dc.creatorHernández Fernández, Joaquín
dc.creatorMarulanda, Karen
dc.creatorPuello-Polo, Esneyder
dc.date2023-08-14T20:26:13Z
dc.date2024-02-16
dc.date2023-08-14T20:26:13Z
dc.date2023-02-16
dc.date.accessioned2023-10-03T19:39:17Z
dc.date.available2023-10-03T19:39:17Z
dc.identifierHernández-Fernández, J., Marulanda, K. & Puello-Polo, E. A new Valorization Route of Petrochemical Wastewater: Recovery of Phenolic Derivatives and their Subsequent Application in a PP Matrix for the Improvement of their Durability in Multiple Applications. J Polym Environ 31, 2902–2911 (2023). https://doi.org/10.1007/s10924-023-02764-7
dc.identifier1566-2543
dc.identifierhttps://hdl.handle.net/11323/10386
dc.identifier10.1007/s10924-023-02764-7
dc.identifier1572-8900
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171069
dc.descriptionWastewater from industrial processes contains different compounds that can be of great use to improve its circularity. The potential of wastewater can be exploited by applying extraction techniques to obtain compounds of interest and recirculate them in the process. In this study, the residual water generated during the polypropylene deodorization process was evaluated. The residues of the additives used during the synthesis of the resin are extracted from these waters. With this recovery, contamination of water bodies is avoided and the circularity of the polymer production process is increased.Solid phase extraction and HPLC were used to recover the phenolic compound, obtaining a recovery of more than 95%. FTIR and DSC were applied to evaluate the purity of the extracted compound. Finally, the effectiveness of the phenolic compound was evaluated by applying it to the resin and evaluating its thermal stability by TGA, obtaining as a result, that the recovered additive improves the thermal properties of the material.
dc.format1 página
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherSpringer New York
dc.publisherUnited States
dc.relationJournal of Polymers and the Environment
dc.relationJafarinejad S (2016) Petroleum Waste Treatment and Pollution Control. p. 362
dc.relationKumar L, Chugh M, Kumar S, Kumar K, Sharma J, Bharadvaja N (2022) “Remediation of petrorefinery wastewater contaminants: A review on physicochemical and bioremediation strategies,” Process Saf. Environ. Prot, vol. 159, pp. 362–375, Mar. doi: https://doi.org/10.1016/j.psep.2022.01.009
dc.relationSingh S, Shikha (2019) “Treatment and Recycling of Wastewater from Oil Refinery/Petroleum Industry,” pp.303–332. doi: https://doi.org/10.1007/978-981-13-1468-1_10
dc.relation“Recent developments (2022) in hazardous pollutants removal from wastewater and water reuse within a circular economy | npj Clean Water.” https://www.nature.com/articles/s41545-022-00154-5 (accessed Aug. 22,
dc.relationGhimire N, Wang S (2018) Biological Treatment of Petrochemical Wastewater. Intechopen. doi: https://doi.org/10.5772/intechopen.79655
dc.relationYu L, Han M, He F (2017) “A review of treating oily wastewater,” Arab. J. Chem, vol. 10, p. 1913–1922, May. doi: https://doi.org/10.1016/j.arabjc.2013.07.020
dc.relationHernández-Fernandez J, Rodríguez E (Dec. 2019) Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography. J Chromatogr A 1607:460442. doi: https://doi.org/10.1016/j.chroma.2019.460442
dc.relationHernández-Fernández J, Lopez-Martinez J, Barceló D (Jan. 2021) Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene. Chemosphere 263:128027. doi: https://doi.org/10.1016/j.chemosphere.2020.128027
dc.relationHernández Fernández J et al (2022) “Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC),” Sustainability, vol. 14, no. 9, p. 4920, doi: https://doi.org/10.3390/su14094920
dc.relationMohamad said K, Ismail A, Abdul Karim Z, Abdullah S, Hafeez A (May 2021) A review of Technologies for the Phenolic Compounds recovery and phenol removal from Wastewater. Process Saf Environ Prot 151. doi: https://doi.org/10.1016/j.psep.2021.05.015
dc.relationMohd DrA (Mar. 2020) Presence of phenol in wastewater effluent and its removal: an overview. Int J Environ Anal Chem 1–23. doi: https://doi.org/10.1080/03067319.2020.1738412
dc.relation“Microbial Degradation of Phenol : A Comparative Study.” Accessed: Aug. 22, 2022. [Online]. Available: https://core.ac.uk/download/pdf/53189005.pdf
dc.relationGucbilmez Y (2022) Physiochemical Properties and removal methods of Phenolic Compounds from Waste Waters. IntechOpen. doi: https://doi.org/10.5772/intechopen.101545
dc.relationAlbuquerque B, Heleno S, Oliveira M, Barros L, Ferreira I (2020) Phenolic compounds: current industrial applications, limitations and future challenges. Food Funct Nov. doi: https://doi.org/10.1039/D0FO02324H
dc.relationRho S-J, Mun S, Park J, Kim Y-R (2021) “Retarding Oxidative and Enzymatic Degradation of Phenolic Compounds Using Large-Ring Cycloamylose,” Foods, vol. 10, no. 7, p. 1457, Jun. doi: https://doi.org/10.3390/foods10071457
dc.relation“Degradation of Polymers (2022) ” https://polymerdatabase.com/polymer%20chemistry/Thermal%20Degradation.html
dc.relationPrenzler PD, Ryan D, Robards K (2021) “Chapter 1 Introduction to Basic Principles of Antioxidant Activity,” pp. 1–62, doi: https://doi.org/10.1039/9781839165337-00001
dc.relationLobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4(8):118–126. doi: https://doi.org/10.4103/0973-7847.70902
dc.relationSantos-Sánchez NF, Salas-Coronado R, Villanueva-Cañongo C, Hernández-Carlos B (2019) Antioxidant compounds and their antioxidant mechanism. IntechOpen. doi: https://doi.org/10.5772/intechopen.85270
dc.relationHernández-Fernández J, Rayón E, López J, Arrieta MP (Nov. 2019) Enhancing the Thermal Stability of Polypropylene by blending with Low amounts of Natural Antioxidants. Macromol Mater Eng 304(11):1900379. doi: https://doi.org/10.1002/mame.201900379
dc.relationAlsabri A, Tahir F, Al-Ghamdi SG (2022) “Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region,” Mater. Today Proc, vol. 56, pp. 2245–2251, doi: https://doi.org/10.1016/j.matpr.2021.11.574
dc.relationThörnblom K, Palmlöf M, Hjertberg T (2011) “The extractability of phenolic antioxidants into water and organic solvents from polyethylene pipe materials – Part I,” Polym. Degrad. Stab, vol. 96, no. 10, pp. 1751–1760, Oct. doi: https://doi.org/10.1016/j.polymdegradstab.2011.07.023
dc.relation“Determination of BHT (2022) Irganox 1076, and Irganox 1010 antioxidant additives in polyethylene by high performance liquid chromatography | Analytical Chemistry.” https://pubs.acs.org/doi/pdf/10.1021/ac50059a009
dc.relationGómez-Contreras P, Figueroa-Lopez KJ, Hernández-Fernández J, Cortés M, Rodríguez, Ortega-Toro R (2021) “Effect of Different Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea rotundata L.) Starch and Its Application in Strawberry (Fragaria vesca L.) Preservation,” Appl. Sci, vol. 11, no. 22, p. 11057, Nov. doi: https://doi.org/10.3390/app112211057
dc.relationFernández JH, Guerra Y, Cano H (Jan. 2022) Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in Petrochemical Complexes Producing Polypropylene in South America. Molecules 27 no. 15, Art. no. 15. doi: https://doi.org/10.3390/molecules27154832
dc.relation“Extraction of polypropylene additives (2022) and their analysis by HPLC | SpringerLink.” https://link.springer.com/article/10.1007/BF02466639 (accessed Aug. 22,
dc.relationJordan SL, Taylor LT (Jan. 1997) HPLC separation with Solvent Elimination FTIR detection of Polymer Additives. J Chromatogr Sci 35(1):7–13. doi: https://doi.org/10.1093/chromsci/35.1.7
dc.relation“HPLC Separation with Solvent Elimination FTIR Detection of Polymer Additives (2022) | Journal of Chromatographic Science | Oxford Academic.” https://academic.oup.com/chromsci/article/35/1/7/323477?login=false (accessed Aug. 22,
dc.relationJoaquin H-F, Juan L-M (Jan. 2022) Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene. J Anal Appl Pyrolysis 161:105385. doi: https://doi.org/10.1016/j.jaap.2021.105385
dc.relationChacon H et al (Apr. 2022) Effect of Addition of Polyurea as an Aggregate in Mortars: analysis of microstructure and strength. Polymers 14:1753. doi: https://doi.org/10.3390/polym14091753
dc.relationCoutinho FMB “Estudo da interação entre as fases da mistura poliestireno/elastômeros butadiênicos: aspectos morfológicos e térmicos,” p.10
dc.relation“Irganox 1010 - FTIR - Spectrum - SpectraBase,” Aug. 22 (2022) https://spectrabase.com/spectrum/Jmmw3OvuB3P (accessed Aug. 22, 2022)
dc.relation“Irganox 1010 - FTIR (2022) - Spectrum - SpectraBase.” https://spectrabase.com/spectrum/Jmmw3OvuB3P
dc.relation“Quimica_Organica_-_John_McMurry_-_8va_Edicion20200311-84302-4xfc11-with-cover-page-v2.pdf.” Accessed: Aug. 22, 2022. [Online]. Available: https://d1wqtxts1xzle7.cloudfront.net/62339803/Quimica_Organica_-_John_McMurry_-_8va_Edicion20200311-84302-4xfc11-with-cover-page-v2.pdf?Expires=1661155451&Signature=Ovo4EwSevsD17Z1wjV8DW5PLkQhw7CFtoDiWL8ME-Ys3SJLE64B4lvIqK9REMB845uLHhbWz6M15dUeo1xic-SF4XfzFxSD6Vaka7kdbxumosYAWhmv2sZKjVUvW~NaHqVygICL~VFi~RWdB66iK9XSfW2K5M~sV~RHqRgLaNTiKreFDG09Vfepayi9j2sqeX~B3Yy4~fsvEPuA8oJW2z~ZYbq-aBc6qOgxm4QCgMzxPn~0GlGVuFh1FPJPi0apuuZtP438C5~acJrI6jU4jLyCjnxws5LUa6cBKepVoUxpGN7Ymn4tSe40cz032TrqjdrHtzrNj7Aa805WI5CoKpg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
dc.relation“Transport of small (1992) molecules in polyolefins. I. Diffusion of irganox 1010 in polyethylene - Földes – 1992 - Journal of Applied Polymer Science - Wiley Online Library.” https://onlinelibrary.wiley.com/doi/abs/10.1002/app.070460317 (accessed Aug. 22, 2022)
dc.relationHernández-Fernández J (2021) Quantification of arsine and phosphine in industrial atmospheric emissions in Spain and Colombia. Implementation of modified zeolites to reduce the environmental impact of emissions. Atmospheric Pollution Research 12:167–176. https://doi.org/10.1016/j.apr.2021.01.019
dc.relationJoaquin H-F, Juan L (2020) Quantification of poisons for Ziegler Natta catalysts and ffects on the production of polypropylene by gas chromatographic with simultaneous etection: pulsed discharge helium ionization, mass spectrometry, and flame onization. J Chromatogr A 1614:460736. https://doi.org/10.1016/j.chroma.2019.460736
dc.relationHernández-Fernández J Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale.Journal of Chromatography A2020;1628. https://doi.org/10.1016/j.chroma.2020.461478
dc.relationHernández-Fernández J, Lopez-Martinez J (2021) Damià Barceló. Development and validation of a methodology for quantifying parts-per-billion levels of arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry. J Chromatogr A 1637:461833. https://doi.org/10.1016/j.chroma.2020.461833
dc.relationHernández-Fernández J, López-Martínez J (2021) Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis. J Anal Appl Pyrol 155. https://doi.org/10.1016/j.jaap.2021.105052
dc.relationHeidis, Cano (2022) John Fredy Ríos-Rojas, Joaquin Hernández-Fernández, Wilson Bernal Herrera, Mayka Bautista Betancur, Lorcy De La Hoz Vélez and Lidy Agámez González. Impact of Environmental Pollution in the sustainability of Architectural Heritage: Case Study from Cartagena of India. Colombia Sustain 14:189. https://doi.org/10.3390/su14010189
dc.relationPavon C, Aldas M (2021) Joaquín Hernandez-Fernandez, Juan Lopez-Martínez. Comparative characterization of gum rosins for their use as sustainable additives in polymeric matrices. J Appl Polym Sci e51734. https://doi.org/10.1002/app.51734
dc.relationPavon C, Aldas M, López-Martínez J (2021) Joaquín Hernández-Fernández and Marina Patricia Arrieta. Films based on thermoplastic starch blended with Pine Resin derivatives for Food Packaging. Foods 10:1171. https://doi.org/10.3390/foods10061171
dc.relationJoaquín Hernández-Fernández JR, Castro-Suarez AT, Toloza (2022) Iron oxide powder as responsible for the generation of Industrial Polypropylene Waste and as a Co-Catalyst for the pyrolysis of non-additive resins. Int J Mol Sci 23:11708. https://doi.org/10.3390/ijms231911708
dc.relationJoaquín H-F, Vivas-Reyes R, Carlos AT, Toloza (2022) Experimental study of the impact of Trace amounts of Acetylene and Methylacetylene on the synthesis, Mechanical and Thermal Properties of Polypropylene. Int J Mol Sci 23:12148. https://doi.org/10.3390/ijms232012148
dc.relationJoaquín Hernández-Fernández Y, Guerra Esneyder Puello-Polo and Edgar Marquez. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene, Polymers 2022, 14,3123. https://doi.org/10.3390/polym14153123
dc.relationJoaquín Hernández-Fernández H, Cano M, Aldas Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene, Polymers 2022, 14,3910. https://doi.org/10.3390/polym14183910
dc.relationJoaquín Hernández–Fernández, Guerra Y, Espinosa E (2022) Development and application of a principal component analysis model to quantify the Green Ethylene Content in Virgin Impact Copolymer Resins during their synthesis on an Industrial Scale. J Polym Environ. https://doi.org/10.1007/s10924-022-02557-4
dc.relation2911
dc.relation2902
dc.relation31
dc.rights© 2023 Springer Nature
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourcehttps://link.springer.com/article/10.1007/s10924-023-02764-7
dc.subjectRecovery
dc.subjectPhenolic compounds
dc.subjectIrganox 1010
dc.subjectExtraction
dc.subjectCircularity
dc.titleA new valorization route of petrochemical wastewater: recovery of phenolic derivatives and their subsequent application in a pp matrix for the improvement of their durability in multiple applications
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/draft
dc.typehttp://purl.org/coar/version/c_b1a7d7d4d402bcce


Este ítem pertenece a la siguiente institución