dc.contributorSchneider, Ismael Luis
dc.contributorSilva Oliveira, Marcos Leandro
dc.creatorBlanco Donado, Erika
dc.date2020-02-07T20:30:26Z
dc.date2020-02-07T20:30:26Z
dc.date2019
dc.date.accessioned2023-10-03T19:38:22Z
dc.date.available2023-10-03T19:38:22Z
dc.identifierhttp://hdl.handle.net/11323/6012
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9170933
dc.descriptionBlack carbon (BC) is one of the air pollutants that most contributes to radiative forcing and climate change. It is emitted by the incomplete combustion of fossil fuels and biomass and can be used as a tracer of urban air pollution sources. In urban areas, BC variability is influenced by local sources, transport and weather conditions. However, for very complex urban environments, the use of mobile monitoring provides a better understanding of the dynamics of the contaminant. This study addresses the determination of BC concentrations using mobile and ambient real-time monitoring in Barranquilla. A microaethalometer (MA 200) and an aethalometer AE33 were used to obtain BC concentrations. The Ångström Absorption Exponent (AAE) for biomass burning and fossil fuels were determined for the study area. The results for ambient sampling show that vehicle traffic emissions prevail, but also with the influence of biomass burning. The average ambient BC concentration was 1.04 ± 1.03 µg/m3 and for mobile measurements was 16.1 ±16.5 µg/m3. The spatial distribution of BC concentrations shows that traffic emissions and congestion of vehicles, a consequence of road and transport infrastructure, are the factors that most affect BC concentrations. The meteorological variables had a significant influence on both mobile and environmental monitoring, mainly related to relative humidity and wind speed.
dc.descriptionEl Black Carbon (BC) es uno de los contaminantes atmosféricos que más contribuye al forzamiento radiactivo y cambio climático. Se emite por la combustión incompleta de combustibles fósiles y biomasa, y puede ser utilizado como indicador de las fuentes de contaminación del aire urbano. En las zonas urbanas, la variabilidad de BC está influenciada por las fuentes locales, el transporte y las condiciones climáticas. Sin embargo, para los entornos urbanos muy complejos, el uso de monitoreo móvil proporciona una mayor comprensión de la dinámica del contaminante. Este estudio aborda la determinación de las concentraciones de BC usando monitoreo móvil y ambiental en tiempo real en Barranquilla. Se utilizó un microaethalómetro (MA200) y un aethalómetro AE33 para obtener las concentraciones de BC. Los Exponentes de Absorción de Ångström (AAE) para la quema de biomasa y los combustibles fósiles fueron determinados para el área de estudio. Los resultados para el muestreo ambiental muestran que prevalecen las emisiones de tráfico vehicular, pero igualmente es influenciado por la quema de biomasa. La concentración media de BC ambiental fue 1,04 ±1,03 µg/m3 y para las mediciones móviles fue de 16,1 ±16,5 µg/m3. La distribución espacial de las concentraciones de BC muestran que las emisiones de tráfico y la congestión de vehículos, consecuencia de la infraestructura vial y de transporte, son los factores que más afectan las concentraciones de BC. Las variables meteorológicas presentaron influencia significativa en el monitoreo de BC ambiental con acción principalmente de la humedad relativa, temperatura y velocidad del viento.
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad de la Costa
dc.publisherMaestría de Investigación en Desarrollo Sostenible MIDES
dc.relationAllen, M. R. (2015). Short-Lived Promise ? The science and policy of cumulative and short-lived climate pollutants. University of Oxford.
dc.relationApte, J. S., Kirchstetter, T. W., Reich, A. H., Deshpande, S. J., Kaushik, G., Chel, A., … Nazaroff, W. W. (2011). Concentrations of fi ne , ultra fi ne , and black carbon particles in auto-rickshaws in New Delhi , India, 45, 4470–4480. https://doi.org/10.1016/j.atmosenv.2011.05.028
dc.relationArnott, W. P., Moosmu, H., Rogers, C. F., Jin, T., & Bruch, R. (1999). Photoacoustic spectrometer for measuring light absorption by aerosol : instrument description, 33, 2845–2852.
dc.relationAruna, K., Kumar, T. V. L., Rao, D. N., Murthy, B. V. K., Babu, S. S., & Moorthy, K. K. (2013). Journal of Atmospheric and Solar-Terrestrial Physics Black carbon aerosols in a tropical semiurban coastal environment : Effects of boundary layer dynamics and long range transport. Journal of Atmospheric and Solar-Terrestrial Physics, 104(March 2011), 116–125. https://doi.org/10.1016/j.jastp.2013.08.020
dc.relationAurell, J., Gullett, B. K., & Tabor, D. (2015). Emissions from southeastern U.S. Grasslands and pine savannas: Comparison of aerial and ground field measurements with laboratory burns. Atmospheric Environment, 111, 170–178. https://doi.org/10.1016/j.atmosenv.2015.03.001
dc.relationBarman, N., & Gokhale, S. (2019). Science of the Total Environment Urban black carbon - source apportionment , emissions and long-range transport over the Brahmaputra River Valley. Science of the Total Environment, 693, 133577. https://doi.org/10.1016/j.scitotenv.2019.07.383
dc.relationBecerril-Valle, M., Coz, E., Prévôt, A. S. H., Močnik, G., Pandis, S. N., Sánchez de la Campa, A. M., … Artíñano, B. (2017). Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain. Atmospheric Environment, 169, 36–53. https://doi.org/10.1016/j.atmosenv.2017.09.014
dc.relationBeegum, S. N., Moorthy, K. K., Babu, S. S., Satheesh, S. K., Vinoj, V., Badarinath, K. V. S., … Pant, P. (2009). Spatial distribution of aerosol black carbon over India during pre-monsoon season. Atmospheric Environment, 43(5), 1071–1078. https://doi.org/10.1016/j.atmosenv.2008.11.042
dc.relationBetancourt, R. M., Galvis, B., Rincón-riveros, J. M., Rincón-caro, M. A., Rodriguez-valencia, A., & Sarmiento, O. L. (2019). Personal exposure to air pollutants in a Bus Rapid Transit System : Impact of fl eet age and emission standard, 202(January), 117–127. https://doi.org/10.1016/j.atmosenv.2019.01.026
dc.relationBhaskar, B. V., Rajeshkumar, R. M., Muthuchelian, K., & Ramachandran, S. (2018b). Journal of Atmospheric and Solar-Terrestrial Physics Spatial , temporal and source study of black carbon in the atmospheric aerosols over di ff erent altitude regions in Southern India. Journal of Atmospheric and Solar-Terrestrial Physics, 179(September), 416–424. https://doi.org/10.1016/j.jastp.2018.09.009
dc.relationBigazzi, A. Y., & Figliozzi, M. A. (2014). Transport Reviews : A Transnational Review of Urban Bicyclists ’ Intake and Uptake of Traffic-Related Air Pollution, (October), 37–41. https://doi.org/10.1080/01441647.2014.897772
dc.relationBlackstock, J. J., & Allen, M. R. (2012). the science and policy of short-lived climate pollutants.
dc.relationBond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., Deangelo, B. J., … Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171
dc.relationBoniardi, L., Dons, E., Campo, L., Poppel, M. Van, Panis, L. I., & Fustinoni, S. (2019a). Annual , seasonal , and morning rush hour Land Use Regression models for black carbon in a school catchment area of Milan , Italy. Environmental Research, 176(June), 108520. https://doi.org/10.1016/j.envres.2019.06.001
dc.relationBoniardi, L., Dons, E., Campo, L., Poppel, M. Van, Panis, L. I., & Fustinoni, S. (2019b). Annual , seasonal , and morning rush hour Land Use Regression models for black carbon in a school catchment area of Milan , Italy. Environmental Research, 176(February), 108520. https://doi.org/10.1016/j.envres.2019.06.001
dc.relationBooth, B. E. N., & Bellouin, N. (2015). Black carbon and atmospheric feedbacks, 7–8.
dc.relationBrantley, H. L., Hagler, G. S. W., Kimbrough, E. S., Williams, R. W., Mukerjee, S., & Neas, L. M. (2014). Mobile air monitoring data-processing strategies and effects on spatial air pollution trends, (1), 2169–2183. https://doi.org/10.5194/amt-7-2169-2014
dc.relationBrewer, T. L. (2019). Black carbon emissions and regulatory policies in transportation. Energy Policy, 129(February), 1047–1055. https://doi.org/10.1016/j.enpol.2019.02.073
dc.relationBuonanno, G., Stabile, L., Morawska, L., & Russi, A. (2013). Children exposure assessment to ultra fi ne particles and black carbon : The role of transport and cooking activities. Atmospheric Environment, 79, 53–58. https://doi.org/10.1016/j.atmosenv.2013.06.041
dc.relationCaponi, L., Bernardoni, V., Bove, M. C., Brotto, P., Calzolai, G., Massab, D., … Nava, S. (2015). Multi-wavelength optical determination of black and brown carbon in atmospheric aerosols, 108, 1–12. https://doi.org/10.1016/j.atmosenv.2015.02.058
dc.relationCarvalho, A. M., & Krecl, P. (2018). Variations in individuals ’ exposure to black carbon particles during their daily activities : a screening study in Brazil, (2011).
dc.relationCereceda-balic, F., Gorena, T., Soto, C., Vidal, V., Lapuerta, M., & Moosmüller, H. (2019). Science of the Total Environment Optical determination of black carbon mass concentrations in snow samples : A new analytical method. Science of the Total Environment, 697, 133934. https://doi.org/10.1016/j.scitotenv.2019.133934
dc.relationChand, M., Kumar, V., Kumar, R., Umer, S., Chakrawarthy, E., & Acharya, P. (2018). Urban Climate Seasonal characteristics of black carbon aerosol mass concentrations and in fl uence of meteorology , New Delhi ( India ). Urban Climate, 24(December 2017), 968–981. https://doi.org/10.1016/j.uclim.2017.12.002
dc.relationChen, Y., & Xie, S. (2014). Science of the Total Environment Characteristics and formation mechanism of a heavy air pollution episode caused by biomass burning in Chengdu , Southwest China. Science of the Total Environment, The, 473–474, 507–517. https://doi.org/10.1016/j.scitotenv.2013.12.069
dc.relationCoen, M. C., Weingartner, E., Apituley, A., Ceburnis, D., Flentje, H., & Henzing, J. S. (2010). Minimizing light absorption measurement artifacts of the Aethalometer : evaluation of five correction algorithms, 457–474.
dc.relationDai, Q., Bi, X., Liu, B., Li, L., Ding, J., Song, W., … Hopke, P. K. (2018). Chemical nature of PM 2 . 5 and PM 10 in Xi ’ an , China : Insights into primary emissions and secondary particle formation *. Environmental Pollution, 240, 155–166. https://doi.org/10.1016/j.envpol.2018.04.111
dc.relationDons, E., Int, L., Poppel, M. Van, Theunis, J., & Wets, G. (2012). Personal exposure to Black Carbon in transport microenvironments, 55, 392–398. https://doi.org/10.1016/j.atmosenv.2012.03.020
dc.relationDons, E., Temmerman, P., Poppel, M. Van, Bellemans, T., Wets, G., & Int, L. (2013). Science of the Total Environment Street characteristics and traf fi c factors determining road users ’ exposure to black carbon, 447, 72–79.
dc.relationDons, E., Temmerman, P., Van Poppel, M., Bellemans, T., Wets, G., & Int Panis, L. (2013). Street characteristics and traffic factors determining road users’ exposure to black carbon. Science of the Total Environment, 447, 72–79. https://doi.org/10.1016/j.scitotenv.2012.12.076
dc.relationDrinovec, L. Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., & Müller, T. (2015). The “ dual-spot ” Aethalometer : an improved measurement of aerosol black carbon with real-time loading compensation, 1965–1979. https://doi.org/10.5194/amt- 8-1965-2015
dc.relationEPA. (2012). Report to Congress on Black Carbon, (March).
dc.relationEvans, M., Kholod, N., Kuklinski, T., Denysenko, A., Smith, S. J., Staniszewski, A., … Bond, T. C. (2017). Black carbon emissions in Russia : A critical review, 163.
dc.relationFátima, B., Oliveira, A. De, Ignotti, E., Artaxo, P., Hilário, P., Junger, W. L., & Hacon, S. (2012). Risk assessment of PM 2 . 5 to child residents in Brazilian Amazon region with biofuel production, 1–11.
dc.relationFranco, J. F., & Segura Contreras, J. F. (2016). Exposición de peatones a la contaminación del aire en vías con alto tráfico vehicular. Revista de Salud Pública, 18(2), 179–187. https://doi.org/10.15446/rsap.v18n2.49237
dc.relationFranco, J. F., Segura, J. F., & Mura, I. (2016). Air Pollution alongside Bike-Paths in, 4(November), 1–10. https://doi.org/10.3389/fenvs.2016.00077
dc.relationFuller, G. W., Tremper, A. H., Baker, T. D., Espen, K., & Butter, D. (2014). Contribution of wood burning to PM 10 in London, 87, 87–94. https://doi.org/10.1016/j.atmosenv.2013.12.037
dc.relationGaldos, M., Cavalett, O., Seabra, J. E. A., Augusto, L., Nogueira, H., & Bonomi, A. (2013). Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions. Applied Energy, 104, 576–582. https://doi.org/10.1016/j.apenergy.2012.11.002
dc.relationGately, C. K., Hutyra, L. R., Peterson, S., & Sue Wing, I. (2017). Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone GPS data. Environmental Pollution, 229, 496–504. https://doi.org/10.1016/j.envpol.2017.05.091
dc.relationGoals, S. D. (2019). DISEASES AND AIR POLLUTION WHO EUROPEAN HIGH-LEVEL CONFERENCE ON NONCOMMUNICABLE DISEASES Time to Deliver : meeting NCD targets to achieve, (April).
dc.relationGoel, A., & Kumar, P. (2014). A review of fundamental drivers governing the emissions , dispersion and exposure to vehicle-emitted nanoparticles at signalised traf fi c intersections. Atmospheric Environment, 97, 316–331. https://doi.org/10.1016/j.atmosenv.2014.08.037 Ham, W., Vijayan, A., Schulte, N., & Herner, J. D. (2017). Commuter exposure to PM 2 . 5 , BC , and UFP in six common transport microenvironments in Sacramento , California. Atmospheric Environment, 167, 335–345. https://doi.org/10.1016/j.atmosenv.2017.08.024
dc.relationHankey, S., & Marshall, J. D. (2015). On-bicycle exposure to particulate air pollution : Particle number , black carbon , PM 2 . 5 , and particle size. Atmospheric Environment, 122, 65–73. https://doi.org/10.1016/j.atmosenv.2015.09.025
dc.relationHansen, A. D. A., Rosen, H., & Novakov, T. (1982). Real-time measurement of the absorption coefficient of aerosol particles Energy & Environment Division , Berkeley , California Received 16 June 1982 . Sponsored by R . W . Terhune , Ford Motor Company © 1982 Optical Society of America .
dc.relationHarrison, R. M., Beddows, D. C. S., Jones, A. M., Calvo, A., & Alves, C. (2013). An evaluation of some issues regarding the use of aethalometers to measure woodsmoke concentrations. Atmospheric Environment, 80, 540–548. https://doi.org/10.1016/j.atmosenv.2013.08.026
dc.relationHealy, R. M., Wang, J. M., Sofowote, U., Su, Y., Debosz, J., Noble, M., … Doerksen, G. (2019). Black carbon in the Lower Fraser Valley , British Columbia : Impact of 2017 wildfires on local air quality and aerosol optical properties. Atmospheric Environment, 217(March), 116976. https://doi.org/10.1016/j.atmosenv.2019.116976
dc.relationHeintzenberg, J., Cereceda-balic, F., Vidal, V., & Leck, C. (2016). Science of the Total Environment Scavenging of black carbon in Chilean coastal fogs. Science of the Total Environment, 541, 341–347. https://doi.org/10.1016/j.scitotenv.2015.09.057
dc.relationHofman, J., Samson, R., Joosen, S., Blust, R., & Lenaerts, S. (2018). Cyclist exposure to black carbon , ultra fi ne particles and heavy metals : An experimental study along two commuting routes near Antwerp , Belgium, 164(March 2018), 530–538.
dc.relationJanssen, N. A. H., Hoek, G., Simic-lawson, M., Fischer, P., Bree, L. Van, Brink, H., … Cassee, F. R. (2011). Review Black Carbon as an Additional Indicator of the Adverse Health Effects of Airborne Particles Compared with PM 10 and PM 2 . 5, 119(12), 1691–1699.
dc.relationJarjour, S., Jerrett, M., Westerdahl, D., Nazelle, A. De, Hanning, C., Daly, L., … Balmes, J. (2013). Cyclist route choice , traffic-related air pollution , and lung function : a scripted exposure study, 1–12.
dc.relationJežek, I., Katrašnik, T., Westerdahl, D., & Moˇ, G. (2015). Black carbon , particle number concentration and nitrogen oxide emission factors of random in-use vehicles measured with the on-road chasing method, (2013), 11011–11026. https://doi.org/10.5194/acp-15-11011- 2015
dc.relationJing, A., Zhu, B., Wang, H., & Yu, X. (2019). Source apportionment of black carbon in different seasons in the northern suburb of Nanjing , China. Atmospheric Environment, 201(January), 190–200. https://doi.org/10.1016/j.atmosenv.2018.12.060
dc.relationJohnson, B. T., Haywood, J. M., Langridge, J. M., Darbyshire, E., Morgan, W. T., Szpek, K., … Bellouin, N. (2016). Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign, 14657–14685. https://doi.org/10.5194/acp-16-14657-2016
dc.relationKecorius, S., Jakob, L., Wiedensohler, A., Pfeifer, S., Haudek, A., & Mardo, V. (2019). A new method to measure real-world respiratory tract deposition of inhaled ambient black carbon *, 248, 295–303. https://doi.org/10.1016/j.envpol.2019.02.021
dc.relationKirchstetter, T. W., Novakov, T., & Hobbs, P. V. (2004). Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon, 109, 1–12. https://doi.org/10.1029/2004JD004999
dc.relationKrecl, P., Alonso, Y., Créso, A., Oliveira, M. De, Segersson, D., Parra, Á., … Gidhagen, L. (2019). Science of the Total Environment Modelling urban cyclists ’ exposure to black carbon particles using high spatiotemporal data : A statistical approach, 679, 115–125.
dc.relationKrecl, P., Créso, A., Pereira, T., & Ketzel, M. (2018). Determination of black carbon , PM 2 . 5 , particle number and NOx emission factors from roadside measurements and their implications for emission inventory development. Atmospheric Environment, 186(May), 229–240. https://doi.org/10.1016/j.atmosenv.2018.05.042
dc.relationKrecl, P., & David, M. (2018). Spatial variability of on-bicycle black carbon concentrations in the ~ o Paulo : A pilot study * megacity of S a Admir Cr e, 242.
dc.relationKrecl, P., & Gallet, J. (2014). PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM A feasibility study of mapping light-absorbing carbon using a taxi fleet as a mobile platform, (February 2017). https://doi.org/10.3402/tellusb.v66.23533
dc.relationLack, D. A., Moosmüller, H., Mcmeeking, G. R., Chakrabarty, R. K., & Baumgardner, D. (2014). Characterizing elemental , equivalent black , and refractory black carbon aerosol particles : a review of techniques , their limitations and uncertainties, 99–122. https://doi.org/10.1007/s00216-013-7402-3
dc.relationLei, X., Bian, J., Xiu, G., Hu, X., & Gu, X. (2017). The mobile monitoring of black carbon and its association with roadside data in the Chinese megacity of Shanghai. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-8454-2
dc.relationLi, B., Lei, X., Xiu, G., Gao, C., Gao, S., & Qian, N. (2015). Science of the Total Environment Personal exposure to black carbon during commuting in peak and off-peak hours in Shanghai, 525, 237–245. https://doi.org/10.1016/j.scitotenv.2015.03.088
dc.relationLin, W., Dai, J., Liu, R., Zhai, Y., Yue, D., & Hu, Q. (2019). Integrated assessment of health risk and climate e ff ects of black carbon in the Pearl River Delta region , China. Environmental Research, 176(October 2018), 108522. https://doi.org/10.1016/j.envres.2019.06.003
dc.relationLiñan Abaranto Rafael. (2019). TESIS BC MEXICO.pdf. Universidad Nacional Autonoma de Mexico. Retrieved from http://132.248.9.195/ptd2019/noviembre/0797808/Index.html
dc.relationLiu, B., Minle, M., Wu, C., Li, J., Li, Y., Ting, N., … Jie, Y. (2019). Potential exposure to fine particulate matter ( PM 2 . 5 ) and black carbon on jogging trails in Macau, 198(December 2017), 23–33.
dc.relationLiu, C., Chung, C. E., & Yin, Y. (2017). The Absorption Ångström Exponent of black carbon : from numerical aspects, (October), 1–30.
dc.relationLiu, M., Peng, X., Meng, Z., Zhou, T., Long, L., & She, Q. (2019). Science of the Total Environment Spatial characteristics and determinants of in-traf fi c black carbon in Shanghai , China : Combination of mobile monitoring and land use regression model. Science of the Total Environment, 658, 51–61. https://doi.org/10.1016/j.scitotenv.2018.12.135
dc.relationLiu, Y., Yan, C., & Zheng, M. (2018). Science of the Total Environment Source apportionment of black carbon during winter in Beijing. Science of the Total Environment, 618, 531–541. https://doi.org/10.1016/j.scitotenv.2017.11.053
dc.relationLong, C. M., Nascarella, M. A., & Valberg, P. A. (2013). Carbon black vs . black carbon and other airborne materials containing elemental carbon : Physical and chemical distinctions. Environmental Pollution, 181, 271–286. https://doi.org/10.1016/j.envpol.2013.06.009
dc.relationMartinsson, J., Azeem, H. A., Sporre, M. K., Bergström, R., Ahlberg, E., & Öström, E. (2017). Carbonaceous aerosol source apportionment using the Aethalometer model – evaluation by radiocarbon and levoglucosan analysis at a rural background site in southern Sweden, 4265–4281. https://doi.org/10.5194/acp-17-4265-2017
dc.relationMartinsson, J., Eriksson, A. C., Malmborg, V. B., Ahlberg, E., Andersen, C., Lindgren, R., … Pagels, J. H. (2015). the Light Absorption of Biomass Combustion Aerosol. https://doi.org/10.1021/acs.est.5b03205
dc.relationMaura, R., Miranda, D., Perez-martinez, P. J., Fatima, M. De, Noronha, F., Ribeiro, D., & Paulo, S. (2019). Relationship between black carbon ( BC ) and heavy tra ffi c in São. Transportation Research Part D, 68(February 2017), 84–98. https://doi.org/10.1016/j.trd.2017.09.002
dc.relationMcfarland, A. R. (1982). WIND TUNNEL EVALUATION OF THE BRITISH SMOKE, 16(2), 325– 328.
dc.relationBhaskar, B. V., Rajeshkumar, R. M., Muthuchelian, K., & Ramachandran, S. (2018a). Journal of Atmospheric and Solar-Terrestrial Physics Spatial , temporal and source study of black carbon in the atmospheric aerosols over di ff erent altitude regions in Southern India. Journal of Atmospheric and Solar-Terrestrial Physics, 179(August), 416–424. https://doi.org/10.1016/j.jastp.2018.09.009
dc.relationMerico, E., Gambaro, A., Argiriou, A., Alebic-juretic, A., Barbaro, E., Cesari, D., … Contini, D. (2017). Atmospheric impact of ship traffic in four Adriatic-Ionian port-cities : Comparison and harmonization of different approaches, 50, 431–445. https://doi.org/10.1016/j.trd.2016.11.016 Merritt, A., Georgellis, A., Andersson, N., & Bero, G. (2019). Science of the Total Environment Personal exposure to black carbon in Stockholm , using different intra- urban transport modes, 674, 279–287.
dc.relationMiller, A. J., Raduma, D. M., George, L. A., & Fry, J. L. (2019). Source apportionment of trace elements and black carbon in an urban industrial area ( Portland , Oregon ). Atmospheric Pollution Research, 10(3), 784–794. https://doi.org/10.1016/j.apr.2018.12.006
dc.relationMINAMBIENTE. (2018). No Title.
dc.relationMoosmuller, H. Chakrabarty, R. K., & Arnott, W. P. (2009). Journal of Quantitative Spectroscopy & Radiative Transfer Aerosol light absorption and its measurement : A review, 110, 844–878. https://doi.org/10.1016/j.jqsrt.2009.02.035
dc.relationMorales Betancourt, R., Galvis, B., Balachandran, S., Ramos-Bonilla, J. P., Sarmiento, O. L., GalloMurcia, S. M., & Contreras, Y. (2017). Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmospheric Environment, 157(1), 135–145. https://doi.org/10.1016/j.atmosenv.2017.03.006
dc.relationMoteki, N., Kondo, Y., & Nakamura, S. (2010). Method to measure refractive indices of small nonspherical particles : Application to black carbon particles. Journal of Aerosol Science, 41(5), 513–521. https://doi.org/10.1016/j.jaerosci.2010.02.013
dc.relationMousavi, A., Sowlat, M. H., Lovett, C., Rauber, M., Szidat, S., Bo, R., … Sioutas, C. (2019). Source apportionment of black carbon ( BC ) from fossil fuel and biomass burning in metropolitan Milan , Italy, 203(January), 252–261. https://doi.org/10.1016/j.atmosenv.2019.02.009
dc.relationNasir, J., Zeb, B., Sorooshian, A., Mansha, M., Alam, K., Ahmad, I., … Shafiq, M. (2019). Journal of Atmospheric and Solar-Terrestrial Physics Spatio-temporal variations of absorbing aerosols and their relationship with meteorology over four high altitude sites in glaciated region of Pakistan. Journal of Atmospheric and Solar-Terrestrial Physics, 190(May), 84–95. https://doi.org/10.1016/j.jastp.2019.05.010
dc.relationNations, U., & Programme, E. (2014). ANNUAL REPORT 2014.
dc.relationNazelle, A. De, Fruin, S., Westerdahl, D., Martinez, D., Ripoll, A., Kubesch, N., &
dc.relationNieuwenhuijsen, M. (2012). A travel mode comparison of commuters ’ exposures to air pollutants in Barcelona. Atmospheric Environment, 59, 151–159. https://doi.org/10.1016/j.atmosenv.2012.05.013
dc.relationOkokon, E. O., Yli-tuomi, T., Turunen, A. W., Taimisto, P., Pennanen, A., Vouitsis, I., … Lanki, T. (2017). Particulates and noise exposure during bicycle , bus and car commuting : A study in three European cities. Environmental Research, 154(December 2016), 181–189. https://doi.org/10.1016/j.envres.2016.12.012
dc.relationOzdemir, H., Pozzoli, L., Kindap, T., Demir, G., Mertoglu, B., Mihalopoulos, N., … Unal, A. (2014). Science of the Total Environment Spatial and temporal analysis of black carbon aerosols in Istanbul megacity. Science of the Total Environment, The, 473–474, 451–458. https://doi.org/10.1016/j.scitotenv.2013.11.102
dc.relationPark, R. J., Jacob, D. J., & Logan, J. A. (2007). Fire and biofuel contributions to annual mean aerosol mass concentrations in the United States, 41, 7389–7400. https://doi.org/10.1016/j.atmosenv.2007.05.061
dc.relationPark, S. S., & Son, S. (2017). Relationship between carbonaceous components and aerosol light absorption during winter at an urban site of Gwangju , Korea. Atmospheric Research, 185, 73–83. https://doi.org/10.1016/j.atmosres.2016.11.005
dc.relationPattinson, W., Longley, I., & Kingham, S. (2014). Using mobile monitoring to visualise diurnal variation of traffic pollutants across two near-highway neighbourhoods. Atmospheric Environment, 94, 782–792. https://doi.org/10.1016/j.atmosenv.2014.06.007
dc.relationPeña Alvarado Isai. (n.d.). TESIS DE METODOS DE BC.pdf.
dc.relationPeralta, O., Ortínez-alvarez, A., Basaldud, R., Santiago, N., Alvarez-ospina, H., De, K., … Gavilán, A. (2019). Atmospheric black carbon concentrations in Mexico. Atmospheric Research, 230(February), 104626. https://doi.org/10.1016/j.atmosres.2019.104626
dc.relationPeters, J., Van den Bossche, J., Reggente, M., Van Poppel, M., De Baets, B., & Theunis, J. (2014). Cyclist exposure to UFP and BC on urban routes in Antwerp, Belgium. Atmospheric Environment, 92, 31–43. https://doi.org/10.1016/j.atmosenv.2014.03.039
dc.relationPetzold. (2013). Recommendations for reporting “ black carbon ” measurements, 8365–8379. https://doi.org/10.5194/acp-13-8365-2013
dc.relationPetzold, A., Schloesser, H., Sheridan, P. J., Patrick, W., Ogren, J. A., Virkkula, A., … Virkkula, A. (2010). Evaluation of Multiangle Absorption Photometry for Measuring Aerosol Light Absorption Evaluation of Multiangle Absorption Photometry for Measuring Aerosol Light Absorption, 6826(June). https://doi.org/10.1080/027868290901945
dc.relationPoppel, M. Van, Peters, J., & Bleux, N. (2013). Methodology for setup and data processing of mobile air quality measurements to assess the spatial variability of concentrations in urban environments. Environmental Pollution, 183, 224–233. https://doi.org/10.1016/j.envpol.2013.02.020
dc.relationPUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM A feasibility study of mapping light-absorbing carbon using a taxi fleet as a mobile platform. (2020), 1, 1–18.
dc.relationQiu, Y., Wu, X., Zhang, Y., Xu, L., Hong, Y., Chen, J., … Deng, J. (2019). ScienceDirect Aerosol light absorption in a coastal city in Southeast China : Temporal variations and implications for brown carbon. Journal of Environmental Sciences, 80, 257–266. https://doi.org/10.1016/j.jes.2019.01.002
dc.relationRajeevan, K., Sumesh, R. K., Resmi, E. A., & Unnikrishnan, C. K. (2019). An observational study on the variation of black carbon aerosol and source identi fi cation over a tropical station in south India. Atmospheric Pollution Research, 10(1), 30–44. https://doi.org/10.1016/j.apr.2018.06.009
dc.relationRAMANATHAN, V. y CARMICHAEL, C.-. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, Vol 1, 221–227.
dc.relationRattigan, O. V, Civerolo, K., Doraiswamy, P., Felton, H. D., & Hopke, P. K. (2013). Long Term Black Carbon Measurements at Two Urban Locations in New York, 1181–1196. https://doi.org/10.4209/aaqr.2013.02.0060
dc.relationReddington, C. L., Spracklen, D. V, Artaxo, P., Ridley, D. A., Rizzo, L. V, & Arana, A. (2016). Analysis of particulate emissions from tropical biomass burning using a global aerosol model and long-term surface observations, 11083–11106. https://doi.org/10.5194/acp-16- 11083-2016
dc.relationReid, S., Hobbs, V., Vanderlei, J., Weiss, E., & Eck, F. (1998). absorption and black carbon content of aerosols from biomass burning in Brazil independent of wavelength and has a mean value of _ os extinction - Os + o •, 103(98), 31–32.
dc.relationRizzo, L. V, Correia, A. L., Artaxo, P., & Proc, A. S. (2011). and Physics Spectral dependence of aerosol light absorption over the Amazon Basin, 8899–8912. https://doi.org/10.5194/acp- 11-8899-2011
dc.relationRobinson, C. A. L. (2013). Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions, 7683–7693. https://doi.org/10.5194/acp-13-7683-2013
dc.relationRojas, N. Y., Acevedo, H., & Aristiz, B. H. (2017). Relative impact of on-road vehicular and point-source industrial emissions of air pollutants in a medium-sized Andean city, 152. https://doi.org/10.1016/j.atmosenv.2016.12.048
dc.relationRomero-lankao, P., Qin, H., & Borbor-cordova, M. (2013). Social Science & Medicine Exploration of health risks related to air pollution and temperature in three Latin American cities, 83, 110–118.
dc.relationSandradewi, J. (2008). Using Aerosol Light Absorption Measurements for the Quantitative Determination of Wood Burning and Traffic Emission Contributions to Particulate Matter, 42(9), 3316–3323.
dc.relationSaturno, J., Holanda, B. A., Pöhlker, C., Ditas, F., Wang, Q., Brito, J., … Andreae, M. O. (2017). Black and brown carbon over central Amazonia : Long-term aerosol measurements at the ATTO site.
dc.relationSaturno, J., Pöhlker, C., Massabò, D., Brito, J., Carbone, S., Cheng, Y., … Pöhlker, M. L. (2017). Comparison of different Aethalometer correction schemes and a reference multiwavelength absorption technique for ambient aerosol data, 2837–2850.
dc.relationSchnaiter, M., Linke, C., & Ajtai, T. (2011). Inter-comparison of optical absorption coefficients of atmospheric aerosols determined by a multi-wavelength photoacoustic spectrometer and an Aethalometer under sub-urban wintry conditions, 42, 859–866. https://doi.org/10.1016/j.jaerosci.2011.07.008
dc.relationSciare, J., Sarda-este, R., Martinon, L., & Favez, O. (2009). Evidence for a significant contribution of wood burning aerosols to PM 2 . 5 during the winter season in Paris , France, 43(February 2005), 3640–3644. https://doi.org/10.1016/j.atmosenv.2009.04.035
dc.relationSingh, V., Ravindra, K., Sahu, L., & Sokhi, R. (2018). Trends of atmospheric black carbon concentration over the United Kingdom. Atmospheric Environment, 178(April 2017), 148– 157. https://doi.org/10.1016/j.atmosenv.2018.01.030
dc.relationSlowik, J. G., Cross, E. S., Han, J., Davidovits, P., Onasch, T. B., Jayne, J. T., … Petzold, A. (2007). An Inter-Comparison of Instruments Measuring Black Carbon Content of Soot Particles, 295–314. https://doi.org/10.1080/02786820701197078
dc.relationSol, D. (2017). Chemical characterization of fi lterable PM 2 . 5 emissions generated from regulated stationary sources in the Metropolitan Area of Costa rzano Arias , Víctor Hugo Beita Guerrero, 8, 709–717.
dc.relationTaheri, A., Aliasghari, P., & Hosseini, V. (2019). Black carbon and PM 2 . 5 monitoring campaign on the roadside and residential. Atmospheric Environment, 116928. https://doi.org/10.1016/j.atmosenv.2019.116928
dc.relationTai, A. P. K., Mickley, L. J., & Jacob, D. J. (2010). Correlations between fi ne particulate matter ( PM 2 . 5 ) and meteorological variables in the United States : Implications for the sensitivity of PM 2 . 5 to climate change. Atmospheric Environment, 44(32), 3976–3984. https://doi.org/10.1016/j.atmosenv.2010.06.060
dc.relationTargino, A. C., Gibson, M. D., Krecl, P., Rodrigues, M. V. C., dos Santos, M. M., & de Paula Corrêa, M. (2016). Hotspots of black carbon and PM 2.5 in an urban area and relationships to traffic characteristics. Environmental Pollution, 218, 475–486. https://doi.org/10.1016/j.envpol.2016.07.027
dc.relationTitos, G., Águila, A., Cazorla, A., Lyamani, H., Casquero-vera, J. A., Colombi, C., … Aladosarboledas, L. (2017). Science of the Total Environment Spatial and temporal variability of carbonaceous aerosols : Assessing the impact of biomass burning in the urban environment, 578, 613–625. https://doi.org/10.1016/j.scitotenv.2016.11.007
dc.relationUNEP. (2017). The Emissions Gap Report 2017.
dc.relationUNEP & WMO 1b. (2011). Integrated Assessment of Black Carbon and Tropospheric Ozone. United Nations Environment Programme (UNEP) 7 World Meteorolocial Organization. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Integrated+Assessment+of+Bl ack+Carbon+and+Tropospheric+Ozone#4
dc.relationValenzuela, A., Arola, A., Antón, M., Quirantes, A., & Alados-arboledas, L. (2017). Black carbon radiative forcing derived from AERONET measurements and models over an urban location in the southeastern Iberian Peninsula, 191, 44–56. https://doi.org/10.1016/j.atmosres.2017.03.007
dc.relationVan Poppel, M., Peters, J., & Bleux, N. (2013). Methodology for setup and data processing of mobile air quality measurements to assess the spatial variability of concentrations in urban environments. Environmental Pollution, 183, 224–233. https://doi.org/10.1016/j.envpol.2013.02.020
dc.relationVinicius, M., Rodrigues, C., Moreira, M., & Paula, M. De. (2016). Hotspots of black carbon and PM 2 . 5 in an urban area and relationships to traf fi c characteristics *, 1–12.
dc.relationVolkamer, R., Martini, F. S., Molina, L. T., Salcedo, D., Jimenez, J. L., & Molina, M. J. (2007). A missing sink for gas-phase glyoxal in Mexico City : Formation of secondary organic aerosol, 34, 1–5. https://doi.org/10.1029/2007GL030752
dc.relationWang, Q., Schwarz, J. P., Cao, J., Gao, R., Fahey, D. W., Hu, T., … Shen, Z. (2014). Science of the Total Environment Black carbon aerosol characterization in a remote area of Qinghai – Tibetan Plateau , western China. Science of the Total Environment, The, 479–480, 151–158. https://doi.org/10.1016/j.scitotenv.2014.01.098
dc.relationWHO. (2012). On the variability of Black Smoke and carbonaceous aerosols in the Netherlands. Atmospheric Environment, 41(28), 5908–5920. https://doi.org/10.1016/j.atmosenv.2007.03.042
dc.relationWilliams, R. D., & Knibbs, L. D. (2016). Daily personal exposure to black carbon : A pilot study. Atmospheric Environment, 132, 296–299. https://doi.org/10.1016/j.atmosenv.2016.03.023
dc.relationXiao, S., Yu, X., Zhu, B., Kumar, K. R., Li, M., & Li, L. (2020). Characterization and source apportionment of black carbon aerosol in the Nanjing Jiangbei New Area based on two years of measurements from Aethalometer. Journal of Aerosol Science, 139(July 2019), 105461. https://doi.org/10.1016/j.jaerosci.2019.105461
dc.relationYe, Q., Gu, P., Li, H. Z., Robinson, E. S., Lipsky, E. M., Kaltsonoudis, C., … Donahue, N. M. (2018). Normalized d #/ dlogd va Number Distribution In highways a with In area with On In site tunnels high traffic high traffic density Normalized d #/ dlogd va Vehicle Vehicle Diameter Diameter va. https://doi.org/10.1021/acs.est.8b01011
dc.relationZhan, C., Wan, D., Han, Y., & Zhang, J. (2019). Science of the Total Environment Historical variation of black carbon and PAHs over the last ~ 200 years in central North China : Evidence from lake sediment records. Science of the Total Environment, 690, 891–899. https://doi.org/10.1016/j.scitotenv.2019.07.008
dc.relationZhu, C., Cao, J., Hu, T., Shen, Z., Tie, X., Huang, H., & Wang, Q. (2017). Science of the Total Environment Spectral dependence of aerosol light absorption at an urban and a remote site over the Tibetan Plateau, 591(97), 14–21. https://doi.org/10.1016/j.scitotenv.2017.03.057
dc.relationZhu, C., Kanaya, Y., Yoshikawa-inoue, H., & Irino, T. (2019). Sources of atmospheric black carbon and related carbonaceous components at Rishiri Island , Japan : The roles of Siberian wild fi res and of crop residue burning in China *. Environmental Pollution, 247, 55–63. https://doi.org/10.1016/j.envpol.2019.01.003
dc.relationZotter, P., Herich, H., Gysel, M., El-Haddad, I., Zhang, Y., Mocnik, G., … Prévôt, A. S. H. (2017). Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol. Atmospheric Chemistry and Physics, 17(6), 4229–4249. https://doi.org/10.5194/acp-17-4229-2017
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectBlack Carbon
dc.subjectMobile measurement
dc.subjectAbsorption angström exponent
dc.subjectFossil fuel
dc.subjectBiomass burning
dc.subjectMonitoreos móviles
dc.subjectExponente de absorción de Angström
dc.subjectCombustibles fósiles
dc.subjectQuema de biomasa
dc.titleEvaluación de la variabilidad espacial de Black Carbon en un área urbana del Caribe colombiano
dc.typeTrabajo de grado - Pregrado
dc.typehttp://purl.org/coar/resource_type/c_7a1f
dc.typeText
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/TP
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución