dc.creator | Brito, Daniel | |
dc.creator | Marquez Brazon, Edgar Alexander | |
dc.creator | ROSAS, ENNIS | |
dc.creator | Rosas, Félix Oscar | |
dc.date | 2022-07-08T13:05:18Z | |
dc.date | 2022-07-08T13:05:18Z | |
dc.date | 2022-04-13 | |
dc.date.accessioned | 2023-10-03T19:38:42Z | |
dc.date.available | 2023-10-03T19:38:42Z | |
dc.identifier | Daniel Brito, Edgar Marquez, Felix Rosas, and Ennis Rosas , "Predicting new potential antimalarial compounds by using Zagreb topological indices", AIP Advances 12, 045017 (2022) https://doi.org/10.1063/5.0089325 | |
dc.identifier | 2158-3226 | |
dc.identifier | https://hdl.handle.net/11323/9350 | |
dc.identifier | https://doi.org/10.1063/5.0089325 | |
dc.identifier | 10.1063/5.0089325 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9170987 | |
dc.description | Molecular topology allows describing molecular structures following a two-dimensional approach by taking into account how the atoms are
arranged internally through a connection matrix between the atoms that are part of a structure. Various molecular indices (unique for each
molecule) can be determined, such as Zagreb, Balaban, and topological indices. These indices have been correlated with physical chemistry
properties such as molecular weight, boiling point, and electron density. Furthermore, their relationship with a specific biological activity has
been found in other reports. Therefore, its knowledge and interpretation could be critical in the rational design of new compounds, saving time
and money in their development process. In this research, the molecular graph of antimalarials already in the pharmaceutical market, such
as chloroquine, primaquine, quinine, and artemisinin, was calculated and used to compute the Zagreb indices; a relationship between these
indices and the antimalarial activities was found. According to the results reported in this work, the smaller the Zagreb indices, the higher
the antimalarial activity. This relationship works very well for other compounds series. Therefore, it seems to be a fundamental structural
requirement for this activity. Three triazole-modified structures are proposed as possible potential antimalarials based on this hypothesis.
Finally, this work shows that the Zag | |
dc.format | 14 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | American Institute of Physics | |
dc.publisher | United States | |
dc.relation | AIP Advances | |
dc.relation | 2World Health Organization, World Malaria Report: 20 Years of Global Progress
and Challenges, World Health 2020, WHO/HTM/GM, p. 299. | |
dc.relation | 3R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint, and S. I. Hay, “The global
distribution of clinical episodes of Plasmodium falciparum malaria,” Nature 434,
214–217 (2005). | |
dc.relation | 4C. J. Murray, L. C. Rosenfeld, S. S. Lim, K. G. Andrews, K. J. Foreman, D. Haring,
N. Fullman, M. Naghavi, R. Lozano, and A. D. Lopez, “Global malaria mortality
between 1980 and 2010: A systematic analysis,” Lancet 379, 413–431 (2012). | |
dc.relation | 5
F. Di Gennaro, C. Marotta, P. Locantore, D. Pizzol, and G. Putoto, “Malaria
and COVID-19: Common and different findings,” Trop. Med. Infect. Dis. 5, 141
(2020). | |
dc.relation | 6 Health policy and system support to optimize community health worker
programmes for HIV, TB and malaria services: An evidence guide, 2020. | |
dc.relation | 7 R. K. Sharma, H. Rajvanshi, P. K. Bharti, S. Nisar, H. Jayswar, A. K. Mishra,
K. B. Saha, M. M. Shukla, A. Das, H. Kaur et al., “Socio-economic determinants
of malaria in tribal dominated Mandla district enrolled in Malaria Elimination
Demonstration Project in Madhya Pradesh,” Malar. J. 20(1), 7 (2021). | |
dc.relation | 8
P. K. Nkegbe, N. Kuunibe, and S. Sekyi, “Poverty and malaria morbidity in the
Jirapa district of Ghana: A count regression approach,” Cogent Econ. Finance 5,
1293472 (2017), http://www.editorialmanager.com/cogentecon. | |
dc.relation | 9 W. P. O’Meara, A. Noor, H. Gatakaa, B. Tsofa, F. E. McKenzie, and K. Marsh,
“The impact of primary health care on malaria morbidity—Defining access by
disease burden,” Trop. Med. Int. Health 14, 29–35 (2009). | |
dc.relation | 10N. R. Ngatu, S. Kanbara, A. Renzaho, R. Wumba, E. P. Mbelambela, S. M. J.
Muchanga, B. A. Muzembo, N. Leon-Kabamba, C. Nattadech, T. Suzuki et al.,“Environmental and sociodemographic factors associated with household malaria
burden in the Congo,” Malar. J. 18(1), 53 (2019). | |
dc.relation | 11 L. C. Alves, M. N. Sanchez, T. Hone, L. F. Pinto, J. S. Nery, P. L. Tauil,
M. L. Barreto, and G. O. Penna, “The association between a conditional cash
transfer programme and malaria incidence: A longitudinal ecological study in
the Brazilian Amazon between 2004 and 2015,” BMC Public Health 21(1), 1253
(2021). | |
dc.relation | 12 P. Alonso and A. M. Noor, “The global fight against malaria is at crossroads,”
Lancet 390, 2532–2534 (2017). | |
dc.relation | 13 P. L. Alonso, “Malaria: A problem to be solved and a time to be bold,” Nat. Med.
27(9), 1506–1509 (2021). | |
dc.relation | 14 World Health Organization, Report of the WHO strategic advisory group
on malaria eradication I. Malaria eradication: Benefits, future scenarios and
feasibility: A report of the strategic advisory group on malaria eradication. | |
dc.relation | 15 R. S. Paton, A. Kamau, S. Akech, A. Agweyu, M. Ogero, C. Mwandawiro,
N. Mturi, S. Mohammed, A. Mpimbaza, S. Kariuki et al., “Malaria infection and
severe disease risks in Africa,” Science 373, 926–931 (2021). | |
dc.relation | 16 J. Thwing, E. Eckert, D. A. Dione, R. Tine, A. Faye, Y. Yé, M. Ndiop, M. Cisse,
J. A. Ndione, M. B. Diouf et al., “Declines in malaria burden and all-cause child
mortality following increases in control interventions in Senegal, 2005–2010,” Am.
J. Trop. Med. Hyg. 97, 89 (2017). | |
dc.relation | 17 V. A. Alegana, E. A. Okiro, and R. W. Snow, “Routine data for malaria morbidity
estimation in Africa: Challenges and prospects,” BMC Medicine 18, 121 (2020). | |
dc.relation | 18 A. Kamau, G. Mtanje, C. Mataza, G. Mwambingu, N. Mturi, S. Mohammed,
G. Ong’ayo, G. Nyutu, A. Nyaguara, P. Bejon et al., “Malaria infection, disease
and mortality among children and adults on the coast of Kenya,” Malar. J. 19(1),
210 (2020). | |
dc.relation | 19 T. Kobasa, E. Talundzic, R. Sug-aram, P. Boondat, I. F. Goldman, N. W. Luc chi, P. Dharmarak, D. Sintasath, M. Fukuda, T. Whistler et al., “Emergence and
spread of kelch13 mutations associated with artemisinin resistance in Plasmodium
falciparum parasites in 12 Thai provinces from 2007 to 2016,” Antimicrob. Agents
Chemother. 62, e02141 (2018). | |
dc.relation | 20 A. Uwimana, N. Umulisa, M. Venkatesan, S. S. Svigel, Z. Zhou, T. Munyaneza,
R. M. Habimana, A. Rucogoza, L. F. Moriarty, R. Sandford et al., “Association of
Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance
in Rwanda: An open-label, single-arm, multicentre, therapeutic efficacy study,”
Lancet Infect. Dis. 21, 1120 (2021). | |
dc.relation | 21 B. Balikagala, N. Fukuda, M. Ikeda, O. T. Katuro, S. I. Tachibana, M. Yamauchi,
W. Opio, S. Emoto, D. A. Anywar, E. Kimura et al., “Evidence of artemisinin resistant malaria in Africa,” N. Engl. J. Med. 385, 1163 (2021). | |
dc.relation | 22 L. Paloque, B. Witkowski, J. Lelièvre, M. Ouji, T. Ben Haddou, F. Ariey,
A. Robert, J. M. Augereau, D. Ménard, B. Meunier et al., “Endoperoxide-based
compounds: Cross-resistance with artemisinins and selection of a Plasmodium
falciparum lineage with a K13 non-synonymous polymorphism,” J. Antimicrob.
Chemother. 73, 395 (2018). | |
dc.relation | 23 F. Nardella, M. Mairet-Khedim, C. Roesch, S. P. Maher, S. Ke, R. Leang,
D. Leroy, and B. Witkowski, “Cross-resistance of the chloroquine-derivative
AQ-13 with amodiaquine in Cambodian Plasmodium falciparum isolates,”
J. Antimicrob. Chemother. 76, 2565 (2021). | |
dc.relation | 24 P. K. Ojha, V. Kumar, J. Roy, and K. Roy, “Recent advances in quantitative
structure–activity relationship models of antimalarial drugs,” Expert Opin. Drug
Discovery 16, 659 (2021). | |
dc.relation | 25 S. Yousefinejad, M. Mahboubifar, and R. Eskandari, “Quantitative
structure–activity relationship to predict the anti-malarial activity in a set
of new imidazolopiperazines based on artificial neural networks,” Malar. J. 18,
310 (2019). | |
dc.relation | 26 M. Liu, P. Wilairat, and M. L. Go, “Antimalarial alkoxylated and hydroxylated
chalones: Structure–activity relationship analysis,” J. Med. Chem. 44, 4443 (2001). | |
dc.relation | 27 Y. H. Ou and C. M. Chang, “A quantitative structure-activity relationship study
on the antimalarial activities of 4-aminoquinoline, febrifugine and artemisinin
compounds,” Int. J. Quant. Struct.-Prop. Relat. 5, 63 (2020). | |
dc.relation | 28 G. Huang, C. Murillo Solano, J. Melendez, J. Shaw, J. Collins, R. Banks, A. K.
Arshadi, R. Boonhok, H. Min, J. Miao et al., “Synthesis, structure–activity relation ship, and antimalarial efficacy of 6-chloro-2-arylvinylquinolines,” J. Med. Chem.
63, 11756 (2020). | |
dc.relation | 29 F. M. Wunsch, B. Wünsch, F. A. Bernal, and T. J. Schmidt, “Quantitative
structure–activity relationships of natural-product-inspired, aminoalkyl substituted 1-benzopyrans as novel antiplasmodial agents,” Molecules 26, 5249
(2021). | |
dc.relation | 30 L. T. Ferreira, J. V. B. Borba, J. T. Moreira-Filho, A. Rimoldi, C. H. Andrade,
and F. T. M. Costa, “QSAR-based virtual screening of natural products database
for identification of potent antimalarial hits,” Biomolecules 11, 459 (2021). | |
dc.relation | 31 V. T. Sabe, T. Ntombela, L. A. Jhamba, G. E. M. Maguire, T. Govender,
T. Naicker, and H. G. Kruger, “Current trends in computer aided drug design
and a highlight of drugs discovered via computational techniques: A review,” Eur.
J. Med. Chem. 224, 113705 (2021). | |
dc.relation | 32 S. Varela-Aramburu, C. Ghosh, F. Goerdeler, P. Priegue, O. Moscovitz, and
P. H. Seeberger, “Targeting and inhibiting Plasmodium falciparum using ultra small gold nanoparticles,” ACS Appl. Mater. Interfaces 12, 43380 (2020). | |
dc.relation | 33 D. A. Baker, A. N. Matralis, S. A. Osborne, J. M. Large, and M. Penzo, “Targeting
the malaria parasite cGMP-dependent protein kinase to develop new drugs,”
Front. Microbiol. 11, 602803 (2020). | |
dc.relation | 34 A. Meier, H. Erler, and E. Beitz, “Targeting channels and transporters in
protozoan parasite infections,” Front. Chem. 6, 88 (2018). | |
dc.relation | 35 K. Lu, C. R. Mansfield, M. C. Fitzgerald, and E. R. Derbyshire,
“Chemoproteomics for Plasmodium parasite drug target discovery,”
ChemBioChem 22, 2591 (2021). | |
dc.relation | 36 Y. Chen, C. Murillo-Solano, M. G. Kirkpatrick, T. Antoshchenko, H. W. Park,
and J. C. Pizarro, “Repurposing drugs to target the malaria parasite unfolding
protein response,” Sci. Rep. 8, 10333 (2018). | |
dc.relation | 37 L. David, A. Thakkar, R. Mercado, and O. Engkvist, “Molecular representations
in AI-driven drug discovery: A review and practical guide,” J. Cheminf. 12, 56
(2020). | |
dc.relation | 38 J. C. Dearden, “The use of topological indices in QSAR and QSPR modeling,” in
Advances in QSAR Modeling (Springer, 2017). | |
dc.relation | 39 O. Mahmood, E. Mansimov, R. Bonneau, and K. Cho, “Masked graph modeling
for molecule generation,” Nat. Commun. 12, 3156 (2021). | |
dc.relation | 40 W. Gao, Y. Wang, W. Wang, and L. Shi, “The first multiplication atom-bond
connectivity index of molecular structures in drugs,” Saudi Pharm. J. 25, 548
(2017). | |
dc.relation | 41 M. Imran, M. K. Siddiqui, S. Ahmad, M. F. Hanif, M. H. Muhammad, and
M. R. Farahani, “Topological properties of benzenoid, phenylenes and nanostar
dendrimers,” J. Discrete Math. Sci. Cryptography 22, 1229 (2019). | |
dc.relation | 42 A. Jahanbani, Z. Shao, and S. M. Sheikholeslami, “Calculating degree based
multiplicative topological indices of hyaluronic acid-paclitaxel conjugates’ molec ular structure in cancer treatment,” J. Biomol. Struct. Dyn. 39, 5304 (2021) | |
dc.relation | 43 S. Mondal, N. De, and A. Pal, “Topological indices of some chemical structures
applied for the treatment of COVID-19 patients,” Polycyclic Aromat. Compd.
1, 1 (2020). | |
dc.relation | 44 Y. C. Kwun, M. Munir, W. Nazeer, S. Rafique, and S. M. Kang, “Computational
analysis of topological indices of two boron nanotubes,” Sci. Rep. 8, 14843
(2018). | |
dc.relation | 45 W. Gao, H. Wu, M. K. Siddiqui, and A. Q. Baig, “Study of biological networks
using graph theory,” Saudi J. Biol. Sci. 25, 1212 (2018). | |
dc.relation | 46 V. Lather and A. K. Madan, “Topological models for the prediction of anti-HIV
activity of dihydro (alkylthio) (naphthylmethyl) oxopyrimidines,” Bioorg. Med.
Chem. 13, 1599 (2005). | |
dc.relation | 47 PubChem, available at https://pubchem.ncbi.nlm.nih.gov/; accessed 30 Septem ber 2021. | |
dc.relation | 48 M. C. Joshi, K. J. Wicht, D. Taylor, R. Hunter, P. J. Smith, and T. J. Egan, “In vitro
antimalarial activity, β-haematin inhibition and structure–activity relationships in
a series of quinoline triazoles,” Eur. J. Med. Chem. 69, 338–347 (2013). | |
dc.relation | 49 M. D’hooghe, S. Vandekerckhove, K. Mollet, K. Vervisch, S. Dekeukeleire,
L. Lehoucq, C. Lategan, P. J. Smith, K. Chibale, and N. D. Kimpe, “Synthesis of
2-amino-3-arylpropan-1-ols and 1-(2,3-diaminopropyl)-1,2,3-triazoles and eval uation of their antimalarial activity,” Beilstein J. Org. Chem. 7(1), 1745–1752
(2011). | |
dc.relation | 50B. M. dos Santos, D. T. G. Gonzaga, F. C. da Silva, V. F. Ferreira, and C. R.
S. Garcia, “Plasmodium falciparum knockout for the GPCR-like PfSR25 receptor displays greater susceptibility to 1,2,3-triazole compounds that block malaria
parasite development,” Biomolecules 10, 1197 (2020). | |
dc.relation | 51 M. Foley and L. Tilley, “Quinoline antimalarials: Mechanisms of action and
resistance and prospects for new agents,” Pharmacol. Ther. 79, 55–87 (1998). | |
dc.relation | 52 P. J. Thornalley, A. Stern, and J. V. Bannister, “A mechanism for primaquine
mediated oxidation of NADPH in red blood cells,” Biochem. Pharmacol. 32,
3571–3575 (1983). | |
dc.relation | 53 M. L. Baniecki, D. F. Wirth, and J. Clardy, “High-throughput Plasmodium falci parum growth assay for malaria drug discovery,” Antimicrob. Agents Chemother.
51, 716–723 (2007). | |
dc.relation | 54 S. Jansongsaeng, N. Srimongkolpithak, J. Pengon, S. Kamchonwongpaisan, and
T. Khotavivattana, “5-phenoxy primaquine analogs and the tetraoxane hybrid as
antimalarial agents,” Molecules 26, 3991 (2021). | |
dc.relation | 55 E. Martino, M. Tarantino, M. Bergamini, V. Castelluccio, A. Coricello,
M. Falcicchio, E. Lorusso, and S. Collina, “Artemisinin and its derivatives; ancient
tradition inspiring the latest therapeutic approaches against malaria,” Future Med.
Chem. 11, 1443–1459 (2019). | |
dc.relation | 56 S. R. Meshnick, T. E. Taylor, and S. Kamchonwongpaisan, “Artemisinin and
the antimalarial endoperoxides: From herbal remedy to targeted chemotherapy,”
Microbiol. Rev. 60, 301–315 (1996). | |
dc.relation | 57 S. R. Meshnick, Y. Z. Yang, V. Lima, F. Kuypers, S. Kamchonwongpaisan,
and Y. Yuthavong, “Iron-dependent free radical generation from the antimalarial
agent artemisinin (qinghaosu),” Antimicrob. Agents Chemother. 37, 1108–1114
(1993). | |
dc.relation | 58 O. P. S. Patel, R. M. Beteck, and L. J. Legoabe, “Exploration of artemisinin
derivatives and synthetic peroxides in antimalarial drug discovery research,” Eur.
J. Med. Chem. 213, 113193 (2021). | |
dc.relation | 59 M. Llinás, Z. Bozdech, E. D. Wong, A. T. Adai, and J. L. DeRisi, “Comparative
whole genome transcriptome analysis of three Plasmodium falciparum strains,”
Nucleic Acids Res. 34, 1166–1173 (2006). | |
dc.relation | 1 J. Talapko, I. Škrlec, T. Alebic, M. Juki ´ c, and A. V ´ cev, “Malaria: The past and the ˇ present,” Microorganisms 7, 179 (2019). | |
dc.relation | 13 | |
dc.relation | 1 | |
dc.relation | 4 | |
dc.relation | 12 | |
dc.rights | Atribución 4.0 Internacional (CC BY 4.0) | |
dc.rights | © 2022 Author(s) | |
dc.rights | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | https://aip.scitation.org/doi/10.1063/5.0089325 | |
dc.subject | Physical chemistry | |
dc.subject | Topology | |
dc.title | Predicting new potential antimalarial compounds by using Zagreb topological indices | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |