dc.contributor | De-La-Hoz-Franco, Emiro | |
dc.contributor | Diaz Martínez, Jorge | |
dc.creator | Patiño Saucedo, Janns Álvaro | |
dc.date | 2021-05-12T18:22:03Z | |
dc.date | 2021-05-12T18:22:03Z | |
dc.date | 2019 | |
dc.date.accessioned | 2023-10-03T19:32:13Z | |
dc.date.available | 2023-10-03T19:32:13Z | |
dc.identifier | https://hdl.handle.net/11323/8249 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9170509 | |
dc.description | Ambient assisted living (AAL), focus on generating innovative products and services in order to aid and medical attention to elderly people who suffer from neurodegenerative diseases or a disability. This research area is responsible for the development of activity recognition systems (ARS) which are based on Human Activity Recognition (HAR), specifically in activities of daily life (ADL) in indoor environments. These systems make it possible to identify the type of activity that people carry out, offering a possibility of effective assistance that allows them to carry out daily activities with total normality. The performance of the ARS in the HAR process must be evaluated through the approach of experimental scenarios with data sets available by the scientific community in online repositories, this work proposes a variety of combinations of machine learning algorithms with feature selection algorithms, obtaining as a result a functional model for the HAR, which combines the classification algorithm Logistic model trees (LMT) and the feature selection algorithm One R. | |
dc.description | Los ambientes asistidos para la vida - AAL por sus siglas en inglés (Ambient Assisted Living), se enfocan en generar productos y servicios innovadores en aras de proporcionar asistencia y atención médica a personas de avanzada edad que padezcan enfermedades neurodegenerativas o alguna discapacidad. Esta área de investigación se encarga del desarrollo de sistemas para el reconocimiento de actividad - ARS (Activity Recognition Systems) los cuales están basados en el reconocimiento de actividades humanas - HAR (Human Activity Recognition), específicamente en actividades de la vida diaria - ADL (Activities of Daily Living) en ambientes interiores (indoor). Estos sistemas permiten identificar el tipo de actividad que realizan las personas, ofreciendo una posibilidad de asistencia efectiva que les permita llevar a cabo actividades cotidianas con total normalidad. El desempeño de los ARS en el proceso de HAR, debe ser evaluado a través del planteamiento de escenarios experimentales con conjuntos de datos dispuestos por la comunidad científica en repositorios en linea, este trabajo plantea una variedad de combinaciones de técnicas de machine learning con técnicas de selección de características, obteniendo como resultado un modelo funcional para el HAR, que combina la técnica de clasificación árboles para el modelamiento logístico - LMT por sus siglas en inglés (Logistic Model Trees) y la técnica de selección de características One R. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | spa | |
dc.publisher | Corporación Universidad de la Costa | |
dc.publisher | Maestría en Ingeniería con Énfasis en Sistemas | |
dc.relation | Aggarwal, J. K., & Ryoo, M. S. (2011). Human activity analysis: A review. ACM Computing
Surveys, 43(3). https://doi.org/10.1145/1922649.1922653 | |
dc.relation | Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-Based Learning Algorithms. Machine
Learning, 6(1), 37–66. https://doi.org/10.1023/A:1022689900470 | |
dc.relation | Aluja, T. (2001). La minería de datos, entre la estadística y la inteligencia artificial. Questiio, 25(3),
479–498. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-
0035573389&partnerID=40&md5=2d59288d728bde451b4bf19d5855e4ba | |
dc.relation | Anderson, K. D., Bergés, M. E., Ocneanu, A., Benitez, D., & Moura, J. M. F. (2012). Event
detection for Non Intrusive load monitoring. IECON 2012 - 38th Annual Conference on IEEE
Industrial Electronics Society, 3312–3317. https://doi.org/10.1109/IECON.2012.6389367 | |
dc.relation | Anguita, D., Ghio, A., Oneto, L., Parra, X., & Reyes-Ortiz, J. L. (2013). A public domain dataset
for human activity recognition using smartphones. ESANN 2013 Proceedings, 21st European
Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning, (April), 437–442. | |
dc.relation | Aprende Machine Learning - Qué es overfitting y underfitting y cómo solucionarlo. (2017).
Retrieved from https://www.aprendemachinelearning.com/que-es-overfitting-y-underfittingy-como-solucionarlo/ | |
dc.relation | Berges Gonzalez, M. E. (2010). A Framework for Enabling Energy-Aware Facilities through
Minimally-Intrusive Approaches. Carnegie Mellon University, USA. | |
dc.relation | Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
https://doi.org/10.1007/bf00058655 | |
dc.relation | Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.
https://doi.org/10.1023/A:1010933404324 | |
dc.relation | Camaré, L. J. M. (2008). Aprendizaje Automático a partir de Conjuntos de Datos No Balanceados
y su Aplicación en el Diagnóstico y Pronóstico Médico. | |
dc.relation | Cessie, S. Le, & Houwelingen, J. C. Van. (1992). Ridge Estimators in Logistic Regression. Journal
of the Royal Statistical Society. Series C (Applied Statistics), 41(1), 191–201. Retrieved from
http://www.jstor.org/stable/2347628 | |
dc.relation | Chen, L., Hoey, J., Nugent, C. D., Cook, D. J., Yu, Z., & Member, S. (2012). Sensor-Based Activity
Recognition. 42(6), 790–808. | |
dc.relation | Chen, L., & Nugent, C. (2009). Ontology-based activity recognition in intelligent pervasive
environments. International Journal of Web Information Systems. | |
dc.relation | Cleary, J. G., & Trigg, L. E. (1995). An Instance-based Learner Using an Entropic Distance
Measure. Elsevier, 5, 1–14. https://doi.org/10.1016/B978-1-55860-377-6.50022-0 | |
dc.relation | Cohen, W. W. (1995). Fast Effective Rule Induction. Differences. | |
dc.relation | Cook, D. J. (2012). Learning setting-generalized activity models for smart spaces. IEEE Intelligent
Systems, 27(1), 32–38. https://doi.org/10.1109/MIS.2010.112 | |
dc.relation | Cook, D. J., Crandall, A. S., Thomas, B. L., & Krishnan, N. C. (2013). CASAS: A smart home in
a box. Computer, 46(7), 62–69. https://doi.org/10.1109/MC.2012.328 | |
dc.relation | De-La-Hoz-Franco, E., Ariza-Colpas, P., Quero, J. M., & Espinilla, M. (2018). Sensor-based
datasets for human activity recognition - A systematic review of literature. IEEE Access, 6,
59192–59210. https://doi.org/10.1109/ACCESS.2018.2873502 | |
dc.relation | Detours, V., Dumont, J. E., Bersini, H., & Maenhaut, C. (2003). Integration and cross-validation
of high-throughput gene expression data: Comparing heterogeneous data sets. FEBS Letters,
546(1), 98–102. https://doi.org/10.1016/S0014-5793(03)00522-2 | |
dc.relation | Eibe, F., Holmes, G., & Witten, I. H. (2007). Weka 3 - Data Mining with Open Source Machine
Learning Software in Java. Retrieved from https://www.cs.waikato.ac.nz/ml/weka/ | |
dc.relation | Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery
in databases. AI Magazine, 17(3), 37–53. Retrieved from
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
0002283033&partnerID=40&md5=266faf7bded790e22bc3754ab7e2caa1 | |
dc.relation | Frank, E., Hall, M., & Pfahringer, B. (2003). Locally Weighted Naive Bayes. 249–256. Retrieved
from http://arxiv.org/abs/1212.2487 | |
dc.relation | Frank, E., Wang, Y., Inglis, S., Holmes, G., & Witten, I. H. (1998). Using model trees for
classification. Machine Learning, 32(1), 63–76. https://doi.org/10.1023/A:1007421302149 | |
dc.relation | Frank, E., & Witten, I. H. (1998). Generating accurate rule sets without global optimization.
Proceedings of the Fifteenth International Conference on Machine Learning, 144–151.
https://doi.org/1-55860-556-8 | |
dc.relation | Freund, Y., & Schapire, R. E. (1996). Experiments with a New Boosting Algorithm. Proceedings
of the 13th International Conference on Machine Learning, 148–156.
https://doi.org/10.1.1.133.1040 | |
dc.relation | Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of
boosting (With discussion and a rejoinder by the authors). The Annals of Statistics, 28(2),
337–407. https://doi.org/10.1214/aos/1016218223 | |
dc.relation | Fürnkranz, J., & Widmer, G. (1996). Incremental Reduced Error Pruning. Machine Learning
Proceedings 1994, (January), 70–77. https://doi.org/10.1016/b978-1-55860-335-6.50017-9 | |
dc.relation | García, J. A. (2016). Líneas de investigación en minería de datos en aplicaciones en ciencia e
ingeniería: Estado del arte y perspectivas. Arxiv, Artificial Intelligence (Cs.AI),
1(1609.05401), 1–17. https://doi.org/10.1007/s003350010211 | |
dc.relation | Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of
Machine Learning Research, 3(Mar), 1157–1182. | |
dc.relation | Hall, M. A., & Holmes, G. (2003). Benchmarking Attribute Selection Techniques for Discrete
Class Data Mining. IEEE Transactions on Knowledge and Data Engineering, Vol. 15, pp.
1437–1447. https://doi.org/10.1109/TKDE.2003.1245283 | |
dc.relation | Herrera, F., & Cano, J. R. (2006). Técnicas de reducción de datos en KDD. El uso de Algoritmos
Evolutivos para la Selección de Instancias. Actas Del I Seminario Sobre Sistemas Inteligentes
(SSI’06), Universidad Rey Juan Carlos, Madrid (Spain)., 165–181. | |
dc.relation | Holte, R. C. (1993). Very Simple Classification Rules Perform Well on Most Commonly Used
Datasets. Machine Learning, 11, 63–91. https://doi.org/10.1023/A:1022631118932 | |
dc.relation | Hota, H. S., & Shrivas, A. K. (2014). Decision tree techniques applied on NSL-KDD data and its
comparison with various feature selection techniques. In Advanced Computing, Networking
and Informatics-Volume 1 (pp. 205–211). https://doi.org/http://doi.org/10.1007/978-3-319-
07353-8 | |
dc.relation | KDnuggets. (2014). What main methodology are you using for your analytics, data mining, or
data science projects? Poll. Retrieved from
https://www.kdnuggets.com/polls/2014/analytics-data-mining-data-sciencemethodology.html | |
dc.relation | Kim, Won and Choi, Byoung-Ju and Hong, Eui and Kim, Soo-Kyung and Lee, D. (2003). A
Taxonomy of Dirty Data. Data Min. Knowl. Discov., 7, 81–99.
https://doi.org/10.1023/A:1021564703268 | |
dc.relation | Kira, K., & Rendell, L. A. (1992). The Feature Selection Problem: Traditional Methods and a New
Algorithm. Proceedings of the Tenth National Conference on Artificial Intelligence, 129–
134. AAAI Press. | |
dc.relation | Kittler, J., Hatef, M., Duin, R. P. W., & Matas, J. (1998). On combining classifiers. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(3), 226–239.
https://doi.org/10.1109/34.667881 | |
dc.relation | Kohavi, R. (1995). Wrappers for performance enhancement and obvious decision graphs.
(November). Retrieved from https://dl.acm.org/citation.cfm?id=241090 | |
dc.relation | Kohavi, Ron, & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence,
97(1), 273–324. https://doi.org/https://doi.org/10.1016/S0004-3702(97)00043-X | |
dc.relation | Kohavi, Ron, & Provost, F. (1998). Glossary of Terms. Machine Learning, 2, 271–274.
https://doi.org/10.1023/A:1017181826899 | |
dc.relation | Kwon, B., Kim, J., & Lee, S. (2017). An enhanced multi-view human action recognition system
for virtual training simulator. 2016 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference, APSIPA 2016, 1–4.
https://doi.org/10.1109/APSIPA.2016.7820895 | |
dc.relation | Landwehr, N., Hall, M., & Frank, E. (2003). Logistic model trees. Lecture Notes in Artificial
Intelligence (Subseries of Lecture Notes in Computer Science), 2837, 241–252.
https://doi.org/10.1007/s10994-005-0466-3 | |
dc.relation | Lara, Ó. D., & Labrador, M. A. (2013). A survey on human activity recognition using wearable
sensors. IEEE Communications Surveys and Tutorials, 15(3), 1192–1209.
https://doi.org/10.1109/SURV.2012.110112.00192 | |
dc.relation | Li, C., Lin, M., Yang, L. T., & Ding, C. (2014). Integrating the enriched feature with machine
learning algorithms for human movement and fall detection. The Journal of Supercomputing,
67(3), 854–865. https://doi.org/https://doi.org/10.1007/s11227-013-1056-y | |
dc.relation | Li, R., Lu, B., & McDonald-Maier, K. D. (2015). Cognitive assisted living ambient system: a
survey. Digital Communications and Networks, 1(4), 229–252.
https://doi.org/10.1016/j.dcan.2015.10.003 | |
dc.relation | Lin, T. Y. (2002). Attribute transformations for data mining I: Theoretical explorations.
International Journal of Intelligent Systems, 17(2), 213–222. | |
dc.relation | Liu, H., & Motoda, H. (2012). Feature selection for knowledge discovery and data mining (Vol.
454). Springer Science & Business Media. | |
dc.relation | Liu, H., & Motoda, H. (2013). Instance selection and construction for data mining (Vol. 608).
Springer Science & Business Media. | |
dc.relation | Liu, H., Motoda, H., Setiono, R., & Zhao, Z. (2010). Feature Selection : An Ever Evolving Frontier in Data Mining. Journal of Machine Learning Research: Workshop and Conference Proceedings 10: The Fourth Workshop on Feature Selection in Data Mining, 4–13. | |
dc.relation | Marks Hall, G. H. (1994). WEKA: Practical Machine Learning Tools and Techniques with JAva Implementations. Retrieved from
https://researchcommons.waikato.ac.nz/bitstream/handle/10289/1040/uow-cs-wp-1999-11.pdf?sequence=1&isAllowed=y | |
dc.relation | Memon, M., Wagner, S. R., Pedersen, C. F., Aysha Beevi, F. H., & Hansen, F. O. (2014). Ambient
Assisted Living healthcare frameworks, platforms, standards, and quality attributes. Sensors
(Switzerland), 14(3), 4312–4341. https://doi.org/10.3390/s140304312 | |
dc.relation | Milley, A. H., Seabolt, J. D., & Williams, J. S. (1998). Data Mining and the Case for Sampling. A
SAS Institute Best Practices. 1–36. Retrieved from
http://sceweb.uhcl.edu/boetticher/ML_DataMining/SAS-SEMMA.pdf | |
dc.relation | Ministerio de Salud y Protección Social. (2017). Boletín de salud mental - Demencia. Retrieved
from Ministerio de Salud website:
https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENT/boletindepresion-marzo-2017.pdf | |
dc.relation | Mitra, S., & Acharya, T. (2003). Data Mining: Multimedia, Soft Computing, and Bioinformatics.
In Technometrics (Vol. 46). https://doi.org/10.1198/tech.2004.s207 | |
dc.relation | Moine, J. Mi., Haedo, A., & Gordillo, S. (2011). Estudio comparativo de metodologías para
minería de datos. XIII Workshop de Investigadores En Ciencias de La Computación, 278–
281. Retrieved from http://sedici.unlp.edu.ar/handle/10915/20034 | |
dc.relation | Pete, C., Julian, C., Randy, K., Thomas, K., Thomas, R., Colin, S., & Wirth, R. (2000). Crisp-Dm
1.0. CRISP-DM Consortium, 76. | |
dc.relation | PRADENA, P. C. P. A. (2013). VISUALIZACIÓN ESPACIO/TEMPORAL DE EVENTOS
NOTICIOSOS (UNIVERSIDAD DE CHILE). https://doi.org/10.1787/9789264197565-3-es | |
dc.relation | Provost, F., & Fawcett, T. (2001). Robust Classification for Imprecise Environments. Machine
Learning, 42, 203–231. https://doi.org/10.1023/A:1007601015854 | |
dc.relation | Pyle, D. (1999). Data preparation for data mining. Morgan Kaufmann. | |
dc.relation | Quinlan, J. R. (1994). C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan
Kaufmann Publishers, Inc., 1993. In Machine Learning (Vol. 16).
https://doi.org/10.1007/BF00993309 | |
dc.relation | Read, J., Puurula, A., & Bifet, A. (2015). Multi-label Classification with Meta-Labels. Proceedings - IEEE International Conference on Data Mining, ICDM, 2015-Janua(January), 941–946. https://doi.org/10.1109/ICDM.2014.38 | |
dc.relation | Reed, K. L., & Sanderson, S. N. (1999). Concepts of occupational therapy. Retrieved from
https://books.google.com.co/books?hl=es&lr=&id=1ZE47g_IRTwC&oi=fnd&pg=PR7&dq
=Concepts+of+Occupational+Therapy.&ots=sMksfVhmYK&sig=wlabmL9W01HtUuzpA
Raj6BUDtHI#v=onepage&q=Concepts of Occupational Therapy.&f=false | |
dc.relation | Rice, J. A. (2006). Mathematical statistics and data analysis. Cengage Learning. | |
dc.relation | Robnik-Šikonja, M., & Kononenko, I. (1997). An adaptation of {R}elief for attribute estimation
in regression. Proceedings of the Fourteenth International Conference on Machine Learning
(ICML’97), 5, 296–304. Retrieved from http://dl.acm.org/citation.cfm?id=645526.657141 | |
dc.relation | Shahi, A., Woodford, B. J., & Lin, H. (2017). Dynamic real-time segmentation and recognition of
activities using a multi-feature windowing approach. Pacific-Asia Conference on Knowledge
Discovery and Data Mining, 26–38. https://doi.org/https://doi.org/10.1007/978-3-319-
67274-8_3 | |
dc.relation | Shaltout, N., Elhefnawi, M., Rafea, A., & Moustafa, A. (2014). Information Gain as a Feature
Selection Method for the Efficient Classification of Influenza Based on Viral Hosts. Lecture
Notes in Engineering and Computer Science, 1, 625–631. | |
dc.relation | Singla, G., Cook, D. J., & Schmitter-Edgecombe, M. (2010). Recognizing independent and joint
activities among multiple residents in smart environments. Journal of Ambient Intelligence
and Humanized Computing, 1(1), 57–63. https://doi.org/10.1007/s12652-009-0007-1 | |
dc.relation | T.K. Ho. (1998). The Random Subspace Method for Constructing Decision Forests. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844.
https://doi.org/10.1109/34.709601 | |
dc.relation | U.S. National Library of Medicine. (2019). Enfermedades neurodegenerativas: MedlinePlus en
español. Retrieved January 13, 2020, from Medlineplus website:
https://medlineplus.gov/spanish/degenerativenervediseases.html | |
dc.relation | Van Der Malsburg, C. (1986). Frank Rosenblatt: Principles of Neurodynamics: Perceptrons and
the Theory of Brain Mechanisms. Brain Theory, (February), 245–248.
https://doi.org/10.1007/978-3-642-70911-1_20 | |
dc.relation | Van Kasteren, T. L. M., Englebienne, G., & Kröse, B. J. A. (2010). Activity recognition using
semi-Markov models on real world smart home datasets. Journal of Ambient Intelligence and
Smart Environments, 2(3), 311–325. https://doi.org/10.3233/AIS-2010-0070 | |
dc.relation | Weiss, S. M., & Kulikowski, C. A. (1991). Computer systems that learn: classification and prediction methods from statistics, neural nets, machine learning, and expert systems. Morgan Kaufmann Publishers Inc. | |
dc.relation | Witten, I. H., Frank, E., & Hall, M. a. (2011). Data Mining: Practical Machine Learning Tools and
Techniques. In Complementary literature None. Retrieved from
http://books.google.com/books?id=bDtLM8CODsQC&pgis=1 | |
dc.relation | Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259.
https://doi.org/10.1016/S0893-6080(05)80023-1 | |
dc.relation | World Health Organization. (2019). Dementia. Retrieved January 13, 2020, from
https://www.who.int/news-room/fact-sheets/detail/dementia | |
dc.relation | Zhang, S., Zhang, C., & Yang, Q. (2003). Data preparation for data mining. Applied Artificial
Intelligence, 17(5–6), 375–381. https://doi.org/10.1080/713827180 | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.subject | Human Activity Recognition (HAR) | |
dc.subject | Machine learning | |
dc.subject | Classification | |
dc.subject | Feature selection | |
dc.subject | Reconocimiento de Actividades Humanas (HAR) | |
dc.subject | Aprendizaje automático | |
dc.subject | Clasificación | |
dc.subject | Selección de características | |
dc.title | Modelo predictivo para el reconocimiento de actividades humanas basado en técnicas de Machine Learning y de selección de características | |
dc.type | Trabajo de grado - Maestría | |
dc.type | http://purl.org/coar/resource_type/c_bdcc | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/masterThesis | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/TM | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |