dc.contributorDe-La-Hoz-Franco, Emiro
dc.contributorDiaz Martínez, Jorge
dc.creatorPatiño Saucedo, Janns Álvaro
dc.date2021-05-12T18:22:03Z
dc.date2021-05-12T18:22:03Z
dc.date2019
dc.date.accessioned2023-10-03T19:32:13Z
dc.date.available2023-10-03T19:32:13Z
dc.identifierhttps://hdl.handle.net/11323/8249
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9170509
dc.descriptionAmbient assisted living (AAL), focus on generating innovative products and services in order to aid and medical attention to elderly people who suffer from neurodegenerative diseases or a disability. This research area is responsible for the development of activity recognition systems (ARS) which are based on Human Activity Recognition (HAR), specifically in activities of daily life (ADL) in indoor environments. These systems make it possible to identify the type of activity that people carry out, offering a possibility of effective assistance that allows them to carry out daily activities with total normality. The performance of the ARS in the HAR process must be evaluated through the approach of experimental scenarios with data sets available by the scientific community in online repositories, this work proposes a variety of combinations of machine learning algorithms with feature selection algorithms, obtaining as a result a functional model for the HAR, which combines the classification algorithm Logistic model trees (LMT) and the feature selection algorithm One R.
dc.descriptionLos ambientes asistidos para la vida - AAL por sus siglas en inglés (Ambient Assisted Living), se enfocan en generar productos y servicios innovadores en aras de proporcionar asistencia y atención médica a personas de avanzada edad que padezcan enfermedades neurodegenerativas o alguna discapacidad. Esta área de investigación se encarga del desarrollo de sistemas para el reconocimiento de actividad - ARS (Activity Recognition Systems) los cuales están basados en el reconocimiento de actividades humanas - HAR (Human Activity Recognition), específicamente en actividades de la vida diaria - ADL (Activities of Daily Living) en ambientes interiores (indoor). Estos sistemas permiten identificar el tipo de actividad que realizan las personas, ofreciendo una posibilidad de asistencia efectiva que les permita llevar a cabo actividades cotidianas con total normalidad. El desempeño de los ARS en el proceso de HAR, debe ser evaluado a través del planteamiento de escenarios experimentales con conjuntos de datos dispuestos por la comunidad científica en repositorios en linea, este trabajo plantea una variedad de combinaciones de técnicas de machine learning con técnicas de selección de características, obteniendo como resultado un modelo funcional para el HAR, que combina la técnica de clasificación árboles para el modelamiento logístico - LMT por sus siglas en inglés (Logistic Model Trees) y la técnica de selección de características One R.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.publisherMaestría en Ingeniería con Énfasis en Sistemas
dc.relationAggarwal, J. K., & Ryoo, M. S. (2011). Human activity analysis: A review. ACM Computing Surveys, 43(3). https://doi.org/10.1145/1922649.1922653
dc.relationAha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-Based Learning Algorithms. Machine Learning, 6(1), 37–66. https://doi.org/10.1023/A:1022689900470
dc.relationAluja, T. (2001). La minería de datos, entre la estadística y la inteligencia artificial. Questiio, 25(3), 479–498. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0- 0035573389&partnerID=40&md5=2d59288d728bde451b4bf19d5855e4ba
dc.relationAnderson, K. D., Bergés, M. E., Ocneanu, A., Benitez, D., & Moura, J. M. F. (2012). Event detection for Non Intrusive load monitoring. IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, 3312–3317. https://doi.org/10.1109/IECON.2012.6389367
dc.relationAnguita, D., Ghio, A., Oneto, L., Parra, X., & Reyes-Ortiz, J. L. (2013). A public domain dataset for human activity recognition using smartphones. ESANN 2013 Proceedings, 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, (April), 437–442.
dc.relationAprende Machine Learning - Qué es overfitting y underfitting y cómo solucionarlo. (2017). Retrieved from https://www.aprendemachinelearning.com/que-es-overfitting-y-underfittingy-como-solucionarlo/
dc.relationBerges Gonzalez, M. E. (2010). A Framework for Enabling Energy-Aware Facilities through Minimally-Intrusive Approaches. Carnegie Mellon University, USA.
dc.relationBreiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. https://doi.org/10.1007/bf00058655
dc.relationBreiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
dc.relationCamaré, L. J. M. (2008). Aprendizaje Automático a partir de Conjuntos de Datos No Balanceados y su Aplicación en el Diagnóstico y Pronóstico Médico.
dc.relationCessie, S. Le, & Houwelingen, J. C. Van. (1992). Ridge Estimators in Logistic Regression. Journal of the Royal Statistical Society. Series C (Applied Statistics), 41(1), 191–201. Retrieved from http://www.jstor.org/stable/2347628
dc.relationChen, L., Hoey, J., Nugent, C. D., Cook, D. J., Yu, Z., & Member, S. (2012). Sensor-Based Activity Recognition. 42(6), 790–808.
dc.relationChen, L., & Nugent, C. (2009). Ontology-based activity recognition in intelligent pervasive environments. International Journal of Web Information Systems.
dc.relationCleary, J. G., & Trigg, L. E. (1995). An Instance-based Learner Using an Entropic Distance Measure. Elsevier, 5, 1–14. https://doi.org/10.1016/B978-1-55860-377-6.50022-0
dc.relationCohen, W. W. (1995). Fast Effective Rule Induction. Differences.
dc.relationCook, D. J. (2012). Learning setting-generalized activity models for smart spaces. IEEE Intelligent Systems, 27(1), 32–38. https://doi.org/10.1109/MIS.2010.112
dc.relationCook, D. J., Crandall, A. S., Thomas, B. L., & Krishnan, N. C. (2013). CASAS: A smart home in a box. Computer, 46(7), 62–69. https://doi.org/10.1109/MC.2012.328
dc.relationDe-La-Hoz-Franco, E., Ariza-Colpas, P., Quero, J. M., & Espinilla, M. (2018). Sensor-based datasets for human activity recognition - A systematic review of literature. IEEE Access, 6, 59192–59210. https://doi.org/10.1109/ACCESS.2018.2873502
dc.relationDetours, V., Dumont, J. E., Bersini, H., & Maenhaut, C. (2003). Integration and cross-validation of high-throughput gene expression data: Comparing heterogeneous data sets. FEBS Letters, 546(1), 98–102. https://doi.org/10.1016/S0014-5793(03)00522-2
dc.relationEibe, F., Holmes, G., & Witten, I. H. (2007). Weka 3 - Data Mining with Open Source Machine Learning Software in Java. Retrieved from https://www.cs.waikato.ac.nz/ml/weka/
dc.relationFayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37–53. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0- 0002283033&partnerID=40&md5=266faf7bded790e22bc3754ab7e2caa1
dc.relationFrank, E., Hall, M., & Pfahringer, B. (2003). Locally Weighted Naive Bayes. 249–256. Retrieved from http://arxiv.org/abs/1212.2487
dc.relationFrank, E., Wang, Y., Inglis, S., Holmes, G., & Witten, I. H. (1998). Using model trees for classification. Machine Learning, 32(1), 63–76. https://doi.org/10.1023/A:1007421302149
dc.relationFrank, E., & Witten, I. H. (1998). Generating accurate rule sets without global optimization. Proceedings of the Fifteenth International Conference on Machine Learning, 144–151. https://doi.org/1-55860-556-8
dc.relationFreund, Y., & Schapire, R. E. (1996). Experiments with a New Boosting Algorithm. Proceedings of the 13th International Conference on Machine Learning, 148–156. https://doi.org/10.1.1.133.1040
dc.relationFriedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors). The Annals of Statistics, 28(2), 337–407. https://doi.org/10.1214/aos/1016218223
dc.relationFürnkranz, J., & Widmer, G. (1996). Incremental Reduced Error Pruning. Machine Learning Proceedings 1994, (January), 70–77. https://doi.org/10.1016/b978-1-55860-335-6.50017-9
dc.relationGarcía, J. A. (2016). Líneas de investigación en minería de datos en aplicaciones en ciencia e ingeniería: Estado del arte y perspectivas. Arxiv, Artificial Intelligence (Cs.AI), 1(1609.05401), 1–17. https://doi.org/10.1007/s003350010211
dc.relationGuyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3(Mar), 1157–1182.
dc.relationHall, M. A., & Holmes, G. (2003). Benchmarking Attribute Selection Techniques for Discrete Class Data Mining. IEEE Transactions on Knowledge and Data Engineering, Vol. 15, pp. 1437–1447. https://doi.org/10.1109/TKDE.2003.1245283
dc.relationHerrera, F., & Cano, J. R. (2006). Técnicas de reducción de datos en KDD. El uso de Algoritmos Evolutivos para la Selección de Instancias. Actas Del I Seminario Sobre Sistemas Inteligentes (SSI’06), Universidad Rey Juan Carlos, Madrid (Spain)., 165–181.
dc.relationHolte, R. C. (1993). Very Simple Classification Rules Perform Well on Most Commonly Used Datasets. Machine Learning, 11, 63–91. https://doi.org/10.1023/A:1022631118932
dc.relationHota, H. S., & Shrivas, A. K. (2014). Decision tree techniques applied on NSL-KDD data and its comparison with various feature selection techniques. In Advanced Computing, Networking and Informatics-Volume 1 (pp. 205–211). https://doi.org/http://doi.org/10.1007/978-3-319- 07353-8
dc.relationKDnuggets. (2014). What main methodology are you using for your analytics, data mining, or data science projects? Poll. Retrieved from https://www.kdnuggets.com/polls/2014/analytics-data-mining-data-sciencemethodology.html
dc.relationKim, Won and Choi, Byoung-Ju and Hong, Eui and Kim, Soo-Kyung and Lee, D. (2003). A Taxonomy of Dirty Data. Data Min. Knowl. Discov., 7, 81–99. https://doi.org/10.1023/A:1021564703268
dc.relationKira, K., & Rendell, L. A. (1992). The Feature Selection Problem: Traditional Methods and a New Algorithm. Proceedings of the Tenth National Conference on Artificial Intelligence, 129– 134. AAAI Press.
dc.relationKittler, J., Hatef, M., Duin, R. P. W., & Matas, J. (1998). On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3), 226–239. https://doi.org/10.1109/34.667881
dc.relationKohavi, R. (1995). Wrappers for performance enhancement and obvious decision graphs. (November). Retrieved from https://dl.acm.org/citation.cfm?id=241090
dc.relationKohavi, Ron, & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1), 273–324. https://doi.org/https://doi.org/10.1016/S0004-3702(97)00043-X
dc.relationKohavi, Ron, & Provost, F. (1998). Glossary of Terms. Machine Learning, 2, 271–274. https://doi.org/10.1023/A:1017181826899
dc.relationKwon, B., Kim, J., & Lee, S. (2017). An enhanced multi-view human action recognition system for virtual training simulator. 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA 2016, 1–4. https://doi.org/10.1109/APSIPA.2016.7820895
dc.relationLandwehr, N., Hall, M., & Frank, E. (2003). Logistic model trees. Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science), 2837, 241–252. https://doi.org/10.1007/s10994-005-0466-3
dc.relationLara, Ó. D., & Labrador, M. A. (2013). A survey on human activity recognition using wearable sensors. IEEE Communications Surveys and Tutorials, 15(3), 1192–1209. https://doi.org/10.1109/SURV.2012.110112.00192
dc.relationLi, C., Lin, M., Yang, L. T., & Ding, C. (2014). Integrating the enriched feature with machine learning algorithms for human movement and fall detection. The Journal of Supercomputing, 67(3), 854–865. https://doi.org/https://doi.org/10.1007/s11227-013-1056-y
dc.relationLi, R., Lu, B., & McDonald-Maier, K. D. (2015). Cognitive assisted living ambient system: a survey. Digital Communications and Networks, 1(4), 229–252. https://doi.org/10.1016/j.dcan.2015.10.003
dc.relationLin, T. Y. (2002). Attribute transformations for data mining I: Theoretical explorations. International Journal of Intelligent Systems, 17(2), 213–222.
dc.relationLiu, H., & Motoda, H. (2012). Feature selection for knowledge discovery and data mining (Vol. 454). Springer Science & Business Media.
dc.relationLiu, H., & Motoda, H. (2013). Instance selection and construction for data mining (Vol. 608). Springer Science & Business Media.
dc.relationLiu, H., Motoda, H., Setiono, R., & Zhao, Z. (2010). Feature Selection : An Ever Evolving Frontier in Data Mining. Journal of Machine Learning Research: Workshop and Conference Proceedings 10: The Fourth Workshop on Feature Selection in Data Mining, 4–13.
dc.relationMarks Hall, G. H. (1994). WEKA: Practical Machine Learning Tools and Techniques with JAva Implementations. Retrieved from https://researchcommons.waikato.ac.nz/bitstream/handle/10289/1040/uow-cs-wp-1999-11.pdf?sequence=1&isAllowed=y
dc.relationMemon, M., Wagner, S. R., Pedersen, C. F., Aysha Beevi, F. H., & Hansen, F. O. (2014). Ambient Assisted Living healthcare frameworks, platforms, standards, and quality attributes. Sensors (Switzerland), 14(3), 4312–4341. https://doi.org/10.3390/s140304312
dc.relationMilley, A. H., Seabolt, J. D., & Williams, J. S. (1998). Data Mining and the Case for Sampling. A SAS Institute Best Practices. 1–36. Retrieved from http://sceweb.uhcl.edu/boetticher/ML_DataMining/SAS-SEMMA.pdf
dc.relationMinisterio de Salud y Protección Social. (2017). Boletín de salud mental - Demencia. Retrieved from Ministerio de Salud website: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENT/boletindepresion-marzo-2017.pdf
dc.relationMitra, S., & Acharya, T. (2003). Data Mining: Multimedia, Soft Computing, and Bioinformatics. In Technometrics (Vol. 46). https://doi.org/10.1198/tech.2004.s207
dc.relationMoine, J. Mi., Haedo, A., & Gordillo, S. (2011). Estudio comparativo de metodologías para minería de datos. XIII Workshop de Investigadores En Ciencias de La Computación, 278– 281. Retrieved from http://sedici.unlp.edu.ar/handle/10915/20034
dc.relationPete, C., Julian, C., Randy, K., Thomas, K., Thomas, R., Colin, S., & Wirth, R. (2000). Crisp-Dm 1.0. CRISP-DM Consortium, 76.
dc.relationPRADENA, P. C. P. A. (2013). VISUALIZACIÓN ESPACIO/TEMPORAL DE EVENTOS NOTICIOSOS (UNIVERSIDAD DE CHILE). https://doi.org/10.1787/9789264197565-3-es
dc.relationProvost, F., & Fawcett, T. (2001). Robust Classification for Imprecise Environments. Machine Learning, 42, 203–231. https://doi.org/10.1023/A:1007601015854
dc.relationPyle, D. (1999). Data preparation for data mining. Morgan Kaufmann.
dc.relationQuinlan, J. R. (1994). C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993. In Machine Learning (Vol. 16). https://doi.org/10.1007/BF00993309
dc.relationRead, J., Puurula, A., & Bifet, A. (2015). Multi-label Classification with Meta-Labels. Proceedings - IEEE International Conference on Data Mining, ICDM, 2015-Janua(January), 941–946. https://doi.org/10.1109/ICDM.2014.38
dc.relationReed, K. L., & Sanderson, S. N. (1999). Concepts of occupational therapy. Retrieved from https://books.google.com.co/books?hl=es&lr=&id=1ZE47g_IRTwC&oi=fnd&pg=PR7&dq =Concepts+of+Occupational+Therapy.&ots=sMksfVhmYK&sig=wlabmL9W01HtUuzpA Raj6BUDtHI#v=onepage&q=Concepts of Occupational Therapy.&f=false
dc.relationRice, J. A. (2006). Mathematical statistics and data analysis. Cengage Learning.
dc.relationRobnik-Šikonja, M., & Kononenko, I. (1997). An adaptation of {R}elief for attribute estimation in regression. Proceedings of the Fourteenth International Conference on Machine Learning (ICML’97), 5, 296–304. Retrieved from http://dl.acm.org/citation.cfm?id=645526.657141
dc.relationShahi, A., Woodford, B. J., & Lin, H. (2017). Dynamic real-time segmentation and recognition of activities using a multi-feature windowing approach. Pacific-Asia Conference on Knowledge Discovery and Data Mining, 26–38. https://doi.org/https://doi.org/10.1007/978-3-319- 67274-8_3
dc.relationShaltout, N., Elhefnawi, M., Rafea, A., & Moustafa, A. (2014). Information Gain as a Feature Selection Method for the Efficient Classification of Influenza Based on Viral Hosts. Lecture Notes in Engineering and Computer Science, 1, 625–631.
dc.relationSingla, G., Cook, D. J., & Schmitter-Edgecombe, M. (2010). Recognizing independent and joint activities among multiple residents in smart environments. Journal of Ambient Intelligence and Humanized Computing, 1(1), 57–63. https://doi.org/10.1007/s12652-009-0007-1
dc.relationT.K. Ho. (1998). The Random Subspace Method for Constructing Decision Forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844. https://doi.org/10.1109/34.709601
dc.relationU.S. National Library of Medicine. (2019). Enfermedades neurodegenerativas: MedlinePlus en español. Retrieved January 13, 2020, from Medlineplus website: https://medlineplus.gov/spanish/degenerativenervediseases.html
dc.relationVan Der Malsburg, C. (1986). Frank Rosenblatt: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Brain Theory, (February), 245–248. https://doi.org/10.1007/978-3-642-70911-1_20
dc.relationVan Kasteren, T. L. M., Englebienne, G., & Kröse, B. J. A. (2010). Activity recognition using semi-Markov models on real world smart home datasets. Journal of Ambient Intelligence and Smart Environments, 2(3), 311–325. https://doi.org/10.3233/AIS-2010-0070
dc.relationWeiss, S. M., & Kulikowski, C. A. (1991). Computer systems that learn: classification and prediction methods from statistics, neural nets, machine learning, and expert systems. Morgan Kaufmann Publishers Inc.
dc.relationWitten, I. H., Frank, E., & Hall, M. a. (2011). Data Mining: Practical Machine Learning Tools and Techniques. In Complementary literature None. Retrieved from http://books.google.com/books?id=bDtLM8CODsQC&pgis=1
dc.relationWolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259. https://doi.org/10.1016/S0893-6080(05)80023-1
dc.relationWorld Health Organization. (2019). Dementia. Retrieved January 13, 2020, from https://www.who.int/news-room/fact-sheets/detail/dementia
dc.relationZhang, S., Zhang, C., & Yang, Q. (2003). Data preparation for data mining. Applied Artificial Intelligence, 17(5–6), 375–381. https://doi.org/10.1080/713827180
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectHuman Activity Recognition (HAR)
dc.subjectMachine learning
dc.subjectClassification
dc.subjectFeature selection
dc.subjectReconocimiento de Actividades Humanas (HAR)
dc.subjectAprendizaje automático
dc.subjectClasificación
dc.subjectSelección de características
dc.titleModelo predictivo para el reconocimiento de actividades humanas basado en técnicas de Machine Learning y de selección de características
dc.typeTrabajo de grado - Maestría
dc.typehttp://purl.org/coar/resource_type/c_bdcc
dc.typeText
dc.typeinfo:eu-repo/semantics/masterThesis
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/TM
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución