dc.creator | Mendoza, J. | |
dc.creator | Muriel, C. | |
dc.date | 2021-10-21T13:48:12Z | |
dc.date | 2021-10-21T13:48:12Z | |
dc.date | 2021 | |
dc.date | 2023 | |
dc.date.accessioned | 2023-10-03T19:38:22Z | |
dc.date.available | 2023-10-03T19:38:22Z | |
dc.identifier | 0960-0779 | |
dc.identifier | https://hdl.handle.net/11323/8794 | |
dc.identifier | https://doi.org/10.1016/j.chaos.2021.111360 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9170932 | |
dc.description | New travelling wave solutions for a generalised Burgers-Fisher (GBF) equation are obtained. They arise from the solutions of nonlinear second-order equations that can be linearised by a generalised Sundman transformation. The reconstruction problem involves a one-parameter family of first-order equations of Chini type. Firstly we obtain a unified expression of a one-parameter family of exact solutions, few of which have been reported in the recent literature by using hitherto not interrelated procedures, such as the tanh method, the modified tanh-coth method, the Exp-function method, the first integral method, or the improved expansion method. Upon certain condition on the coefficients of the GBF equation, the procedure successes in finding all the possible travelling wave solutions, given through a single expression depending on two arbitrary parameters, and expressed in terms of the Lerch Transcendent function. Finally, the case is completely solved, classifying all the admitted travelling wave solutions into either a one-parameter family of exponential solutions, or into a two-parameter family of solutions that involve Bessel functions and modified Bessel functions. For particular subclasses of the GBF equation new families of solutions, depending on one or two arbitrary parameters and given in terms of the exponential, trigonometric, and hyperbolic functions, are also reported. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | [1] H. Bateman Some recent researches on the motion of fluids
Mon Weather Rev, 43 (4) (1915), pp. 163-170 | |
dc.relation | [2] J.M. Burgers A mathematical model illustrating the theory of turbulence
Advances in Applied Mechanics, 1, Elsevier (1948), pp. 171-199 | |
dc.relation | [3] J. Murray On Burgers’ model equations for turbulence
J Fluid Mech, 59 (2) (1973), pp. 263-279 | |
dc.relation | [4] J. Yepez An efficient quantum algorithm for the one-dimensional burgers equation
arXiv preprint quant-ph/0210092 (2002) | |
dc.relation | [5] R.S. Hirsh Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique J Comput Phys, 19 (1) (1975), pp. 90-109 | |
dc.relation | [6] B. Greenshields, J. Bibbins, W. Channing, H. Miller A study of traffic capacity
Highway Research Board Proceedings, 1935, National Research Council (USA), Highway Research Board (1935) | |
dc.relation | [7] R.A. Fisher The wave of advance of advantageous genes Ann Eugen, 7 (4) (1937), pp. 355-369 | |
dc.relation | [8] A.N. Kolmogorov Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique Bull Univ Moskow, Ser-Internat, Sec A, 1 (1937), pp. 1-25 | |
dc.relation | [9] N.F. Britton, et al. Reaction-Diffusion equations and their applications to biology
Academic Press (1986) | |
dc.relation | [10] D.G. Aronson, H.F. Weinberger Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation Partial Differential Equations and Related Topics, Springer (1975), pp. 5-49 | |
dc.relation | [11] D.A. Frank-Kamenetskii Diffusion and heat exchange in chemical kinetics Princeton University Press (2015) | |
dc.relation | [12] M.D. Bramson Maximal displacement of branching brownian motion Commun Pure Appl Math, 31 (5) (1978), pp. 531-581 | |
dc.relation | [13] J. Canosa Diffusion in nonlinear multiplicative media J Math Phys, 10 (10) (1969), pp. 1862-1868 | |
dc.relation | [14] J. Satsuma, M. Ablowitz, B. Fuchssteiner, M. Kruskal Topics in soliton theory and exactly solvable nonlinear equations World Scientific, Singapore City (1987) | |
dc.relation | [15] M. Nadeem, F. Li, H. Ahmad Modified laplace variational iteration method for solving fourth-order parabolic partial differential equation with variable coefficients Computers & Mathematics with Applications, 78 (6) (2019), pp. 2052-2062 | |
dc.relation | [16] A.C. Loyinmi, T.K. Akinfe Exact solutions to the family of Fisher’s reaction-diffusion equation using elzaki homotopy transformation perturbation method Engineering Reports, 2 (2) (2020), p. e12084 | |
dc.relation | [17] T.K. Akinfe, A.C. Loyinmi A solitary wave solution to the generalized Burgers-Fisher’s equation using an improved differential transform method: a hybrid scheme approach Heliyon, 7 (5) (2021), p. e07001 | |
dc.relation | [18] R.K. Mohanty, S. Sharma A high-resolution method based on off-step non-polynomial spline approximations for the solution of Burgers-Fisher and coupled nonlinear burgers equations
Eng Comput (Swansea) (2020) | |
dc.relation | [19] A. Kumar Verma, S. Kayenat On the stability of micken’s type NSFD schemes for generalized Burgers fisher equation Journal of Difference Equations and Applications, 25 (12) (2019), pp. 1706-1737 | |
dc.relation | [20] A.-M. Wazwaz The tanh method for generalized forms of nonlinear heat conduction and Burgers-Fisher equations Appl Math Comput, 169 (1) (2005), pp. 321-338 | |
dc.relation | [21] L. Wazzan A modified tanh–coth method for solving the general Burgers–Fisher and the kuramoto–sivashinsky equations Commun Nonlinear Sci Numer Simul, 14 (6) (2009), pp. 2642-2652 | |
dc.relation | [22] Z.-h. Xu, D.-q. Xian Application of exp-function method to generalized Burgers-Fisher equation
Acta Mathematicae Applicatae Sinica, English Series, 26 (4) (2010), pp. 669-676 | |
dc.relation | [23] J. Lu, G. Yu-Cui, X. Shu-Jiang Some new exact solutions to the Burgers-Fisher equation and generalized burgers–fisher equation
Chin Phys, 16 (9) (2007), p. 2514 | |
dc.relation | [24] R.T. Redi, Y. Obsie, A. Shiferaw The improved (g/g)-expansion method to the generalized Burgers-Fisher equation Mathematical Modelling and Applications, 3 (1) (2018), p. 16 | |
dc.relation | [25] A.A. Hassaballa, T.M. Elzaki Applications of the improved (g’/g) expansion method for solve Burgers-Fisher equation
J Comput Theor Nanosci, 14 (10) (2017), pp. 4664-4668 | |
dc.relation | [26] H. Chen, H. Zhang
New multiple soliton solutions to the general Burgers-Fisher equation and the kuramoto–sivashinsky equation
Chaos, Solitons & Fractals, 19 (1) (2004), pp. 71-76 | |
dc.relation | [27] C. Muriel, J.L. Romero
New methods of reduction for ordinary differential equations
IMA J Appl Math, 66 (2) (2001), pp. 111-125 | |
dc.relation | [28] C. Muriel, J. Romero
First integrals, integrating factors and -symmetries of second-order differential equations
J Phys A: Math Theor, 42 (36) (2009), p. 365207
View PDFCrossRefView Record in ScopusGoogle Scholar | |
dc.relation | [29] J. Mendoza, C. Muriel
Exact solutions and riccati-type first integrals
J Nonlinear Math Phys, 24 (sup1) (2017), pp. 75-89 | |
dc.relation | [30] S. Lie
Klassifikation und integration von gewöhnlichen differentialgleichungen zwischen x, y, die eine gruppe von transformationen gestatten. iii
Arch Mat Naturvidenskab, 8 (1883), pp. 371-458 | |
dc.relation | [31] L. Duarte, F. Santos, I. Moreira
Linearisation under non-point transformations
Tech. Rep., SCAN/9408138 (1993) | |
dc.relation | [32] N. Euler, M. Euler
Sundman symmetries of nonlinear second-order and third-order ordinary differential equations
J Nonlinear Math Phys, 11 (3) (2004), pp. 399-421 | |
dc.relation | [33] N. Euler, T. Wolf, P. Leach, M. Euler
Linearisable third-order ordinary differential equations and generalised sundman transformations: the case Acta Applicandae Mathematica, 76 (1) (2003), pp. 89-115 | |
dc.relation | [34] S. Moyo, S.V. Meleshko Application of the generalised sundman transformation to the linearisation of two second-order ordinary differential equations
J Nonlinear Math Phys, 18 (sup1) (2011), pp. 213-236
View PDFCrossRefView Record in ScopusGoogle Scholar | |
dc.relation | [35] P.J. Olver Applications of lie groups to differential equations
107, Springer Science & Business Media (2000)
Google Scholar | |
dc.relation | [36] E. Pucci, G. Saccomandi
On the reduction methods for ordinary differential equations
J Phys A Math Gen, 35 (29) (2002), p. 6145 | |
dc.relation | [37] D.C. Ferraioli
Nonlocal aspects of -symmetries and ODEs reduction
J Phys A: Math Theor, 40 (21) (2007), p. 5479 | |
dc.relation | [38] G. Bluman, S. Anco
Symmetry and integration methods for differential equations
154, Springer Science & Business Media (2008) | |
dc.relation | [39] G.W. Bluman, S. Kumei Symmetries and differential equations
81, Springer Science & Business Media (2013) | |
dc.relation | [40] Cheb-Terrab E, Roche A. Abel equations: equivalence and new integrable classes. Comput Phys Commun 200; 130. | |
dc.relation | [41] E. Kamke
Differentialgleichungen lȵsungsmethoden und lȵsungen. i: gewöhnliche
Vieweg+Teubner Verlag (1977) | |
dc.relation | [42] H. Bateman
Higher transcendental functions
1–3, McGraw-Hill Book Company (1953) | |
dc.relation | [43] F.W. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark
NIST Handbook of mathematical functions hardback and CD-ROM
Cambridge University Press (2010) | |
dc.relation | [44] V.F. Zaitsev, A.D. Polyanin
Handbook of exact solutions for ordinary differential equations
CRC press (2002) | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | Chaos, Solitons and Fractals | |
dc.source | https://www.sciencedirect.com/science/article/pii/S0960077921007141#! | |
dc.subject | Generalised sundman transformation | |
dc.subject | λ−Symmetries | |
dc.subject | Generalised | |
dc.subject | Burgers-Fisher equations | |
dc.subject | Travelling wave solutions | |
dc.title | New exact solutions for a generalised Burgers-Fisher equation | |
dc.type | Pre-Publicación | |
dc.type | http://purl.org/coar/resource_type/c_816b | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/preprint | |
dc.type | info:eu-repo/semantics/draft | |
dc.type | http://purl.org/redcol/resource_type/ARTOTR | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |