dc.creator | Silva, Jesus | |
dc.creator | Rojas Plasencia, Karina Milagros | |
dc.creator | Senior Naveda, Alexa | |
dc.creator | Barrios, Rosio | |
dc.creator | Vargas Mercado, Carlos | |
dc.creator | Medina, Claudia | |
dc.date | 2021-01-28T20:00:37Z | |
dc.date | 2021-01-28T20:00:37Z | |
dc.date | 2020 | |
dc.date.accessioned | 2023-10-03T19:32:53Z | |
dc.date.available | 2023-10-03T19:32:53Z | |
dc.identifier | https://hdl.handle.net/11323/7790 | |
dc.identifier | https://doi.org/10.1016/j.procs.2020.03.102 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9170598 | |
dc.description | The assembly methods, or combination of models, arise with the purpose of improving the accuracy of predictions. An assembly contains a number of apprentices (base models) which, when of the same type are called homogeneous and if of different, heterogeneous. The characteristic is that these apprentices do not perform well. The assembly is generated using another algorithm that combines the apprentices, examples of which are the majority vote, the decision table and the neural networks [1]. This article proposes the use of an assembly of classifiers to determine the academic profile of the student, based on the student’s overall average and data related to educational factors. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | 1
1Zhi-Hua Z.
Ensemble methods: Foundations and Algorithms, CRC Press, Taylor & Francis Group (2012) | |
dc.relation | 2
Fayyad U., Piatetsky-Shapiro G., Smyth P.
From Data Mining to Knowledge Discovery in Databases
AI Magazine, 17 (3) (1996), pp. 37-54 | |
dc.relation | 3
Witten I., Frank E.
Data Mining: Practical Machine Learning Tools and Techniques (2nd ed.), Morgan Kaufmann Publishers (2005) | |
dc.relation | 4
WEKA 3: Data Mining Software in Java Homepage. https://www.cs.waikato.ac.nz/ ml/weka/ (2016) | |
dc.relation | 5
Singh Y., Chanuhan A.
Neural Networks in Data Mining
Journal of Theorical & Applied Information Technology, 5 (1) (2009), pp. 37-42 | |
dc.relation | 6
Orallo J., Ramírez M., Ferri C.
Introducción a la Minería de Datos, Pearson Education (2008) | |
dc.relation | 7
Khasawneh K., Ozsoy M., Ghazaleh N., Ponomarev D.
EnsembleHMD: Accurate Hardware Malware Detectors with Specialized Ensemble Classifiers
IEEE Transactions on Dependable and Secure Computing, pp., 10 (2018) | |
dc.relation | 8
Yan, Y., Yang, H., Wang, H.: Two simple and effective ensemble classifiers for twitter sen- timent analysis. Computing Conference 2017, pp. 1386–1393 (2017) | |
dc.relation | 9
Vogado, L., Veras, R., Andrade, A., Araujo, F., Silva, R., Aires, K.: Diagnosing Leukemia in Blood Smear Images Using an Ensemble of Classifiers and Pre-Trained Convolutional Neural Networks. 30th (SIBGRAPI) Conference on Graphics, Patterns and Images, pp. 367– 373, Niteroi (2017) | |
dc.relation | 10
Hestenes M., Stiefel E.
Methods of Conjugate Gradients for Solving Linear Systems
Journal of Research of the National Bureau of Standards, 49 (6) (1952), pp. 409-436 | |
dc.relation | 11
C. Sotelo-Figueroa, M.A. Castillo, Melin P.O., Pedrycz W., Kacprzyk J.
Generic Memetic Algorithm for Course Timetabling
ITC2007 Recent Advances on Hybrid Approaches for Designing Intelligent Systems, Springer (2014), pp. 481-492 | |
dc.relation | 12
Aladag, C., & Hocaoglu, G.: A tabu search algorithm to solve a course timetabling problem. Hacettepe journal of mathematics and statistics, pp. 53–64 (2007) | |
dc.relation | 13
Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. Caltech Concurrent Computation Program (report 826) (1989) | |
dc.relation | 14
Frausto-Solís J., Alonso-Pecina F., Mora-Vargas J.
An efficient simulated annealing algorithm for feasible solutions of course timetabling, Springer (2008), pp. 675-685 | |
dc.relation | 15
Joudaki M., Imani M., Mazhari N.
Using improved Memetic algorithm and local search to solve University Course Timetabling Problem (UCTTP), Islamic Azad University, Doroud, Iran (2010) | |
dc.relation | 16
Viloria Amelec, Lezama Omar Bonerge Pineda
Improvements for Determining the Number of Clusters in k-Means for Innovation Databases in SMEs
Procedia Computer Science, 151 (2019), pp. 1201-1206 | |
dc.relation | 17
Kamatkar, S.J., Kamble, A., Viloria, A., Hernández-Fernández, L., & Cali, E.G. (2018, June). Database performance tuning and query optimization. In International Conference on Data Mining and Big Data (pp. 3-11). Springer, Cham. | |
dc.relation | 18
Viloria Amelec, et al.
Integration of Data Mining Techniques to PostgreSQL Database Manager System
Procedia Computer Science, 155 (2019), pp. 575-580 | |
dc.relation | 19
Viloria A., Lis-Gutiérrez JP., Gaitán-Angulo M., Godoy A.R.M., Moreno G.C., Kamatkar S.J.
Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching - Learning Process Through Knowledge Data Discovery (Big Data).
Tan Y., Shi Y., Tang Q. (Eds.), Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943, Springer, Cham (2018) | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | Procedia Computer Science | |
dc.source | https://www.sciencedirect.com/science/article/pii/S1877050920305408#! | |
dc.subject | Assembly of classifiers | |
dc.subject | decision trees | |
dc.subject | artificial neural network | |
dc.title | Assembly of classifiers to determine the academic profile of students | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |