dc.creatorCuriel-Regueros, Agustín
dc.creatorArdigò, Luca Paolo
dc.creatorBustamante-Sánchez, Álvaro
dc.creatorTornero Aguilera, José Francisco
dc.creatorFuentes García, Juan Pedro
dc.creatorClemente-Suárez, Vicente Javier
dc.date2022-06-16T14:16:33Z
dc.date2022-06-16T14:16:33Z
dc.date2022
dc.date.accessioned2023-10-03T19:38:59Z
dc.date.available2023-10-03T19:38:59Z
dc.identifierCuriel-Regueros, Agustín, Luca P. Ardigò, Álvaro Bustamante-Sánchez, José F. Tornero-Aguilera, Juan P. Fuentes-García, and Vicente J. Clemente-Suárez. 2022. "Body Composition Symmetry in Aircraft Pilots" Symmetry 14, no. 2: 356. https://doi.org/10.3390/sym14020356
dc.identifierhttps://hdl.handle.net/11323/9263
dc.identifier10.3390/sym14020356
dc.identifier2073-8994
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9171021
dc.descriptionThe purpose of this study was to analyze the body composition symmetry in upper and lower body segments of aircrafts pilots. To reach the study aim, body composition in upper and lower body segments of 206 male aircraft pilots of the Spanish Army (23.1 ± 6.87 years) and 105 civilians (24.0 ± 6.29 years) were evaluated by a bioimpedance analyser (InBody 720, Biospace Co. Ltd., Seoul, Korea). Aircraft pilots presented a tendency to dysmetria in upper and lower body segments, showing fitter values in the protagonist side when performing flight functions. Dysmetria could be detrimental during flight manoeuvres and produce injuries in aircraft pilots. It would be recommended to design specific training protocols to improve this imbalance. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
dc.format8 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.publisherSwitzerland
dc.relationSymmetry
dc.relationKumar, U.; Parkash, V.; Mandal, M.K. Stress in Extreme Conditions: A Military Perspective. Stress Work Perspect. Underst. Manag. Stress 2013, 21, 101–128.
dc.relationGates, M.A.; Holowka, D.W.; Vasterling, J.J.; Keane, T.M.; Marx, B.P.; Rosen, R.C. Posttraumatic Stress Disorder in Veterans and Military Personnel: Epidemiology, Screening, and Case Recognition. Psychol. Serv. 2012, 9, 361
dc.relationWeeks, S.R.; McAuliffe, C.L.; DuRussel, D.; Pasquina, P.F. Physiological and Psychological Fatigue in Extreme Conditions: The Military Example. PM&R 2010, 2, 438–441.
dc.relationBrunet, A.; Monson, E.; Liu, A.; Fikretoglu, D. Trauma Exposure and Posttraumatic Stress Disorder in the Canadian Military. Can. J. Psychiatry 2015, 60, 488–496.
dc.relationOlsen, O.K.; Pallesen, S.; Jarle, E. The Impact of Partial Sleep Deprivation on Moral Reasoning in Military Officers. Sleep 2010, 33, 1086–1090.
dc.relationKolka, M.A.; Latzka, W.A.; Montain, S.J.; Corr, W.P.; O’Brien, K.K.; Sawka, M.N. Effectiveness of Revised Fluid Replacement Guidelines for Military Training in Hot Weather. Aviat. Space Environ. Med. 2003, 74, 242–246.
dc.relationGutiérrez, H.M.; Bastidas, A.R.; Pachón, L.; Hincapié, G.A. Indirect Oxygen Consumption (VO2 ) in Military Diagnosed with Acute Mountain Sickness. Rev. Med. 2015, 23, 17–23.
dc.relationThomas, J.L.; Adler, A.B.; Wittels, P.; Enne, R.; Johannes, B. Comparing Elite Soldiers’ Perceptions of Psychological and Physical Demands during Military Training. Mil. Med. 2004, 169, 526–530.
dc.relationRichmond, V.L.; Horner, F.E.; Wilkinson, D.M.; Rayson, M.P.; Wright, A.; Izard, R. Energy Balance and Physical Demands during an 8-Week Arduous Military Training Course. Mil. Med. 2014, 179, 421–427.
dc.relationGharasi-Manshadi, M.; Meskarpour-Amiri, M.; Mehdizadeh, P. Lost Productivity among Military Personnel with Cardiovascular Disease. BMJ Mil. Health 2018, 164, 235–239.
dc.relationHartmann, E.; Sunde, T.; Kristensen, W.; Martinussen, M. Psychological Measures as Predictors of Military Training Performance. J. Personal. Assess. 2003, 80, 87–98.
dc.relationPierce, J.R.; DeGroot, D.W.; Grier, T.L.; Hauret, K.G.; Nindl, B.C.; East, W.B.; McGurk, M.S.; Jones, B.H. Body Mass Index Predicts Selected Physical Fitness Attributes but Is Not Associated with Performance on Military Relevant Tasks in US Army Soldiers. J. Sci. Med. Sport 2017, 20, S79–S84.
dc.relationOrantes-Gonzalez, E.; Heredia-Jimenez, J.; Escabias, M. Body Mass Index and Aerobic Capacity: The Key Variables for Good Performance in Soldiers. Eur. J. Sport Sci. 2021, 1956599.
dc.relationKopp, W. How Western Diet and Lifestyle Drive the Pandemic of Obesity and Civilization Diseases. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 2221.
dc.relationVoss, J.D.; Pavela, G.; Stanford, F.C. Obesity as a Threat to National Security: The Need for Precision Engagement. Int. J. Obes. 2019, 43, 437–439.
dc.relationFriedl, K.E. Body Composition and Military Performance—Many Things to Many People. J. Strength Cond. Res. 2012, 26, S87–S100.
dc.relationAckland, T.R.; Lohman, T.G.; Sundgot-Borgen, J.; Maughan, R.J.; Meyer, N.L.; Stewart, A.D.; Müller, W. Current Status of Body Composition Assessment in Sport. Sports Med. 2012, 42, 227–249.
dc.relationHoerster, K.D.; Lehavot, K.; Simpson, T.; McFall, M.; Reiber, G.; Nelson, K.M. Health and Health Behavior Differences: US Military, Veteran, and Civilian Men. Am. J. Prev. Med. 2012, 43, 483–489.
dc.relationHarty, P.S.; Friedl, K.E.; Nindl, B.C.; Harry, J.R.; Vellers, H.L.; Tinsley, G.M. Military Body Composition Standards and Physical Performance: Historical Perspectives and Future Directions. J. Strength Cond. Res. 2021
dc.relationVillafaina, S.; Fuentes-García, J.P.; Gusi, N.; Tornero-Aguilera, J.F.; Clemente-Suárez, V.J. Psychophysiological Response of Military Pilots in Different Combat Flight Maneuvers in a Flight Simulator. Physiol. Behav. 2021, 238, 113483.
dc.relationHonkanen, T.; Mäntysaari, M.; Leino, T.; Avela, J.; Kerttula, L.; Haapamäki, V.; Kyröläinen, H. Cross-Sectional Area of the Paraspinal Muscles and Its Association with Muscle Strength among Fighter Pilots: A 5-Year Follow-Up. BMC Musculoskelet. Disord. 2019, 20, 170.
dc.relationRintala, H. Determining Fighter Pilot’s G Load: Pilot’s Fatigue Index. J. Sci. Med. Sport 2017, 20, S38. [CrossRef]
dc.relationWagstaff, A.S.; Jahr, K.I.; Rodskier, S. +Gz-Induced Spinal Symptoms in Fighter Pilots: Operational and Individual Associated Factors. Aviat. Space Environ. Med. 2012, 83, 1092–1096.
dc.relationFuentes-García, J.P.; Clemente-Suárez, V.J.; Marazuela-Martínez, M.Á.; Tornero-Aguilera, J.F.; Villafaina, S. Impact of Real and Simulated Flights on Psychophysiological Response of Military Pilots. Int. J. Environ. Res. Public Health 2021, 18, 787.
dc.relationVeerle De Loose, P.T.; Burnotte, F.; Damien Van Tiggelen, P.T.; Van den Oord MSc, M.; Pieter van Amerongen, M.D. Review of the Belgian and the Netherlands National Work Programme on the Long Term Effects Of Sustained High G on the Cervical Spine. Age 2008, 30, 30–39.
dc.relationSánchez, Á.B.; Herradón, V.M.L.; Saiz, J.F.G.; Laguna, T.T.; Suárez, V.J.C. Psychophysiological Response of Fighter Aircraft Pilots in Normobaric Hypoxia Training. Arch. Med. Deporte Rev. Fed. Española Med. Deporte Confed. Iberoam. Med. Deporte 2018, 35, 99–102.
dc.relationLijewski, M.; Burdukiewicz, A.; Pietraszewska, J.; Andrzejewska, J.; Stacho ´n, A. Asymmetry of Muscle Mass Distribution and Grip Strength in Professional Handball Players. Int. J. Environ. Res. Public Health 2021, 18, 1913.
dc.relationBelinchon-deMiguel, P.; Clemente-Suárez, V.J. Psychophysiological, Body Composition, Biomechanical and Autonomic Modula tion Analysis Procedures in an Ultraendurance Mountain Race. J. Med. Syst. 2018, 42, 32.
dc.relationRamos-Campo, D.J.; Martínez Sánchez, F.; García, P.E.; Rubio Arias, J.Á.; Cerezal, A.B.; Clemente-Suarez, V.J.; Jiménez Díaz, J.F. Body Composition Features in Different Playing Position of Professional Team Indoor Players: Basketball, Handball and Futsal. Int. J. Morphol. 2014, 32, 1316–1324.
dc.relationClemente-Suarez, V.J.; Nikolaidis, P.T. Use of Bioimpedianciometer as Predictor of Mountain Marathon Performance. J. Med. Syst. 2017, 41, 73.
dc.relationBustamante-Sánchez, Á.; Clemente-Suárez, V.J. Body Composition Differences in Military Pilots and Aircrew. Aerosp. Med. Hum. Perform. 2020, 91, 565–570.
dc.relationSun, G.; French, C.R.; Martin, G.R.; Younghusband, B.; Green, R.C.; Xie, Y.; Mathews, M.; Barron, J.R.; Fitzpatrick, D.G.; Gulliver, W. Comparison of Multifrequency Bioelectrical Impedance Analysis with Dual-Energy X-Ray Absorptiometry for Assessment of Percentage Body Fat in a Large, Healthy Population. Am. J. Clin. Nutr. 2005, 81, 74–78.
dc.relationWang, Z.-M.; Heshka, S.; Pierson, R.N., Jr.; Heymsfield, S.B. Systematic Organization of Body-Composition Methodology: An Overview with Emphasis on Component-Based Methods. Am. J. Clin. Nutr. 1995, 61, 457–465.
dc.relationGibson, A.L.; Holmes, J.C.; Desautels, R.L.; Edmonds, L.B.; Nuudi, L. Ability of New Octapolar Bioimpedance Spectroscopy Analyzers to Predict 4-Component–Model Percentage Body Fat in Hispanic, Black, and White Adults. Am. J. Clin. Nutr. 2008, 87, 332–338.
dc.relationAandstad, A.; Holtberget, K.; Hageberg, R.; Holme, I.; Anderssen, S.A. Validity and Reliability of Bioelectrical Impedance Analysis and Skinfold Thickness in Predicting Body Fat in Military Personnel. Mil. Med. 2014, 179, 208–217.
dc.relationClemente-Suárez, V.J.; Robles-Pérez, J.J. Mechanical, Physical, and Physiological Analysis of Symmetrical and Asymmetrical Combat. J. Strength Cond. Res. 2013, 27, 2420–2426.
dc.relationDíaz, J.F.J.; Campo, D.J.R.; Arias, J.A.R.; Sánchez, F.M.; García, P.E.; Clemente-Suárez, V.J.; Vicente, J.G.V. Body Composition and Cardiorespiratory Response of Male and Female Soldiers during a Simulated Attack Maneuver. Open Sports Sci. J. 2014, 7, 73–79.
dc.relationClemente-Suarez, V.J.; Robles-Pérez, J.J. Respuesta Orgánica En Una Simulación de Combate. Sanid. Mil. 2012, 68, 97–100.
dc.relationHormeño-Holgado, A.J.; Clemente-Suárez, V.J. Effect of Different Combat Jet Manoeuvres in the Psychophysiological Response of Professional Pilots. Physiol. Behav. 2019, 208, 112559.
dc.relationBustamante-Sánchez, Á.; Clemente-Suárez, V.J. Psychophysiological Response to Disorientation Training in Different Aircraft Pilots. Appl. Psychophysiol. Biofeedback 2020, 45, 241–247.
dc.relationVar, S.M.; Marangoz, I. Leg Volume and Mass Scales of Elite Male and Female Athletes in Some Olympic Sports. World J. Educ. 2018, 8, 54–58.
dc.relationJackman, R.W.; Kandarian, S.C. The Molecular Basis of Skeletal Muscle Atrophy. Am. J. Physiol.-Cell Physiol. 2004, 287, C834–C843.
dc.relationBonaldo, P.; Sandri, M. Cellular and Molecular Mechanisms of Muscle Atrophy. Dis. Models Mech. 2013, 6, 25–39.
dc.relationPowers, S.K.; Kavazis, A.N.; McClung, J.M. Oxidative Stress and Disuse Muscle Atrophy. J. Appl. Physiol. 2007, 102, 2389–2397.
dc.relationPromsri, A.; Longo, A.; Haid, T.; Doix, A.-C.M.; Federolf, P. Leg Dominance as a Risk Factor for Lower-Limb Injuries in Downhill Skiers—A Pilot Study into Possible Mechanisms. Int. J. Environ. Res. Public Health 2019, 16, 3399.
dc.relationSuárez, V.C.; Campo, D.R.; González-Ravé, J.M. Modifications to Body Composition after Running an Alpine Marathon. Int. SportMed J. 2011, 12, 133–140.
dc.relationRynkiewicz, M.; Rynkiewicz, T.; Zurek, P.; Ziemann, E.; Szymanik, R. Asymmetry of Muscle Mass Distribution in Tennis Players. Trends Sport Sci. 2013, 20, 47–53.
dc.relationPoliszczuk, T.; Ma ´nkowska, M.; Poliszczuk, D.; Wi´sniewski, A. Symmetry and Asymmetry of Reaction Time and Body Tissue Composition of Upper Limbs in Young Female Basketball Players. Pediatr. Endocrinol. Diabetes Metab. 2013, 19, 132–136.
dc.relationMala, L.; Maly, T.; Cabell, L.; Hank, M.; Bujnovsky, D.; Zahalka, F. Anthropometric, Body Composition, and Morphological Lower Limb Asymmetries in Elite Soccer Players: A Prospective Cohort Study. Int. J. Environ. Res. Public Health 2020, 17, 1140.
dc.relationBustamante-Sánchez, Á.; Clemente-Suárez, V.J. Psychophysiological Response in Night and Instrument Helicopter Flights. Ergonomics 2020, 63, 399–406
dc.relation8
dc.relation1
dc.relation356
dc.relation14
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rights© Copyright 2022 Elsevier B.V., All rights reserved.
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://www.mdpi.com/2073-8994/14/2/356
dc.subjectBody composition
dc.subjectBody fat mass
dc.subjectBody water
dc.subjectLean mass
dc.subjectPilots
dc.subjectSymmetry
dc.titleBody composition symmetry in aircraft pilots
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución