dc.creatorAcuña Bedoya, Jawer David
dc.creatorAlvarez Pugliese, Christian Eduardo
dc.creatorCastilla-Acevedo, Samir
dc.creatorBravo-Suárez, Juan J.
dc.creatorMarriaga-Cabrales, Nilson
dc.date2022-07-21T18:57:19Z
dc.date2024
dc.date2022-07-21T18:57:19Z
dc.date2022
dc.date.accessioned2023-10-03T19:37:37Z
dc.date.available2023-10-03T19:37:37Z
dc.identifierJawer David Acuña-Bedoya, Christian E. Alvarez-Pugliese, Samir Fernando Castilla-Acevedo, Juan J. Bravo-Suárez, Nilson Marriaga-Cabrales, Degradation of diclofenac aqueous solutions in a 3D electrolytic reactor using carbon-based materials as pseudo third electrodes in fluidized bed, anodic and cathodic configurations, Journal of Environmental Chemical Engineering, Volume 10, Issue 4, 2022, 108075, ISSN 2213-3437, https://doi.org/10.1016/j.jece.2022.108075.
dc.identifier2213-3437
dc.identifierhttps://hdl.handle.net/11323/9391
dc.identifierhttps://doi.org/10.1016/j.jece.2022.108075
dc.identifier10.1016/j.jece.2022.108075
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9170799
dc.descriptionIn this study, the degradation of diclofenac (DCF) in a 3D electrochemical reactor was evaluated. Several parameters were studied including the reactor configuration: fluidized bed (FB), anodic packed bed (APB) and cathodic packed bed (CPB); and the type of pseudo third electrode material: granular activated carbon (GAC) and granular expanded graphite (GEG). The configuration that showed the highest total organic carbon (TOC) removal was the APB, with values up to 85%. In addition, when the substrate saturation of the pseudo third electrode was 20% in the APB, the energy consumption was 2.5 times lower than the conventional 2D reactor. This efficient conversion was the result of improved contacting and reaction between hydroxyl (HO•) and sulfate (SO4•-) radicals electro-generated on the anode surface and DCF adsorbed on the particulate carbon. While the degradation efficiency with the 3D CPB reactor was higher than the FB configuration, it was less effective than the 3D APB reactor because of H2O2 production in the cathode, which decomposed to generate HO•, but only slowly and not sufficiently to oxidize DCF to a significant extent. Furthermore, it was also found that when two 3D APB reactors were connected in series a more significant TOC decrease (98%) and lower energy consumption (4 times) could be achieved than in a single 2D reactor configuration. This result demonstrated that the 3D electrochemical process can be cheaper and faster. All these results highlight the 3D anodic electro-oxidation process as a potential technology to efficiently treat recalcitrant contaminants of emerging concern.
dc.format12 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherElsevier BV
dc.publisherUnited Kingdom
dc.relationJournal of Environmental Chemical Engineering
dc.relation[1] Y. Zhang, S.U. Geißen, C. Gal, Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies, Chemosphere 73 (2008) 1151–1161, https://doi.org/10.1016/j.chemosphere.2008.07.086.
dc.relation[2] T. Di Lorenzo, M. Cifoni, M. Baratti, G. Pieraccini, W.D. Di Marzio, D.M.P. Galassi, Four scenarios of environmental risk of diclofenac in European groundwater ecosystems, Environ. Pollut. 287 (2021), 117315, https://doi.org/10.1016/j.envpol.2021.117315.
dc.relation[3] S. Gonzalez-Alonso, ´ L.M. Merino, S. Esteban, M. Lopez ´ de Alda, D. Barcelo, ´ J. J. Duran, ´ J. Lopez-Martínez, ´ J. Acena, ˜ S. P´erez, N. Mastroianni, A. Silva, M. Catal´ a, Y. Valcarcel, ´ Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region, Environ. Pollut. 229 (2017) 241–254, https://doi.org/10.1016/j.envpol.2017.05.060.
dc.relation[4] B.P. Gumbi, B. Moodley, G. Birungi, P.G. Ndungu, Detection and quantification of acidic drug residues in South African surface water using gas chromatography-mass spectrometry, Chemosphere 168 (2017) 1042–1050, https://doi.org/10.1016/j. chemosphere.2016.10.105.
dc.relation[5] M. Rabiet, A. Togola, F. Brissaud, J.L. Seidel, H. Budzinski, F. Elbaz-Poulichet, Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized mediterranean catchment, Environ. Sci. Technol. 40 (2006) 5282–5288, https://doi.org/10.1021/es060528p.
dc.relation[6] F. Sacher, F.T. Lange, H.J. Brauch, I. Blankenhorn, Pharmaceuticals in groundwaters: analytical methods and results of a monitoring program in BadenWürttemberg, Germany, J. Chromatogr. A. 938 (2001) 199–210, https://doi.org/ 10.1016/S0021-9673(01)01266-3.
dc.relation[7] J. Schwaiger, H. Ferling, U. Mallow, H. Wintermayr, R.D. Negele, Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: Histopathological alterations and bioaccumulation in rainbow trout, Aquat. Toxicol. 68 (2004) 141–150, https://doi.org/10.1016/j.aquatox.2004.03.014.
dc.relation[8] C. Jung, A. Son, N. Her, K.D. Zoh, J. Cho, Y. Yoon, Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review, J. Ind. Eng. Chem. 27 (2015) 1–11, https://doi.org/10.1016/ j.jiec.2014.12.035.
dc.relation[9] E. Brillas, C.A. Martínez-huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review,, Appl. Catal. B, Environ. 166–167 (2015) 603–643, https://doi.org/10.1016/j.apcatb.2014.11.016.
dc.relation[10] D. Ma, H. Yi, C. Lai, X. Liu, X. Huo, Z. An, L. Li, Y. Fu, B. Li, M. Zhang, L. Qin, S. Liu, L. Yang, Critical review of advanced oxidation processes in organic wastewater treatment, Chemosphere 275 (2021), 130104, https://doi.org/10.1016/j. chemosphere.2021.130104.
dc.relation[11] V. Satizabal-Gomez, M.A. Collazos-Botero, E.A. Serna-Galvis, R.A. Torres-Palma, J. J. Bravo-Suarez, S.F. Castilla-Acevedo, Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater, Miner. Eng. 170 (2021), https://doi.org/10.1016/j.mineng.2021.107031.
dc.relation[12] S.A. Joven-Quintero, S.F. Castilla-Acevedo, L.A. Betancourt-Buitrago, R. AcostaHerazo, F. Machuca-Martinez, Photocatalytic degradation of cobalt cyanocomplexes in a novel LED photoreactor using TiO<inf>2</inf> supported on borosilicate sheets: a new perspective for mining wastewater treatment, Mater. Sci. Semicond. Process. 110 (2020), https://doi.org/10.1016/j.mssp.2020.104972.
dc.relation[13] H. Ibargüen-Lopez, ´ B. Lopez-Balanta, ´ L. Betancourt-Buitrago, E.A. Serna-Galvis, R. A. Torres-Palma, F. Machuca-Martínez, S.F. Castilla-Acevedo, Degradation of hexacyanoferrate (III) ion by the coupling of the ultraviolet light and the activation of persulfate at basic pH, J. Environ. Chem. Eng. 9 (2021), 106233, https://doi.org/10.1016/j.jece.2021.106233.
dc.relation[14] Samir Fernando Castilla-Acevedo, Luis Andr´es Betancourt-Buitrago, Dionysios D. Dionysiou, Fiderman Machuca-Martínez, Ultraviolet light-mediated activation of persulfate for the degradation of cobalt cyanocomplexes, J. Hazard. Mater. 392 (2020), https://doi.org/10.1016/j.jhazmat.2020.122389.
dc.relation[15] F.C. Moreira, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters, , Appl. Catal. B Environ. 202 (2017) 217–261, https://doi.org/ 10.1016/j.apcatb.2016.08.037.
dc.relation[16] T.A. Enache, A.M. Chiorcea-Paquim, O. Fatibello-Filho, A.M. Oliveira-Brett, Hydroxyl radicals electrochemically generated in situ on a boron-doped diamond electrode, Electrochem. Commun. 11 (2009) 1342–1345, https://doi.org/ 10.1016/j.elecom.2009.04.017.
dc.relation[17] A. Fernandes, M.J. Nunes, A.S. Rodrigues, M.J. Pacheco, L. Ciríaco, A. Lopes, Electro-persulfate processes for the treatment of complex wastewater matrices: Present and future, Molecules 26 (2021), https://doi.org/10.3390/ molecules26164821.
dc.relation[18] L. Wei, S. Guo, G. Yan, C. Chen, X. Jiang, Electrochemical pretreatment of heavy oil refinery wastewater using a three-dimensional electrode reactor, Electrochim. Acta 55 (2010) 8615–8620, https://doi.org/10.1016/j.electacta.2010.08.011.
dc.relation[19] J. Zhan, Z. Li, G. Yu, X. Pan, J. Wang, W. Zhu, X. Han, Y. Wang, Enhanced treatment of pharmaceutical wastewater by combining three-dimensional electrochemical process with ozonation to in situ regenerate granular activated carbon particle electrodes, Sep. Purif. Technol. 208 (2019) 12–18, https://doi.org/10.1016/j.seppur.2018.06.030.
dc.relation[20] M. Zhou, L. Lei, The role of activated carbon on the removal of p-nitrophenol in an integrated three-phase electrochemical reactor, Chemosphere 65 (2006) 1197–1203, https://doi.org/10.1016/j.chemosphere.2006.03.054.
dc.relation[21] S. Cho, C. Kim, I. Hwang, Electrochemical degradation of ibuprofen using an activated-carbon-based continuous-flow three-dimensional electrode reactor (3DER), Chemosphere 259 (2020), 127382, https://doi.org/10.1016/j. chemosphere.2020.127382.
dc.relation[22] X. Wu, X. Yang, D. Wu, R. Fu, Feasibility study of using carbon aerogel as particle electrodes for decoloration of RBRX dye solution in a three-dimensional electrode reactor, Chem. Eng. J. 138 (2008) 47–54, https://doi.org/10.1016/j.cej.2007.05.027.
dc.relation[23] A. Rahmani, M. Leili, A. Seid-mohammadi, A. Shabanloo, A. Ansari, D. Nematollahi, S. Alizadeh, Improved degradation of diuron herbicide and pesticide wastewater treatment in a three-dimensional electrochemical reactor equipped with PbO2 anodes and granular activated carbon particle electrodes, J. Clean. Prod. 322 (2021), 129094, https://doi.org/10.1016/j. jclepro.2021.129094.
dc.relation[24] R.V. McQuillan, G.W. Stevens, K.A. Mumford, The electrochemical regeneration of granular activated carbons: a review, J. Hazard. Mater. 355 (2018) 34–49, https://doi.org/10.1016/j.jhazmat.2018.04.079.
dc.relation[25] H. Pourzamani, N. Mengelizadeh, Y. Hajizadeh, H. Mohammadi, Electrochemical degradation of diclofenac using three-dimensional electrode reactor with multiwalled carbon nanotubes, Environ. Sci. Pollut. Res. 25 (2018) 24746–24763, https://doi.org/10.1007/s11356-018-2527-8.
dc.relation[26] O. Garcia-Rodriguez, E. Mousset, H. Olvera-Vargas, O. Lefebvre, Electrochemical treatment of highly concentrated wastewater: a review of experimental and modeling approaches from lab- to full-scale, Crit. Rev. Environ. Sci. Technol. 52 (2022) 240–309, https://doi.org/10.1080/10643389.2020.1820428.
dc.relation[27] B.P. Chaplin, Critical review of electrochemical advanced oxidation processes for water treatment applications, Environ. Sci. Process. Impacts 16 (2014) 1182–1203, https://doi.org/10.1039/c3em00679d.
dc.relation[28] F.L. Guzman-Duque, ´ R.E. Palma-Goyes, I. Gonzalez, ´ G. Penuela, ˜ R.A. Torres-Palma, Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water, J. Hazard. Mater. 278 (2014) 221–226, https://doi.org/10.1016/j.jhazmat.2014.05.076.
dc.relation[29] C.E. Alvarez-Pugliese, J. Acuna-Bedoya, ˜ S. Vivas-Galarza, L.A. Prado-Arce, N. Marriaga-Cabrales, Electrolytic regeneration of granular activated carbon saturated with diclofenac using BDD anodes, Diam. Relat. Mater. 93 (2019) 193–199, https://doi.org/10.1016/j.diamond.2019.02.018.
dc.relation[30] N.L. Pedersen, M. Nikbakht Fini, P.K. Molnar, J. Muff, Synergy of combined adsorption and electrochemical degradation of aqueous organics by granular activated carbon particulate electrodes, Sep. Purif. Technol. 208 (2019) 51–58, https://doi.org/10.1016/j.seppur.2018.05.023.
dc.relation[31] M.R. Samarghandi, A. Ansari, A. Dargahi, A. Shabanloo, D. Nematollahi, M. Khazaei, H.Z. Nasab, Y. Vaziri, Enhanced electrocatalytic degradation of bisphenol A by graphite/β-PbO2 anode in a three-dimensional electrochemical reactor, J. Environ. Chem. Eng. 9 (2021), 106072, https://doi.org/10.1016/j. jece.2021.106072.
dc.relation[32] D. Liu, Water treatment by adsorption and electrochemical regeneration development of a liquid-lift reactor, The University of Manchester, 2015.
dc.relation[33] J. Acuna-Bedoya, ˜ J.A. Comas-Cabrales, C.E. Alvarez-Pugliese, N. MarriagaCabrales, Evaluation of electrolytic reactor configuration for the regeneration of granular activated carbon saturated with methylene blue, J. Environ. Chem. Eng. 8 (2020), 104074, https://doi.org/10.1016/j.jece.2020.104074.
dc.relation[34] O. Garcia-Rodriguez, A. Villot, H. Olvera-Vargas, C. Gerente, Y. Andres, O. Lefebvre, Impact of the saturation level on the electrochemical regeneration of activated carbon in a single sequential reactor, Carbon N. Y 163 (2020) 265–275, https://doi.org/10.1016/j.carbon.2020.02.041.
dc.relation[35] H.K. Jeswani, H. Gujba, N.W. Brown, E.P.L. Roberts, A. Azapagic, Removal of organic compounds from water: Life cycle environmental impacts and economic costs of the Arvia process compared to granulated activated carbon, J. Clean. Prod. 89 (2015) 203–213, https://doi.org/10.1016/j.jclepro.2014.11.017.
dc.relation[36] N.W. Brown, E.P.L. Roberts, Combining adsorption with anodic oxidation as an innovative technique for removal and destruction of organics, Water Sci. Technol. 68 (2013) 1216–1222, https://doi.org/10.2166/wst.2013.297.
dc.relation[37] M.D. Vedenyapina, D.A. Borisova, A.P. Simakova, L.P. Proshina, A.A. Vedenyapin, Adsorption of diclofenac sodium from aqueous solutions on expanded graphite, Solid Fuel Chem. 47 (2013) 59–63, https://doi.org/10.3103/ S0361521912060134.
dc.relation[38] D.M. Nevskaia, A.B. Fuertes, G. Marban, Adsorption of volatile organic compounds by means of activated carbon fibre-based monoliths, Carbon N. Y 41 (2003) 87–96, https://doi.org/10.1016/S0008-6223(02)00274-9.
dc.relation[39] Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Expanded graphite as superior anode for sodium-ion batteries, Nat. Commun. 5 (2014) 1–10, https://doi.org/10.1038/ncomms5033.
dc.relation[40] W. Zheng, S.C. Wong, Electrical conductivity and dielectric properties of PMMA/expanded graphite composites, Compos. Sci. Technol. 63 (2003) 225–235, https:// doi.org/10.1016/S0266-3538(02)00201-4.
dc.relation[41] C.B. Beck, Physicochemical processes for water quality control, Wiley Interscience, John Wiley & Sons, New York, 1973, https://doi.org/10.1002/aic.690190245.
dc.relation[42] J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman, Figures of merit for the technical development and application of advanced oxidation technologies for both electric and solar driven systems (IUPAC Technical Report), Pure Appl. Chem. 73 (2001) 627–637, https://doi.org/10.1351/pac200173040627.
dc.relation[43] B.H. Hameed, A.T.M. Din, A.L. Ahmad, Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies, J. Hazard. Mater. 141 (2007) 819–825, https://doi.org/10.1016/j.jhazmat.2006.07.049.
dc.relation[44] J. Lach, A. Szymonik, Adsorption of diclofenac sodium from aqueous solutions on commercial activated carbons, Desalin. Water Treat. 186 (2020) 418–429, https://doi.org/10.5004/dwt.2020.25567.
dc.relation[45] N. Gonzalez-Ipia, ´ K.C. Bolanos-Chamorro, ˜ J.D. Acuna-Bedoya, ˜ F. MachucaMartínez, S.F. Castilla-Acevedo, Enhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: a promissory application to mining wastewater treatment, J. Environ. Chem. Eng. 8 (2020), 104336, https://doi.org/10.1016/j.jece.2020.104336.
dc.relation[46] C.J. Sun, L.Z. Sun, X.X. Sun, Graphical evaluation of the favorability of adsorption processes by using conditional langmuir constant, Ind. Eng. Chem. Res. 52 (2013) 14251–14260, https://doi.org/10.1021/ie401571p.
dc.relation[47] J.L. Sotelo, A.R. Rodríguez, M.M. Mateos, S.D. Hernandez, ´ S.A. Torrellas, J. G. Rodríguez, Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials, J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes 47 (2012) 640–652, https://doi.org/10.1080/03601234.2012.668462.
dc.relation[48] C. Saucier, M.A. Adebayo, E.C. Lima, R. Catalu, P.S. Thue, L.D.T. Prola, F. M. Machado, F.A. Pavan, G.L. Dotto, Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents 289 (2015) 18–27, https://doi.org/10.1016/j.jhazmat.2015.02.026.
dc.relation[49] S. Larous, A. Meniai, Adsorption of Diclofenac from aqueous solution using activated carbon prepared from olive stones, Int. J. Hydrog. Energy 41 (2016) 10380–10390, https://doi.org/10.1016/j.ijhydene.2016.01.096.
dc.relation[50] I. Bouaziz, M. Hamza, A. Sellami, R. Abdelhedi, A. Savall, K. Groenen Serrano, New hybrid process combining adsorption on sawdust and electroxidation using a BDD anode for the treatment of dilute wastewater, Sep. Purif. Technol. 175 (2017) 1–8, https://doi.org/10.1016/j.seppur.2016.11.020.
dc.relation[51] H. Vald´es, M. Sanchez-Polo, ´ J. Rivera-Utrilla, C.A. Zaror, Effect of ozone treatment on surface properties of activated carbon, Langmuir 18 (2002) 2111–2116, https://doi.org/10.1021/la010920a.
dc.relation[52] N. Yuan, A. Zhao, Z. Hu, K. Tan, J. Zhang, Preparation and application of porous materials from coal gasification slag for wastewater treatment: a review, Chemosphere 287 (2022), 132227, https://doi.org/10.1016/j. chemosphere.2021.132227.
dc.relation[53] H. Valdes, M. Sanchez-Polo, C.A. Zaror, Effect of ozonation on the activated carbon surface chemical properties and on 2-mercaptobenzothiazole adsorption, Lat. Am. Appl. Res. 33 (2003) 219–223.
dc.relation[54] B. Wang, W. Kong, H. Ma, Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5 anode, J. Hazard. Mater. 146 (2007) 295–301, https://doi.org/10.1016/j.jhazmat.2006.12.031.
dc.relation[55] A. El-Ghenymy, C. Arias, P.L. Cabot, F. Centellas, J.A. Garrido, R.M. Rodríguez, E. Brillas, Electrochemical incineration of sulfanilic acid at a boron-doped diamond anode, Chemosphere 87 (2012) 1126–1133, https://doi.org/10.1016/j. chemosphere.2012.02.006.
dc.relation[56] G.W. Reade, A.H. Nahle, P. Bond, J.M. Friedrich, F.C. Walsh, Removal of cupric ions from acidic sulfate solution using reticulated vitreous carbon rotating cylinder electrodes, J. Chem. Technol. Biotechnol. 79 (2004) 935–945, https://doi.org/ 10.1002/jctb.1076.
dc.relation[57] K.Y. Foo, B.H. Hameed, A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects, J. Hazard. Mater. 170 (2009) 552–559, https://doi.org/10.1016/j.jhazmat.2009.05.057.
dc.relation[58] A. Fortuny, J. Font, A. Fabregat, Wet air oxidation of phenol using active carbon as catalyst, Appl. Catal. B, Environ. 19 (1998), https://doi.org/10.1016/S0926-3373 (98)00072-1.
dc.relation[59] S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Heterogeneous Fenton catalysts based on activated carbon and related materials, ChemSusChem 4 (2011) 1712–1730, https://doi.org/10.1002/cssc.201100216.
dc.relation[60] R.V. McQuillan, G.W. Stevens, K.A. Mumford, The electrochemical regeneration of granular activated carbons: a review, J. Hazard. Mater. 355 (2018) 34–49, https:// doi.org/10.1016/j.jhazmat.2018.04.079.
dc.relation[61] W. Zhou, X. Meng, J. Gao, H. Zhao, G. Zhao, J. Ma, Electrochemical regeneration of carbon-based adsorbents: a review of regeneration mechanisms, reactors, and future prospects, Chem. Eng. J. Adv. 5 (2021), 100083, https://doi.org/10.1016/j. ceja.2020.100083.
dc.relation[62] W. Zhou, X. Meng, Y. Ding, L. Rajic, J. Gao, Y. Qin, A.N. Alshawabkeh, “Selfcleaning” electrochemical regeneration of dye-loaded activated carbon, Electrochem. Commun. 100 (2019) 85–89, https://doi.org/10.1016/j. elecom.2019.01.025.
dc.relation[63] C.A. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review, Appl. Catal. B Environ. 87 (2009) 105–145, https://doi.org/10.1016/j.apcatb.2008.09.017.
dc.relation[64] R. Xie, X. Meng, P. Sun, J. Niu, W. Jiang, Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact, Appl. Catal. B, Environ. 203 (2017) 515–525, https://doi.org/10.1016/j.apcatb.2016.10.057.
dc.relation[65] Y. Wang, L. Zhu, N. Ba, F. Gao, H. Xie, Effects of NH4F quantity on N-doping level, photodegradation and photocatalytic H2 production activities of N-doped TiO2 nanotube array films, Mater. Res. Bull. 86 (2017) 268–276, https://doi.org/ 10.1016/j.materresbull.2016.10.031.
dc.relation[66] K. Yapsaklı, F. Çeçen, O. ¨ Aktas¸, Z.S. Can, Impact of surface properties of granular activated carbon and preozonation on adsorption and desorption of natural organic matter, Environ. Eng. Sci. 26 (2009) 489–500, https://doi.org/10.1089/ ees.2008.0005.
dc.relation[67] M. Zhou, L. Lei, The role of activated carbon on the removal of p-nitrophenol in an integrated three-phase electrochemical reactor, Chemosphere 65 (2006) 1197–1203, https://doi.org/10.1016/j.chemosphere.2006.03.054.
dc.relation[68] C. Comninellis, G. Chen, Electrochemistry for the Enviroment, New York, 2008. http://medcontent.metapress.com/index/A65RM03P4874243N.pdf (accessed March 12, 2014).
dc.relation[69] E. Brillas, S. Garcia-Segura, M. Skoumal, C. Arias, Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using Pt and borondoped diamond anodes, Chemosphere 79 (2010) 605–612, https://doi.org/ 10.1016/j.chemosphere.2010.03.004.
dc.relation[70] D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner, Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review, Water Res 139 (2018) 118–131, https://doi.org/10.1016/j. watres.2018.03.042.
dc.relation[71] N. Nippatlapalli, K. Ramakrishnan, L. Philip, Enhanced degradation of complex organic compounds in wastewater using different novel continuous flow non – Thermal pulsed corona plasma discharge reactors, Environ. Res. 203 (2022), 111807, https://doi.org/10.1016/j.envres.2021.111807.
dc.relation[72] M. of Environment and climate change, Guidance Document for Integrating UV - based Advanced Oxidation Processes ( AOPs) Into Municipal Wastewater Treatment Plants, Showcasing Water Innov. Progr. 28 (2015). 〈http://civil.enginee ring.utoronto.ca/wp-content/uploads/2015/09/SWI_Guidance_Document_-_Final. pdf〉. accessed March 2, 2022.
dc.relation[73] P. Sathishkumar, R. Viswanathan, Review on the recent improvements in sonochemical and combined sonochemical oxidation processes – A powerful tool for destruction of environmental contaminants, Renew. Sustain. Energy Rev. 55 (2016) 426–454, https://doi.org/10.1016/j.rser.2015.10.139.
dc.relation[74] G. Coria, J.L. Nava, G. Carreno, ˜ Electrooxidation of diclofenac in synthetic pharmaceutical wastewater using an electrochemical reactor equipped with a boron doped diamond electrode, J. Mex. Chem. Soc. 58 (2014) 303–308.
dc.relation[75] A. Yasmin, J.J. Luo, I.M. Daniel, Processing of expanded graphite reinforced polymer nanocomposites, Compos. Sci. Technol. 66 (2006) 1182–1189, https:// doi.org/10.1016/j.compscitech.2005.10.014.
dc.relation[76] H. Vald´es, C.A. Zaror, Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: kinetic approach, Chemosphere 65 (2006) 1131–1136, https://doi.org/10.1016/j.chemosphere.2006.04.027.
dc.relation[77] Z. Ren, D. Zhou, L. Zhang, M. Yu, Z. Wang, Y. Fan, ZnSn(OH)6 Photocatalyst for Methylene Blue Degradation: Electrolyte-Dependent Morphology and Performance, ChemistrySelect (2018) 10849–10856, https://doi.org/10.1002/ slct.201802195.
dc.relation[78] N. Gedam, N.R. Neti, Carbon attrition during continuous electrolysis in carbon bed based three-phase three-dimensional electrode reactor: Treatment of recalcitrant chemical industry wastewater, J. Environ. Chem. Eng. 2 (2014) 1527–1532, https://doi.org/10.1016/j.jece.2014.06.025
dc.relation12
dc.relation1
dc.relation4
dc.relation10
dc.rights© 2022 Elsevier Ltd. All rights reserved.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourcehttps://www.sciencedirect.com/science/article/abs/pii/S2213343722009484?via%3Dihub
dc.subjectBoron doped diamond
dc.subjectElectro-oxidation
dc.subjectAdsorption
dc.subjectGranular activated carbon
dc.subjectGranular expanded graphite
dc.titleDegradation of diclofenac aqueous solutions in a 3D electrolytic reactor using carbon-based materials as pseudo third electrodes in fluidized bed, anodic and cathodic configurations
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución