Selección de distribuciones de probabilidad hidrológica para eventos de lluvia extrema en las regiones de Colombia

dc.creatorCoronado-Hernández, Oscar E.
dc.creatorMerlano-Sabalza, Ernesto
dc.creatorDíaz-Vergara, Zaid
dc.creatorCoronado-Hernandez, Jairo R.
dc.date2020-08-13T16:56:55Z
dc.date2020-08-13T16:56:55Z
dc.date2020-05-10
dc.date.accessioned2023-10-03T19:32:47Z
dc.date.available2023-10-03T19:32:47Z
dc.identifier20734441
dc.identifierhttps://hdl.handle.net/11323/6921
dc.identifierhttps://doi.org/10.3390/w12051397
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9170583
dc.descriptionFrequency analysis of extreme events is used to estimate the maximum rainfall associated with different return periods and is used in planning hydraulic structures. When carrying out this type of analysis in engineering projects, the hydrological distributions that best fit the trend of maximum 24 h rainfall data are unknown. This study collected maximum 24 h rainfall records from 362 stations distributed throughout Colombia, with the goal of guiding hydraulic planners by suggesting the probability distributions they should use before beginning their analysis. The generalized extreme value (GEV) probability distribution, using the weighted moments method, presented the best fits of frequency analysis of maximum daily precipitation for various return periods for selected rainfall stations in Colombia.
dc.descriptionEl análisis de frecuencia de eventos extremos se utiliza para estimar la precipitación máxima asociada con diferentes períodos de retorno y se utiliza en la planificación de estructuras hidráulicas. Al realizar este tipo de análisis en proyectos de ingeniería, las distribuciones hidrológicas que mejor se ajustan a la tendencia de máxima Se desconocen los datos de precipitación de 24 h. Este estudio recopiló registros de precipitación máxima de 24 h de 362 estaciones distribuidos por toda Colombia, con el objetivo de orientar a los planificadores hidráulicos sugiriendo distribuciones de probabilidad que deben usar antes de comenzar su análisis. El extremo generalizado La distribución de probabilidad del valor (GEV), utilizando el método de momentos ponderados, presentó los mejores ajustes de análisis de frecuencia de la precipitación máxima diaria para varios períodos de retorno para lluvias seleccionadas estaciones en Colombia.
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relation1. Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill: Bogotá, Colombia, 1994.
dc.relation2. Frechet, M. Sur la loi de probabilité de l’ecart máximum (On the probability law of máximum values). Ann. de la Soc. Pol. de Math. 1927, 6, 93–116.
dc.relation3. Maidment, D. Handbook of Hydrology; Mc Graw-Hill: New York, NY, USA, 1992.
dc.relation4. Clarke, R.T.; Dias de Paiva, R.; Bertacchi, C. Comparison of methods for analysis of extremes when records are fragmented: A case study using Amazon basin rainfall data. J. Hydrol. 2009, 368, 26–29. [CrossRef]
dc.relation5. Bedient, P.B.; Huber, W.C. Hydrology and Floodplain Analysis. Prentice-Hall: Upper Saddle River, NJ, USA, 2002; pp. 168–224.
dc.relation6. Arnaez, J.; Lasanta, T.; Ruiz-Flaño, P.; Ortigosa, L. Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil Tillage Res. 2007, 93, 324–334. [CrossRef]
dc.relation7. Gonzalez-Alvarez, A.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Ramos, H.M. Effect of the Non-Stationarity of Rainfall Events on the Design of Hydraulic Structures for Runoff Management and Its Applications to a Case Study at Gordo Creek Watershed in Cartagena de Indias. Colomb. Fluids 2018, 3, 27. [CrossRef]
dc.relation8. Obeysekera, J.; Salas, J.D. Quantifying the uncertainty of design floods under nonstationary conditions. J. Hydrol. Eng. 2014, 19, 1438–1446. [CrossRef]
dc.relation9. Obeysekera, J.; Salas, J.D. Frequency of recurrent extremes under nonstationarity. J. Hydrol. Eng. 2016, 21, 04016005. [CrossRef]
dc.relation10. Yang, T.; Shao, Q.; Hao, Z.-C.; Chen, X.; Zhang, Z.; Xu, C.-Y.; Sun, L. Regional frequency analysis and spatio-temporal pattern characterization of rainfall extremes in the Pearl River Basin, China. J. Hydrol. 2009, 380, 386–405. [CrossRef]
dc.relation11. Nunn, Dwight. Ingetec, S.A-Empresa de Acueducto y Alcantarillado de Bogotá. In Estimating of Maximum Daily Precipitation of Tributaries of Bogotá River; Ingetec: Bogotá, Colombia, 1968.
dc.relation12. Pathak, C.S. Frequency analysis of rainfall maximums for Central and South Florida, Technical Publication EMA # 390. 2001. Available online: http://my.sfwmd.gov/portal/page/portal/pg_grp_tech_pubs/portlet_ tech_pubs/ema-390.pdf (accessed on 12 March 2018).
dc.relation13. Gumbel, E.J. The return period of flood flows. Ann. Math. Stat. 1941, 2, 163–190. [CrossRef]
dc.relation14. Weibull, W. A statistical theory of the strength of materials. In Proceedings of the Ingeniors Vetenskaps Akademien (The Royal Swedish Institute for Engineering Research) No. 51, Stockholm, Sweden, 1 Januray 1939; 1939; pp. 5–45.
dc.relation15. Grego, J.M.; Yates, P.A. Point and standard error estimation for quantiles of mixed flood distribution. J. Hydrol. 2010, 391, 289–301. [CrossRef]
dc.relation16. Koutrouvelisa, I.A.; Canavos, G.C. A comparison of moment-based methods of estimation for thelogPearson type 3 distribution. J. Hydrol. 2000, 234, 71–81. [CrossRef]
dc.relation17. Xuewu, J.; Jing, D.; Shen, H.W.; Salas, J.D. Plotting positions for Pearson type-III distribution. J. Hydrol. 2003, 74, 1–29. [CrossRef]
dc.relation18. Makkonen, L. Problems in the extreme value analysis. Struct. Saf. 2006, 30, 405–419. [CrossRef]
dc.relation19. Kolmogorov, A.N. Sulla determinazione empirica di una legge di distribuzione. G. dell’Instituto Ital. degli Attuari 1933, 4, 83–91.
dc.relation20. Smirnov, N.V. Estimate of deviation between empirical distribution functions in two independent samples. Bull. Mosc. Univ. 1939, 2, 3–16.
dc.relation21. Smirnov, N.V. Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat. 1948, 19, 279–281. [CrossRef]
dc.relation22. Mahdi, S.; Cenac, M. Estimating Parameters of Gumbel Distribution using the Methods of Moments, Probability Weighted Moments and Maximum Likelihood. Rev. de Matemáticas Teoría y Apl. 2005, 12, 151–156. [CrossRef]
dc.relation23. Seckin, N.; Yurtal, R.; Haktanir, T.; Dogan, A. Comparison of Probability Weighted Moments and Maximum Likelihood Methods Used in Flood Frequency Analysis for Ceyhan River Basin. Arab. J. Sci. Eng. 2009, 35, 49–69.
dc.relation24. Ministerio de Vivienda, Ciudad y Territorio. República de Colombia. Resolution 0330 of 8 June 2017. Available online: http://www.minvivienda.gov.co/ResolucionesAgua/0330%20-%202017.pdf (accessed on 20 March 2020).
dc.relation25. Ministerio de Transporte, Instituto Nacional de Vías. República de Colombia. Manual on Drainage Design for Highways. 2009. Available online: https://www.invias.gov.co/index.php/archivo-y-documentos/ documentos-tecnicos/especificaciones-tecnicas/984-manual-de-drenaje-para-carreteras/file (accessed on 20 March 2020).
dc.relation26. Gonzalez-Alvarez, A.; Viloria-Marimón, O.; Coronado-Hernández, O.E.; Vélez-Pereira, A.; Tesfagiorgis, K.; Coronado-Hernández, J. Isohyetal Maps of Daily Maximum Rainfall for Different Return Periods for the Colombian Caribbean Region. Water 2019, 11, 358. [CrossRef]
dc.relation27. Krishnamoorthy, K.; Peng, J. Some properties of the exact and score methods for binomial proportion and sample size calculation. Commun. Stat. Simul. Comput. 2007, 36, 1171–1186. [CrossRef]
dc.relation28. El Adlouni, S.; Bobée, B. Hydrological Frequency Analysis Using HYFRAN-PLUS Software. User’s Guide available with the software DEMO 2015. Available online: http://www.wrpllc.com/books/HyfranPlus/ indexhyfranplus3.html (accessed on 20 March 2020).
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceWater
dc.sourcehttps://www.mdpi.com/2073-4441/12/5/1397/htm
dc.subjectMaximum rainfall
dc.subjectColombia
dc.subjectRegionalization
dc.subjectProbability distribution
dc.subjectPrecipitación máxima
dc.subjectColombia
dc.subjectRegionalización
dc.subjectDistribución de probabilidad
dc.titleSelection of hydrological probability distributions for extreme rainfall events in the regions of Colombia
dc.titleSelección de distribuciones de probabilidad hidrológica para eventos de lluvia extrema en las regiones de Colombia
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/submittedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución