fly ash (CFA) as partial cement replacement, Struct. Surv. 34 (2) (2016) 117–134, https://doi.org/10.1108/SS-02-2015-0014.
dc.relation[159] D. Xuan, X. Jiang, Y. Fang, Can globalization and the green economy hedge natural resources? Functions of population growth and financial development in BRICS countries, Resour. Policy 82 (103414) (2023) 1–10, https://doi.org/10.1016/j.resourpol.2023.103414.
dc.relation[160] B.-C. Xie, L.-F. Shang, S.-B. Yang, B.-W. Yi, Dynamic environmental efficiency evaluation of electric power industries: evidence from OECD (Organization for Economic Cooperation and Development) and BRIC (Brazil, Russia, India and China) countries, Energy 74 (2014) 147–157, https://doi.org/10.1016/j. energy.2014.04.109.
dc.relation[161] I.G. Radulescu, M. Panait, C. Voica, BRICS countries challenge to the world economy new trends, Procedia Econ. Financ. 8 (2014) 605–613, https://doi.org/ 10.1016/S2212-5671(14)00135-X.
dc.relation[162] A. Jahanger, M. Usman, M. Murshed, H. Mahmood, D. Balsalobre-Lorente, The linkages between natural resources, human capital, globalization, economic growth, financial development, and ecological footprint: The moderating role of technological innovations, Resour. Policy 76 (102569) (2022) 1–18, https:// doi.org/10.1016/j.resourpol.2022.102569.
dc.relation[163] R.A. Badeeb, K.R. Szulczyk, S. Zahra, T.C. Mukherjee, Innovation dynamics in the natural resource curse hypothesis: a new perspective from BRICS countries, Resour. Policy 81 (103337) (2023) 1–11, https://doi.org/10.1016/j.resourpol.2023.103337.
dc.relation21
dc.relation1
dc.relation18
dc.rights© 2023 The Authors. Published by Elsevier Ltd.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcesciencedirect.com/science/article/pii/S2214509523002929
dc.subjectEconomic efficiency
dc.subjectEnvironmental impacts
dc.subjectLife cycle assessment (LCA)
dc.subjectLife cycle cost analysis (LCCA)
dc.subjectPerpetual pavements (PPs)
dc.titleEnvironmental and economic feasibility of implementing perpetual pavements (PPs) against conventional pavements: A case study of Barranquilla city, Colombia
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.coverageBarranquilla
dc.coverageColombia


Este ítem pertenece a la siguiente institución