dc.contributor | Carpintero Durango, Javier | |
dc.contributor | Navas M, Carlos | |
dc.contributor | Pérez Rey, José | |
dc.contributor | Pacheco, Jorge | |
dc.creator | Martínez Plata, Brayan Lorenzo | |
dc.date | 2023-09-01T16:18:58Z | |
dc.date | 2023-09-01T16:18:58Z | |
dc.date | 2023 | |
dc.date.accessioned | 2023-10-03T19:33:36Z | |
dc.date.available | 2023-10-03T19:33:36Z | |
dc.identifier | https://hdl.handle.net/11323/10439 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9170630 | |
dc.description | En el presente proyecto se determinó una relación teórico-experimental para la caracterización de las propiedades hidráulicas de una válvula antirretorno usando los equipos del laboratorio de Mecánica de Fluidos e Hidráulica de la Universidad De la Costa. El agua potable es medida por medio de contadores volumétricos en redes hidráulicas residenciales. Cuando el agua transporta burbujas o bolsillos de aire por las tuberías, esta lectura pierde precisión y el servicio público va en detrimento de las facturaciones que los usuarios pagan por su consumo. Existe un accesorio tipo válvula check que reduce el tamaño de estas burbujas de aire para que la lectura de los contadores sea corregida y la experiencia del servicio mejore. No obstante, se ha probado su funcionamiento, para redes con presiones superiores a 270,75 kPa. En esta investigación se propone caracterizar hidráulicamente este accesorio a través de un procedimiento experimental, cuando sus condiciones de operación son similares a las encontradas en redes de agua de Latinoamérica donde las presiones de red son inferiores a 270.75 kPa. Se encontró que el dispositivo reductor del tamaño de burbujas de aire reduce significativamente su coeficiente de pérdida para velocidades superiores a 1 m/s. Este equipo se sugiere emplear para regímenes de flujo con número Reynolds cercano a 20000 para operar con un valor de coeficiente de pérdida K y una pérdida energética local mínimos. | |
dc.description | In the present project, a theoretical-experimental relationship was determined for the characterization of the hydraulic properties of a check valve using the equipment of the Fluid Mechanics and Hydraulics laboratory of the Universidad De la Costa. Drinking water is measured by means of volumetric meters in residential hydraulic networks. When the water carries bubbles or air pockets through the pipes, this reading loses accuracy, and the public service is detrimental to the bills that users pay for their consumption. There is a check valve type accessory that reduces the size of these air bubbles so that the meter reading is corrected, and the service experience is improved. However, its operation has been tested for networks with pressures higher than 270.75 kPa. In this research it is proposed to hydraulically characterize this accessory through an experimental procedure, when its operating conditions are similar to those found in water networks in Latin America where network pressures are lower than 270.75 kPa. It was found that the air bubble size reduction device significantly reduces its loss coefficient for velocities higher than 1 m/s. This equipment is suggested to be used for flow regimes with Reynolds number close to 20000 to operate with a minimum value of loss coefficient K and local energy loss. | |
dc.description | Lista de tablas y figuras 10 -- Introducción 12 -- Planteamiento Del Problema 16 -- Justificación 17 -- Objetivos 20 -- Objetivo General 20 -- Objetivos Específicos 20 -- Estado Del Arte 21 – Marco Teórico 23 -- Ecuación General De La Energía 23 -- Presión 23 -- Peso Específico 24 -- Velocidad 24 -- Caudal 25 -- Pérdidas Por Fricción 25 -- Numero De Reynolds 26 -- Viscosidad 27 – Viscosidad Absoluta O Dinámica 27 -- Viscosidad Cinemática 27 -- Metodología 34 -- Equipos 35 -- Montaje 38 -- Procedimiento Experimental 38 -- Análisis De Datos Teóricos Y Experimentales 39 -- Resultados 40 -- Relación De Datos Experimentales 45 -- Conclusiones 52 -- Referencias 54 -- Anexos 60 | |
dc.description | Ingeniero(a) Civil | |
dc.description | Pregrado | |
dc.format | 61 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Corporación Universidad de la Costa | |
dc.publisher | Civil y Ambiental | |
dc.publisher | Barranquilla, Colombia | |
dc.publisher | Ingeniería Civil | |
dc.relation | Villegas, J.F.; Carpintero, J.; Díaz Cantillo, Á.; Fábregas Villegas, J.; Durango, J.C.
Numerical Simulation of the Air Content of a Two-Phase Flow in a Non-Return
Valve for the Correction of Billing Measures in Domestic Drinking Water
Networks; 2020; Vol. 62. | |
dc.relation | Brandt, M.J.; Johnson, K.M.; Elphinston, A.J.; Ratnayaka, D.D. Chapter 18 - Valves and
Meters. In Twort’s Water Supply (Seventh Edition); Brandt, M.J., Johnson, K.M.,
Elphinston, A.J., Ratnayaka, D.D., Eds.; Butterworth-Heinemann: Boston, 2017;
pp. 743–775 ISBN 978-0-08-100025-0. | |
dc.relation | Ali, F.; Saidi, M.F.H. Water Leakage Detection Based on Automatic Meter Reading. In
Proceedings of the 2021 15th International Conference on Ubiquitous Information
Management and Communication (IMCOM); 2021; pp. 1–7. | |
dc.relation | Pietrosanto, A.; Carratù, M.; Liguori, C. Sensitivity of Water Meters to Small Leakage.
Measurement (Lond) 2021, 168, doi: 10.1016/j.measurement.2020.108479. | |
dc.relation | DiCarlo, M.F.; Berglund, E.Z. Using Advanced Metering Infrastructure Data to Evaluate
Consumer Compliance with Water Advisories during a Water Service
Interruption. Water Res 2022, 221, doi: 10.1016/j.watres.2022.118802. | |
dc.relation | Pothof, I.W.M.; Clemens, F.H.L.R. Experimental Study of Air-Water Flow in Downward
Sloping Pipes. International Journal of Multiphase Flow 2011, 37, 278–292, doi:
10.1016/j.ijmultiphaseflow.2010.10.006. | |
dc.relation | Villegas, J.F.; Carpintero, J.; Díaz Cantillo, Á.; Fábregas Villegas, J.; Durango, J.C. Numerical Simulation of the Air Content of a Two-Phase Flow in a Non-Return Valve for the Correction of Billing Measures in Domestic Drinking Water
Networks; 2020; Vol. 62; | |
dc.relation | Carpintero, J.; Canales, F.A.; Fábregas, J.; Ávila, J. Factors and Interactions That
Influence the Pressure Drop Across An Air Volume Reducing Device on
Low - Pressure Water Distribution Networks. Iranian Journal of Science and
Technology, Transactions of Civil Engineering 2021, doi:10.1007/s40996-021-
00682-z. | |
dc.relation | Carpintero, J.; Fabregas, J.; Pérez, S.; Pacheco, J.; Villa, J.; Fontalvo, C. Ingeniería
Inversa Sobre Un Dispositivo Ahorrador de Consumo de Agua Para Su Potencial
Aplicación En Ciudades Con Presiones Hidráulicas Por Debajo de 40 PSIg.
Revista gestión, competitividad e Innovación 2018, 68–78. | |
dc.relation | Ecowa México S.A.P.I. de C.V. Ecowa Air Retention Available online:
https://ecowa.com.mx/. | |
dc.relation | Ministerio de Vivienda Ciudad y Territorio Resolución 0330 de 2017: “Por La Cual Se
Adopta El Reglamento Técnico Para El Sector de Agua Potable y Saneamiento
Básico -RAS- y Se Derogan Las Resoluciones 1096 de 2000, 0424 de 2001, 0668
de 2003, 1459 de 2005, 1447 de 2005 y 2320 de 2009.” Ministerio de Vivienda,
Ciudad y Territorio. República de Colombia. 2017, 182. | |
dc.relation | Comisión Nacional del Agua Manual Para El Diseño de Sistemas de Agua Potable y
Alcantarillado Sanitario - Diseño de Redes de Distribución de Agua Potable;
Comisión Nacional del Agua: México D.F., 2007. | |
dc.relation | Nguyen, Q.K.; Jung, K.H.; Lee, G.N.; Park, H.J.; To, P.; Suh, S.B.; Lee, J.
Bubble Formation in Globe Valve and Flow Characteristics of Partially Filled Pipe Water Flow. International Journal of Naval Architecture and Ocean
Engineering 2021, 13, 554–565, doi: 10.1016/j.ijnaoe.2021.06.007 | |
dc.relation | Mott, R.; Utener, J. Applied Fluids Mechanics.; Pearson, Ed.; 7th ed.; 2015; Vol. 1; ISBN
978-0-13-255892-1. | |
dc.relation | Meniconi, S.; Brunone, B.; Mazzetti, E.; Laucelli, D.B.; Borta, G. Pressure Reducing
Valve Characterization for Pipe System Management. In Proceedings of the
Procedia Engineering; Elsevier Ltd, 2016; Vol. 162, pp. 455–462. | |
dc.relation | Amankwaa, G.; Heeks, R.; Browne, A.L. Smartening up: User Experience with Smart
Water Metering Infrastructure in an African City. Util Policy 2023, 80, doi:
10.1016/j.jup.2022.101478. | |
dc.relation | Oberascher, M.; Rauch, W.; Sitzenfrei, R. Towards a Smart Water City: A
Comprehensive Review of Applications, Data Requirements, and Communication
Technologies for Integrated Management. Sustain Cities Soc 2022, 76. | |
dc.relation | Zhao, L.; Wu, J. yi; Jin, Z. jiang; Qian, J. yuan Cavitation Effect on Flow Resistance of
Sleeve Regulating Valve. Flow Measurement and Instrumentation 2022, 88, doi:
10.1016/j.flowmeasinst.2022.102259. | |
dc.relation | Gan, R.; Li, B.; Liu, S.; Wu, Z.; Peng, Y.; Yang, G. Multi Structural Parameter Analysis
Based on the Labyrinth Valve Design with High Pressure Drop and Low Noise.
Flow Measurement and Instrumentation 2023, 89, doi:
10.1016/j.flowmeasinst.2022.102301. | |
dc.relation | Go, T.-S.; Kim, K. The Effect of Divergence Angle on the Control Valve Trim
Characteristics. Journal of Fluid Machinery 2013, 16, 32–39,
doi:10.5293/kfma.2013.16.1.032. | |
dc.relation | Forero, D. CFD Analysis of the Airflow Behavior in the Intake System of a LowDisplacement Diesel Engine., doi:10.17981/ingecuc.16.2.2020.23. | |
dc.relation | Benbella, S. Mixture Loss Coefficient of Safety Valves Used in Nuclear Plants. Nuclear
Engineering and Design 2009, 239, 1779–1788, doi:
10.1016/j.nucengdes.2009.05.013. | |
dc.relation | Iravani, M.; Toghraie, D. Design a High-Pressure Test System to Investigate the
Performance Characteristics of Ball Valves in a Compressible Choked Flow.
Measurement (Lond) 2020, 151, doi: 10.1016/j.measurement.2019.107200. | |
dc.relation | Yu, R.; Wu, Y.; Chen, X.; Wu, X. Study on the Design of Ball Valve Based on Elastic
Ring Valve Seat Structure and Fluid Characteristics and Fatigue Strength. Flow
Measurement and Instrumentation 2023, 89, doi:
10.1016/j.flowmeasinst.2022.102302. | |
dc.relation | Zhao, Y.; Wang, P.; Sun, Q.; Feng, D.; Tu, Y. Modeling and Experiment of Pressure
Drop on Valve Section of Hydraulic Oscillator. J Pet Sci Eng 2022, 208, doi:
10.1016/j.petrol.2021.109294. | |
dc.relation | de Moraes, M.S.; Torneiros, D.L.M.; da Silva Rosa, V.; Higa, J.S.; de Castro, Y.R.;
Santos, A.R.; de Almeida Coelho, N.M.; de Moraes Júnior, D. Experimental
Quantification of the Head Loss Coefficient K for Fittings and Semi-Industrial
Pipe Cross Section Solid Concentration Profile in Pneumatic Conveying of
Polypropylene Pellets in Dilute Phase. Powder Technol 2017, 310, 250–263, doi:
10.1016/j.powtec.2017.01.039. | |
dc.relation | Amaranatha Raju, M.; Ashok Babu, T.P.; Ranganayakulu, C. Flow Boiling Heat Transfer
and Pressure Drop Analysis of R134a in a Brazed Heat Exchanger with Offset Strip Fins. Heat and Mass Transfer/Waerme- und Stoffuebertragung 2017, 53,
3167–3180, doi:10.1007/s00231-017-2060-1. | |
dc.relation | Vinoth, R.; Sachuthananthan, B. Experimental Study of Heat Transfer and Pressure Drop
Characteristics of Microtube Condenser Using R134a. International Journal of
Ambient Energy 2022, 43, 4832–4837, doi:10.1080/01430750.2021.1919550. | |
dc.relation | Crane Co. Flow of Fluids through Valves, Fittings and Pipe - Technical Paper No. 410;
Crane Co.: Stamford, CT, 2013; ISBN 1400527120. | |
dc.relation | Jianhua, W.; Wanzheng, A.; Qi, Z. Head Loss Coefficient of Orifice Plate Energy
Dissipator. Journal of Hydraulic Research 2010, 48, 526–530,
doi:10.1080/00221686.2010.507347. | |
dc.relation | Ulusarslan, D. Effect of Diameter Ratio on Loss Coefficient of Elbows in the Flow of
Low-Density Spherical Capsule Trains. Particulate Science and Technology 2010,
28, 348–359, doi:10.1080/02726351003702558. | |
dc.relation | Jianhua, W.; Wanzheng, A.; Qi, Z. Head Loss Coefficient of Orifice Plate Energy
Dissipator. Journal of Hydraulic Research 2010, 48, 526–530,
doi:10.1080/00221686.2010.507347. | |
dc.relation | Ulusarslan, D. Effect of Diameter Ratio on Loss Coefficient of Elbows in the Flow of
Low-Density Spherical Capsule Trains. Particulate Science and Technology 2010,
28, 348–359, doi:10.1080/02726351003702558. | |
dc.relation | Jo, J.B.; Kim, J.S.; Yoon, S.E. Experimental Estimation of the Head Loss Coefficient at
Surcharged Four-Way Junction Manholes. Urban Water J 2018, 15, 780–789,
doi:10.1080/1573062X.2018.1547408. | |
dc.relation | Fester, V.G.; Kazadi, D.M.; Mbiya, B.M.; Slatter, P.T. Loss Coefficients for Flow of
Newtonian and Non-Newtonian Fluids through Diaphragm Valves. Chemical
Engineering Research and Design 2007, 85, 1314–1324, doi:10.1205/cherd06055. | |
dc.relation | Lee, J.H.; Lee, K.H. Prediction of the Resistance Coefficient in a Segment Ball Valve.
Journal of Mechanical Science and Technology 2010, 24, 185–188,
doi:10.1007/s12206-009-1138-1. | |
dc.relation | Mylaram, N.K.; Idem, S. Pressure Loss Coefficient Measurements of Two Close-Coupled
HVAC Elbows. HVAC and R Research 2005, 11, 133–146,
doi:10.1080/10789669.2005.10391130. | |
dc.relation | Kwon, H.J. Head Loss Coefficient Regarding Backflow Preventer for Transient Flow.
KSCE Journal of Civil Engineering 2008, 12, 205–211, doi:10.1007/s12205-008-
0205-y. | |
dc.relation | Khan, T.S.; Dai, Y.; Alshehhi, M.S.; Khezzar, L. Experimental Flow Characterization of
Sand Particles for Pneumatic Transport in Horizontal Circular Pipes. Powder
Technol 2016, 292, 158–168, doi: 10.1016/j.powtec.2016.01.014. | |
dc.relation | Wen, Q.; Liu, Y.; Chen, Z.; Wang, W. Numerical Simulation and Experimental
Validation of Flow Characteristics for a Butterfly Check Valve in Small Modular
Reactor. Nuclear Engineering and Design 2022, 391, doi:
10.1016/j.nucengdes.2022.111732. | |
dc.relation | AL-Washali, T.; Mahardani, M.; Sharma, S.; Arregui, F.; Kennedy, M. Impact of FloatValves on Water Meter Performance under Intermittent and Continuous Supply
Conditions. Resour Conserv Recycl 2020, 163,
doi:10.1016/j.resconrec.2020.105091. | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.subject | Caída de presión | |
dc.subject | Válvula | |
dc.subject | Coeficiente de pérdida | |
dc.subject | Contador de agua | |
dc.subject | Pressure drop | |
dc.subject | Valve | |
dc.subject | Loss coefficient | |
dc.subject | Water meter | |
dc.title | Caracterización hidráulica de una válvula Check que corrige la lectura de contadores volumétricos para redes de distribución de baja presión | |
dc.type | Trabajo de grado - Pregrado | |
dc.type | http://purl.org/coar/resource_type/c_7a1f | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/bachelorThesis | |
dc.type | http://purl.org/redcol/resource_type/TP | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |