dc.creator | Collazo Solar, Laura | |
dc.creator | Costa Montiel, Angel A. | |
dc.creator | Vilaragut Llanes, Miriam | |
dc.creator | Sousa Santos, Vladimir | |
dc.date | 2022-01-28T21:18:39Z | |
dc.date | 2022-01-28T21:18:39Z | |
dc.date | 2021 | |
dc.date.accessioned | 2023-10-03T19:38:17Z | |
dc.date.available | 2023-10-03T19:38:17Z | |
dc.identifier | 2088-8694 | |
dc.identifier | https://hdl.handle.net/11323/9016 | |
dc.identifier | http://doi.org/10.11591/ijpeds.v12.i4.pp2083-2094 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9170917 | |
dc.description | In this paper, a new steady-state model of a three-phase asynchronous motor is proposed to be used in the studies of electrical power systems. The model allows for obtaining the response of the demand for active and reactive power as a function of voltage and frequency. The contribution of the model is the integration of the characteristics of the mechanical load that can drive motors, either constant or variable load. The model was evaluated on a 2500 kW and 6000 V motor, for the two types of mechanical load, in a wide range of voltage and frequency, as well as four load factors. As a result of the evaluation, it was possible to verify that, for the nominal frequency and voltage variation, the type of load does not influence the behavior of the powers and that the reactive power is very sensitive to the voltage variation. In the nominal voltage and frequency deviation scenario, it was found that the type of load influences the behavior of the active and reactive power, especially in the variable load. The results demonstrate the importance of considering the model proposed in the simulation software of electrical power systems. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | [1] J. J. Grainger and W. D. Stevenson, “Power system analysis,” New York: McGraw Hill, 1994. | |
dc.relation | [2] P. S. Kundur, “Power System Stability and Control, Third Edition. McGraw Hill,” Inc., 1993. | |
dc.relation | [3] A. Arif, Z. Wang, J. Wang, B. Mather, H. Bashualdo and D. Zhao, “Load Modeling-A Review,” IEEE
Transactions on Smart Grid, vol. 9, no. 6, pp. 5986-5999, 2018, doi: 10.1109/TSG.2017.2700436. | |
dc.relation | [4] M. J. S. Zuberi, A. Tijdink, and M. K. Patel, “Techno-economic analysis of energy efficiency improvement in
electric motor driven systems in Swiss industry,” Applied Energy, vol. 205, no. January, pp. 85-104, 2017, doi:
10.1016/j.apenergy.2017.07.121. | |
dc.relation | [5] Ç. Acar, O. C. Soygenc, and L. T. Ergene, “Increasing the Efficiency to IE4 Class for 5.5 kW Induction Motor
Used in Industrial Applications,” International Review of Electrical Engineering, vol. 14, no. 1, p. 67, 2019, doi:
10.15866/iree.v14i1.16307. | |
dc.relation | [6] E. C. Quispe, V. S. Santos, I. D. López, J. R. Gómez, and P. R. Viego, “Theoretical Analysis of the Voltage
Unbalance Factor to Characterize Unbalance Problems in Induction Motors,” Int. Rev. Electr. Eng., vol. 16, no. 1,
pp. 1-8, 2021, doi: 10.15866/iree.v16i1.18881. | |
dc.relation | [7] J. R. Gómez et al., “Assessment criteria of the feasibility of replacement standard efficiency electric motors with
high-efficiency motors,” Energy, vol. 239, p. 121877, 2022, doi: 10.1016/j.energy.2021.121877. | |
dc.relation | [8] A. De Almeida, J. Fong, C. U. Brunner, R. Werle, and M. Van Werkhoven, “New technology trends and policy
needs in energy efficient motor systems - A major opportunity for energy and carbon savings,” Renewable and
Sustainable Energy Reviews, vol. 115, p. 109384, 2019, doi: 10.1016/j.rser.2019.109384. | |
dc.relation | [9] P. R. Viego, V. Sousa, J. R. Gómez, and E. C. Quispe, “Direct-on-line-start permanent-magnet-assisted
synchronous reluctance motors with ferrite magnets for driving constant loads,” Int. J. Electr. Comput. Eng., vol.
10, no. 1, p. 651, 2020, doi: 10.11591/ijece.v10i1.pp651-659. | |
dc.relation | [10] A. Trianni, E. Cagno, and D. Accordini, “Energy efficiency measures in electric motors systems: A novel
classification highlighting specific implications in their adoption,” Applied Energy, vol. 252, p. 113481, 2019, doi:
10.1016/j.apenergy.2019.113481. | |
dc.relation | [11] J. C. Travieso-Torres et al., “New Adaptive High Starting Torque Scalar Control Scheme for Induction Motors
Based on Passivity,” Energies, vol. 13, no. 5, p. 1-15, 2020, doi: 10.3390/en13051276. | |
dc.relation | [12] F. J. T. E. Ferreira and A. T. de Almeida, “Reducing Energy Costs in Electric-Motor-Driven Systems: Savings
Through Output Power Reduction and Energy Regeneration,” IEEE Industry Applications Magazine, vol. 24, no. 1,
pp. 84-97, 2018, doi: 10.1109/MIAS.2016.2600685. | |
dc.relation | [13] C. P. Salomon, W. C. Sant’Ana, G. L. Torres, L. E. B. D. Silva, E. L. Bonaldi, and L. E. D. L. D. Oliveira,
“Comparison among methods for induction motor low-intrusive efficiency evaluation including a new AGT
approach with a modified stator resistance,” Energies, vol. 11, no. 4, pp. 1-21, 2018, doi: 10.3390/en11040691. | |
dc.relation | [14] V. S. Santos, J. J. C. Eras, A. S. Gutierrez, and M. J. Cabello Ulloa, “Assessment of the energy efficiency
estimation methods on induction motors considering real-time monitoring,” Measurement, vol. 136, pp. 237-247,
2019, doi: 10.1016/j.measurement.2018.12.080. | |
dc.relation | [15] D. Wang, X. Yuan, and M. Zhang, “Power-Balancing Based Induction Machine Model for Power System Dynamic
Analysis in Electromechanical Timescale,” Energies, vol. 11, no. 2, pp. 161-164, 2018, doi: 10.3390/en11020438. | |
dc.relation | [16] D. Kosterev and D. Davies, “System model validation studies in WECC,” IEEE PES General Meeting, 2010, pp. 1-
4, doi: 10.1109/PES.2010.5589797. | |
dc.relation | [17] J. C. Sánchez, T. I. A. Olivares, G. R. Ortiz and D. Ruiz-Vega, “Induction motor static models for power flow and
voltage stability studies,” IEEE Power and Energy Society General Meeting, 2012, pp. 1-8, doi:
10.1109/PESGM.2012.6345618. | |
dc.relation | [18] B. T. Ooi, J. Guo and X. Wang, “Nonlinear negative damping caused August 10, 1996-WECC blackout,” IEEE
Power & Energy Society General Meeting PESGM, 2020, pp. 1-5, doi: 10.1109/PESGM41954.2020.9281819. | |
dc.relation | [19] J. V. Milanovic, K. Yamashita, S. Martínez Villanueva, S. Ž. Djokic and L. M. Korunović, “International Industry
Practice on Power System Load Modeling,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3038-3046,
Aug. 2013, doi: 10.1109/TPWRS.2012.2231969. | |
dc.relation | [20] Z. Y. Dong, A. Borghetti, K. Yamashita, A. Gaikwad, P. Pourbeik, and J. V. Milanović, “CIGRE WG C4 . 065
Recommendations on Measurement Based and Component Based Load Modelling Practice,” CIGRE SC C4 2012
Hakodate Colloquium, no. June 2014, pp. 1-6, 2012. | |
dc.relation | [21] R. Balanathan, N. C. Pahalawaththa, and U. D. Annakkage, “Modelling induction motor loads for voltage stability
analysis,” International Journal of Electrical Power & Energy Systems, vol. 24, no. 6, pp. 469-480, 2002, doi:
10.1016/S0142-0615(01)00059-X. | |
dc.relation | [22] B. K. Choi, H. D. Chiang, Y. Li, Y. T. Chen, D. H. Huang and M. G. Lauby, “Development of composite load
models of power systems using on-line measurement data,” IEEE Power Engineering Society General Meeting,
2006, pp. 8, doi: 10.1109/PES.2006.1709013. | |
dc.relation | [23] P. Aree, “Load flow solution with induction motor,” Songklanakarin J. Sci. Technol, vol. 28, no. 1, pp. 157-168, 2006. | |
dc.relation | [24] S. D. Umans, “Fitzgerald and Kingsley’s Electric machinery,” 2014. | |
dc.relation | [25] L. Pereira, D. Kosterev, P. Mackin, D. Davies, J. Undrill and Wenchun Zhu, “An interim dynamic induction motor
model for stability studies in the WSCC,” IEEE Transactions on Power Systems, vol. 17, no. 4, pp. 1108-1115,
2002, doi: 10.1109/TPWRS.2002.804960. | |
dc.relation | [26] MATLAB, “MATLAB R2019a.” 2019. | |
dc.relation | [27] DIgSILENT, “DIgSILENT PowerFactory 15.1.7 (x86).” 2014. | |
dc.relation | [28] S. Rönnberg and M. Bollen, “Power quality issues in the electric power system of the future,” The Electricity
Journal, vol. 29, no. 10, pp. 49-61, 2016, doi: 10.1016/j.tej.2016.11.006. | |
dc.relation | [29] M. Hasanuzzaman, N. A. Rahim, R. Saidur, and S. N. Kazi, “Energy savings and emissions reductions for
rewinding and replacement of industrial motor,” Energy, vol. 36, no. 1, pp. 233-40, 2011, doi:
10.1016/j.energy.2010.10.046. | |
dc.relation | [30] A. J. Collin, J. L. Acosta, B. P. Hayes, and S. Z. Djokic, “Component-based aggregate load models for combined
power flow and harmonic analysis,” 7th Mediterranean Conference and Exhibition on Power Generation,
Transmission, Distribution and Energy Conversion, 2010. | |
dc.relation | [31] J. Carmona-Sánchez and D. Ruiz-Vega, “Review of static induction motor models,” North American Power
Symposium, 2010, pp. 1-8, doi: 10.1109/NAPS.2010.5619613. | |
dc.relation | [32] H. Renmu, Ma Jin and D. J. Hill, “Composite load modeling via measurement approach,” IEEE Transactions on
Power Systems, vol. 21, no. 2, pp. 663-672, 2006, doi: 10.1109/TPWRS.2006.873130. | |
dc.relation | [33] E. O. Kontis et al., “Development of measurement-based load models for the dynamic simulation of distribution
grids,” IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 2017, pp. 1-6, doi:
10.1109/ISGTEurope.2017.8260251. | |
dc.relation | [34] L. C. Solar, A. A. C. Montiel, M. V. Llanes, V. S. Santos, and A. C. Colina, “A new exact equivalent circuit of the
medium voltage three-phase induction motor,” International Journal of Electrical and Computer Engineering, vol.
10, no. 6, pp. 6164-6171, 2020, doi: 10.11591/ijece.v10i6.pp6164-6171. | |
dc.relation | [35] D. R. Q. Sarmiento, J. R. García, and W. M. López, “Methodology to Measure Electric Discharge Machining (
EDM ) Bearing Currents in Induction Motors with Supply from a Variable Speed Drive (VSD),” INGE CUC, vol.
9, no. 2, pp. 83-93, 2014. | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | International Journal of Power Electronics and Drive Systems | |
dc.source | http://ijpeds.iaescore.com/index.php/IJPEDS/article/view/21486 | |
dc.subject | Electrical power systems | |
dc.subject | Equivalent circuit | |
dc.subject | Load modeling | |
dc.subject | Mechanical load drive | |
dc.subject | Three-phase asynchronous motors | |
dc.subject | ZIP model | |
dc.title | A new approach to three-phase asynchronous motor model for electric power system analysis | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |