dc.creatorMendoza, J.
dc.creatorMuriel, C.
dc.date2021-10-21T13:48:12Z
dc.date2021-10-21T13:48:12Z
dc.date2021
dc.date2023
dc.date.accessioned2023-10-03T19:38:22Z
dc.date.available2023-10-03T19:38:22Z
dc.identifier0960-0779
dc.identifierhttps://hdl.handle.net/11323/8794
dc.identifierhttps://doi.org/10.1016/j.chaos.2021.111360
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9170932
dc.descriptionNew travelling wave solutions for a generalised Burgers-Fisher (GBF) equation are obtained. They arise from the solutions of nonlinear second-order equations that can be linearised by a generalised Sundman transformation. The reconstruction problem involves a one-parameter family of first-order equations of Chini type. Firstly we obtain a unified expression of a one-parameter family of exact solutions, few of which have been reported in the recent literature by using hitherto not interrelated procedures, such as the tanh method, the modified tanh-coth method, the Exp-function method, the first integral method, or the improved expansion method. Upon certain condition on the coefficients of the GBF equation, the procedure successes in finding all the possible travelling wave solutions, given through a single expression depending on two arbitrary parameters, and expressed in terms of the Lerch Transcendent function. Finally, the case is completely solved, classifying all the admitted travelling wave solutions into either a one-parameter family of exponential solutions, or into a two-parameter family of solutions that involve Bessel functions and modified Bessel functions. For particular subclasses of the GBF equation new families of solutions, depending on one or two arbitrary parameters and given in terms of the exponential, trigonometric, and hyperbolic functions, are also reported.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relation[1] H. Bateman Some recent researches on the motion of fluids Mon Weather Rev, 43 (4) (1915), pp. 163-170
dc.relation[2] J.M. Burgers A mathematical model illustrating the theory of turbulence Advances in Applied Mechanics, 1, Elsevier (1948), pp. 171-199
dc.relation[3] J. Murray On Burgers’ model equations for turbulence J Fluid Mech, 59 (2) (1973), pp. 263-279
dc.relation[4] J. Yepez An efficient quantum algorithm for the one-dimensional burgers equation arXiv preprint quant-ph/0210092 (2002)
dc.relation[5] R.S. Hirsh Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique J Comput Phys, 19 (1) (1975), pp. 90-109
dc.relation[6] B. Greenshields, J. Bibbins, W. Channing, H. Miller A study of traffic capacity Highway Research Board Proceedings, 1935, National Research Council (USA), Highway Research Board (1935)
dc.relation[7] R.A. Fisher The wave of advance of advantageous genes Ann Eugen, 7 (4) (1937), pp. 355-369
dc.relation[8] A.N. Kolmogorov Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique Bull Univ Moskow, Ser-Internat, Sec A, 1 (1937), pp. 1-25
dc.relation[9] N.F. Britton, et al. Reaction-Diffusion equations and their applications to biology Academic Press (1986)
dc.relation[10] D.G. Aronson, H.F. Weinberger Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation Partial Differential Equations and Related Topics, Springer (1975), pp. 5-49
dc.relation[11] D.A. Frank-Kamenetskii Diffusion and heat exchange in chemical kinetics Princeton University Press (2015)
dc.relation[12] M.D. Bramson Maximal displacement of branching brownian motion Commun Pure Appl Math, 31 (5) (1978), pp. 531-581
dc.relation[13] J. Canosa Diffusion in nonlinear multiplicative media J Math Phys, 10 (10) (1969), pp. 1862-1868
dc.relation[14] J. Satsuma, M. Ablowitz, B. Fuchssteiner, M. Kruskal Topics in soliton theory and exactly solvable nonlinear equations World Scientific, Singapore City (1987)
dc.relation[15] M. Nadeem, F. Li, H. Ahmad Modified laplace variational iteration method for solving fourth-order parabolic partial differential equation with variable coefficients Computers & Mathematics with Applications, 78 (6) (2019), pp. 2052-2062
dc.relation[16] A.C. Loyinmi, T.K. Akinfe Exact solutions to the family of Fisher’s reaction-diffusion equation using elzaki homotopy transformation perturbation method Engineering Reports, 2 (2) (2020), p. e12084
dc.relation[17] T.K. Akinfe, A.C. Loyinmi A solitary wave solution to the generalized Burgers-Fisher’s equation using an improved differential transform method: a hybrid scheme approach Heliyon, 7 (5) (2021), p. e07001
dc.relation[18] R.K. Mohanty, S. Sharma A high-resolution method based on off-step non-polynomial spline approximations for the solution of Burgers-Fisher and coupled nonlinear burgers equations Eng Comput (Swansea) (2020)
dc.relation[19] A. Kumar Verma, S. Kayenat On the stability of micken’s type NSFD schemes for generalized Burgers fisher equation Journal of Difference Equations and Applications, 25 (12) (2019), pp. 1706-1737
dc.relation[20] A.-M. Wazwaz The tanh method for generalized forms of nonlinear heat conduction and Burgers-Fisher equations Appl Math Comput, 169 (1) (2005), pp. 321-338
dc.relation[21] L. Wazzan A modified tanh–coth method for solving the general Burgers–Fisher and the kuramoto–sivashinsky equations Commun Nonlinear Sci Numer Simul, 14 (6) (2009), pp. 2642-2652
dc.relation[22] Z.-h. Xu, D.-q. Xian Application of exp-function method to generalized Burgers-Fisher equation Acta Mathematicae Applicatae Sinica, English Series, 26 (4) (2010), pp. 669-676
dc.relation[23] J. Lu, G. Yu-Cui, X. Shu-Jiang Some new exact solutions to the Burgers-Fisher equation and generalized burgers–fisher equation Chin Phys, 16 (9) (2007), p. 2514
dc.relation[24] R.T. Redi, Y. Obsie, A. Shiferaw The improved (g/g)-expansion method to the generalized Burgers-Fisher equation Mathematical Modelling and Applications, 3 (1) (2018), p. 16
dc.relation[25] A.A. Hassaballa, T.M. Elzaki Applications of the improved (g’/g) expansion method for solve Burgers-Fisher equation J Comput Theor Nanosci, 14 (10) (2017), pp. 4664-4668
dc.relation[26] H. Chen, H. Zhang New multiple soliton solutions to the general Burgers-Fisher equation and the kuramoto–sivashinsky equation Chaos, Solitons & Fractals, 19 (1) (2004), pp. 71-76
dc.relation[27] C. Muriel, J.L. Romero New methods of reduction for ordinary differential equations IMA J Appl Math, 66 (2) (2001), pp. 111-125
dc.relation[28] C. Muriel, J. Romero First integrals, integrating factors and -symmetries of second-order differential equations J Phys A: Math Theor, 42 (36) (2009), p. 365207 View PDFCrossRefView Record in ScopusGoogle Scholar
dc.relation[29] J. Mendoza, C. Muriel Exact solutions and riccati-type first integrals J Nonlinear Math Phys, 24 (sup1) (2017), pp. 75-89
dc.relation[30] S. Lie Klassifikation und integration von gewöhnlichen differentialgleichungen zwischen x, y, die eine gruppe von transformationen gestatten. iii Arch Mat Naturvidenskab, 8 (1883), pp. 371-458
dc.relation[31] L. Duarte, F. Santos, I. Moreira Linearisation under non-point transformations Tech. Rep., SCAN/9408138 (1993)
dc.relation[32] N. Euler, M. Euler Sundman symmetries of nonlinear second-order and third-order ordinary differential equations J Nonlinear Math Phys, 11 (3) (2004), pp. 399-421
dc.relation[33] N. Euler, T. Wolf, P. Leach, M. Euler Linearisable third-order ordinary differential equations and generalised sundman transformations: the case Acta Applicandae Mathematica, 76 (1) (2003), pp. 89-115
dc.relation[34] S. Moyo, S.V. Meleshko Application of the generalised sundman transformation to the linearisation of two second-order ordinary differential equations J Nonlinear Math Phys, 18 (sup1) (2011), pp. 213-236 View PDFCrossRefView Record in ScopusGoogle Scholar
dc.relation[35] P.J. Olver Applications of lie groups to differential equations 107, Springer Science & Business Media (2000) Google Scholar
dc.relation[36] E. Pucci, G. Saccomandi On the reduction methods for ordinary differential equations J Phys A Math Gen, 35 (29) (2002), p. 6145
dc.relation[37] D.C. Ferraioli Nonlocal aspects of -symmetries and ODEs reduction J Phys A: Math Theor, 40 (21) (2007), p. 5479
dc.relation[38] G. Bluman, S. Anco Symmetry and integration methods for differential equations 154, Springer Science & Business Media (2008)
dc.relation[39] G.W. Bluman, S. Kumei Symmetries and differential equations 81, Springer Science & Business Media (2013)
dc.relation[40] Cheb-Terrab E, Roche A. Abel equations: equivalence and new integrable classes. Comput Phys Commun 200; 130.
dc.relation[41] E. Kamke Differentialgleichungen lȵsungsmethoden und lȵsungen. i: gewöhnliche Vieweg+Teubner Verlag (1977)
dc.relation[42] H. Bateman Higher transcendental functions 1–3, McGraw-Hill Book Company (1953)
dc.relation[43] F.W. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark NIST Handbook of mathematical functions hardback and CD-ROM Cambridge University Press (2010)
dc.relation[44] V.F. Zaitsev, A.D. Polyanin Handbook of exact solutions for ordinary differential equations CRC press (2002)
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceChaos, Solitons and Fractals
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S0960077921007141#!
dc.subjectGeneralised sundman transformation
dc.subjectλ−Symmetries
dc.subjectGeneralised
dc.subjectBurgers-Fisher equations
dc.subjectTravelling wave solutions
dc.titleNew exact solutions for a generalised Burgers-Fisher equation
dc.typePre-Publicación
dc.typehttp://purl.org/coar/resource_type/c_816b
dc.typeText
dc.typeinfo:eu-repo/semantics/preprint
dc.typeinfo:eu-repo/semantics/draft
dc.typehttp://purl.org/redcol/resource_type/ARTOTR
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución