dc.creatorE. Pacheco, Gabriel F.
dc.creatorC. Bortolin, Rafael
dc.creatorR. Chaves, Paloma
dc.creatorF. Moreira, José C.
dc.creatorM. Kessler, Alexandre
dc.creatorTrevizan, Luciano
dc.date2019-04-11T22:45:42Z
dc.date2019-04-11T22:45:42Z
dc.date2018-07-30
dc.date.accessioned2023-10-03T19:32:12Z
dc.date.available2023-10-03T19:32:12Z
dc.identifier0021-8812
dc.identifierhttp://hdl.handle.net/11323/3026
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9170505
dc.descriptionThe present study evaluated the alterations of the oxidative stress markers in adult dogs fed with high levels of PUFA from the mixture of soybean oil enriched with docosahexaenoic acid (DHA) and supplemented with a natural algae-based antioxidant (AOX). Twelve healthy adult (2 years old) Beagle dogs (6 males and 6 females, 11.20 ± 1.92 kg BW), were distributed in 2 completely randomized blocks design and fed with 4 experimental diets coated with 2 lipid sources: saturated (13% bovine tallow) or unsaturated (13% soybean oil enriched with DHA), supplemented or not with 500 mg of AOX for 4 wk, intercalated with a 4 wk adaptation period. Blood samples were collected on days 0, 15, and 30 of each block. Glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), sulfhydryl group (SH), protein carbonylation, thiobarbituric acid reactive substances (TBARS), and total reactive antioxidant potential (TRAP) were evaluated in the serum, while GSH-Px, SOD, glutathione S-transferase (GST), catalase (CAT), SH, and TBARS were measured in erythrocytes. There was no significant difference in most of the oxidative markers evaluated. In contrast, GST activity in erythrocytes was greater in the animals that consumed the diets coated with bovine tallow compared to dogs that consumed diets coated with soybean oil enriched with DHA (P < 0.05). Serum from dogs fed on diets supplemented with AOX presented greater TRAP values (P < 0.05). These data demonstrate that the concentrations of unsaturated fatty acids used in the diets for dogs were not sufficient to cause large changes in the oxidative status. It was not possible to evaluate the efficiency of the natural antioxidant in maintaining the oxidative balance of the animals as it appears that the oxidative status of the dogs was not challenged by the unsaturated diets. Our findings also suggest that dogs, as descendants from carrion carnivores, may have some natural protection against oxidation
dc.formatapplication/pdf
dc.languageeng
dc.publisherJournal of Animal Science
dc.relationhttps://academic.oup.com/jas/article-abstract/96/11/4590/5061274
dc.relationAebi, H. 1984. Catalase in vitro. Methods Enzymol. 105:121–126. doi.org/10.1016/S0076- 6879(84)05016-3. Aliya, S., P. Reddanna, and K. Thyagaraju. 2003. Does glutathione S-transferase Pi (GST-Pi) a marker protein for cancer? Mol. Cell Biochem. 253:319–327. doi.org/10.1023/A:1026036521852. Calder, P. C. 2012. Mechanisms of action of (n-3) fatty acids. J. Nutr. 592S–599S. doi.org/10.3945/jn.111.155259. Case, L. P., L. Daristotle, M. G. Hayek, and M. F. Raasch. 2011. Canine and feline nutrition: A resource for companion animal professional. 3rd ed., Mosby Elsevier, Missouri. Delles, R. M., Y. L. Xiong, A. D. True, T. Ao, and K. A. Dawson. 2014. Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzymes activity. Poult. Sci. 93:1561–1570. doi.org/10.3382/ps.2013- 03682. Draper, H. H., and M. Hadley. 1990. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 186:421–431. doi.org/10.1016/0076-6879(90)86135-I. Dresch, M. T., S. B. Rossato, V. D. Kappel, R. Biegelmeyer, M. L. M. Hoff, and P. Mayorga. 2009. Optimization and validation of an alternative method to evaluated total reactive antioxidant potential. Anal. Biochem. 385:107–114. doi.org/10.1016/j.ab.2008.10.036. Ellman, G. L. 1959. Tissue sulfhydryl group. Arch. Biochem. Biophys. 82:70–77. doi.org/10.1016/0003-9861(59)90090-6. FEDIAF, Federação Europeia das Indústrias de Pet Food. 2016. Nutritional Guidelines. Bruxelles. 1– 100. Ferreira, C. S., R. S. Vasconcellos, R. S. Pedreira, F. L. Silva, F. C. Sá, F. S. A. Kroll, A. P. J. Maria, K. S. Venturini, and A. C. Carciofi. 2014. Alterations to oxidative stress markers in dogs after a shortterm stress during transport. J. Nutr. Sci. 3(27):1–5. doi.org/10.1017/jns.2014.47. Goto, S., M. Kawakatsu, S. Izumi, Y. Urata, K. Kageyama, Y. Ihara, T. Koji, and T. Kondo. 2009. Glutathione S-transferase pi localizes in mitochondria and protects against oxidative stress. Free Radic. Biol. Med. 46:1392–1403. doi.org/10.1016/j.freeradbiomed.2009.02.025. Hadley, K. B., J. E. Bauer, and N. W. Milgram. 2017. The oil-rich alga Schizochytrium sp. as a dietary source of docosahexaenoic acid improves shape discrimination learning associated with visual processing in a canine model of senescence. Prostaglandins Leukot. Essent. Fatty Acids. 118:10– 18. doi.org/10.1016/j.plefa.2017.01.011. Hall, J. A. 1996. Potential adverse effects a long-term consumption of (n-3) fatty acids. Compend. Contin. Educ. Pract. Vet. 18(8):879–895. Hall, J. A., R. A. Picton, M. M. Skinner, D. E. Jewell, and R. C. Wander. 2006. The (n-3) fatty acid dose, independent of the (n-6) to (n-3) fatty acid ratio, affects the plasma fatty acid profile of normal dogs. J. Nutr. 136:2338–2344. doi.org/10.1093/jn/136.9.2338. Hall, J. A., K. A. Tooley, J. L. Gradin, D. E. Jewell, and R. C. Wander. 2003. Effects of dietary n-6 and n3 fatty acids and vitamin E on the immune response of healthy geriatric dogs. Am. J. Vet. Res. 64:762–772. doi.org/10.2460/ajvr.2003.64.762. Hall, J. A., R. M. Chinn, W. R. Vorachek, M. E. Gorman, J. L. Greitl, D. K. Joshi, and D. E. Jewell. 2011. Influence of dietary antioxidants and fatty acids on neutrophil mediated bacterial killing and gene expression in healthy Beagles. Vet. Immunol Immunophatol. 139:271–228. doi.org/10.1016/j.vetimm.2010.10.020. Kil, D. Y., B. M. V. Boler, C. J. Apanavicius, L. B. Schook, and K. S. Swanson. 2010. Age and diet affect gene expression profiles in canine liver tissue. PLoS One. 5(10): e13319:1–12. doi.org/10.1371/journal.pone.0013319. LeBlanc, C. J., J. E. Bauer, G. Hosgood, and G. E. Mauldin. 2005. Effect of dietary fish oil and vitamin E supplementation on hematologic and serum biochemical analytes and oxidative status in young dogs. Vet. Ther. 6:325–340. Lenox, C. E., and J. E. Bauer. 2013. Potential adverse effects of omega-3 fatty acids in dogs and cats. J. Vet. Intern. Med. 27:217–226. doi.org/10.1111/jvim.12033. Levine, R. J., D. Garland, C. N. Oliver, A. Amici, I. Climent, A. G. Lenz, B. W. Ahn, S. Shaltiel, and E. R. Stadtman. 1990. Determination of carbonyl content in oxidatively modified protein. Methods Enzymol. 186:464–478. doi.org/10.1016/0076-6879(90)86141-H. Lissi, F., C. Pascual, and M. D. Del Castillo. 1992. Luminol luminescence induced by 2,2’-Azo-bis(2- amidinopropane) thermolysis. Free Radic. Res. Commun. 17:299–311. doi.org/10.3109/10715769209079523. Marx, F. R., L. Trevizan, F. M. O. B. Saad, K. G. Lisenko, J. S. Reis, and A. M. Kessler. 2017. Endogenous fat loss and true total tract digestibility of poultry fat in adult dogs. J. Anim. Sci. 95:2928–2935. doi.org/10.2527/jas.2017.1393. Misra, H. P, and I. Fridovich. 1972. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Biol. Chem. 247:3170–3175. Mueller, R. S., K. V. Fieseler, M. J. Fettman, S. Zabel, R. A. W. Rosychuk, G. K. Ogilvie, and T. L. Greenwalt. 2004. Effect of omega-3 fatty acids on canine atopic dermatitis. J. Small Anim. Pract. 45:293–297. doi.org/10.1111/j.1748-5827.2004.tb00238.x. Mueller, R. S., M. J. Fettman, K, Richardson, R. A. Hansen, A. Miller, J. Magowitz, and G. K. Ogilvie. 2005. Plasma and skinconcentrations of polyunsaturated fatty acids before and after supplementation with n-3 fatty acids in dogs with atopic dermatitis. Am. J. Vet. Res. 66:868–873. doi.org/10.2460/ajvr.2005.66.868. NRC. 2006. Nutrient requirement of dogs and cats. Natl. Acad. Press., Washington, DC. Ogilvie, G. K., M. J. Fettman, C. H. Mallinckrodt, J. A. Walton, R. A. Hansen, D. J. Davenport, K. L. Gross, K. L. Richardson, Q. Rogers, and M. S. Hand. 2000. Effect of fish oil, arginine, and doxorubicin chemotherapy on remission and survival time for dogs with lymphoma: a doubleblind, randomized placebo-controlled study. Cancer, 88:1916–1928. doi.org/10.1002/(SICI)1097- 0142(20000415)88:8<1916:: AID-CNCR22>3.0.CO;2-F. Ogoshi, R. C. S., M. G. Zangeronimo, J. S. Reis, R. V. Souza, T. M. Gonçalves, K. G. Lisenko, I. O. Alves, K. W. Silva, J. França, and F. M. O. B. Saad. 2016. Equilíbrio acidobásico, parâmetros urinários e sanguíneos de gatos induzidos ao estresse e suplementados com compostos antioxidantes. (In Portuguese) Arq. Bras. Mad. Vet. Zootec. 68(5):1121–1128. doi.org/10.1590/1678-4162-7966. Salas, A., F. Subirada, M. Pérez-Enciso, F. Blanch, I. Jeusette, V. Romano, and C. Torre. 2008. Plant polyphenol intake alters gene expression in canine leukocytes. J. Nutrigenet. Nutrigenomics. 2:43–52. doi.org/10.1159/000200018. Waldron, M. K. M. K. Hannah, and J. E. Bauer. 2012. Plasma Phospholipid Fatty Acid and Ex Vivo Neutrophil Responses are Differentially Altered in Dogs Fed Fish- and Linseed-Oil Containing Diets at the Same n-6:n-3 Fatty Acid Ratio. Lipids. 47:425–434. doi.org/10.1007/s11745-012-3652-7. Wander, R. C., J. A. Hall, J. L. Gradin, S. H. Du, and. D. E. Jewell. 1997. The ratio of dietary (n-6) to (n3) fatty acids influences immune system function, eicosanoid metabolism, lipid peroxidation and vitamin E status in aged dogs. J. Nutr. 127:1198–1205. doi.org/10.1093/jn/127.6.1198. Wendel, A. 1981. Glutathione peroxidase. Methods Enzymol. 77:325–333.
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectalgal meal
dc.subjectcanines
dc.subjectfree radicals
dc.subjectlipid oxidation
dc.subjectoxidative stress
dc.titleEffects of the consumption of polyunsaturated fatty acids on the oxidative status of adult dogs
dc.typePre-Publicación
dc.typehttp://purl.org/coar/resource_type/c_816b
dc.typeText
dc.typeinfo:eu-repo/semantics/preprint
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ARTOTR
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución