dc.creatorSyah, Rahmad
dc.creatorLawal, Adedoyin Isola
dc.creatorGrimaldo Guerrero, John William
dc.creatorSuksatan, Wanich
dc.creatorSunarsi, Denok
dc.creatorElveny, Marischa
dc.creatorAlkaim, Ayad
dc.creatorThangavelu, Lakshmi
dc.creatorAravindhan, Surendar
dc.date2022-01-21T15:00:23Z
dc.date2022-01-21T15:00:23Z
dc.date2021
dc.date.accessioned2023-10-03T19:31:22Z
dc.date.available2023-10-03T19:31:22Z
dc.identifier2352-4847
dc.identifierhttps://hdl.handle.net/11323/8990
dc.identifierhttps://doi.org/10.1016/j.egyr.2021.10.057
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9170380
dc.descriptionRecently, much attention was paid to the application of renewable energy in environmental issues. Meanwhile, the fuel cell industry, which is considered an environmentally friendly industry, is one of the important components of this project. They are in fact devices for the direct conversion of chemical energy into electrical energy by an electrochemical reaction without the need for any mechanical parts. In this study, it is attempted to model one of their important types, called proton exchange membrane fuel cells, so that it can be used in predicting the behavior of the fuel cell and examining various parameters affecting the performance of the cell. The main idea is to optimal parameters estimation for the proton exchange membrane fuel cells by minimizing the total Squared Error value between the empirical output voltage and the approximated output voltage. For giving better results in terms of accuracy and reliability, a new design of a metaheuristic called the balanced Water Strider Algorithm is utilized. The results of the suggested method are finally validated by comparison with several latest optimizers applied on a practical test case. After running all of the optimizers 30 times independently, the proposed method with minimum absolute error equals 3.4831e−4 shows the best results toward the others.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relationAghajani and Ghadimi, 2018 Aghajani G., Ghadimi N. Multi-objective energy management in a micro-grid Energy Rep., 4 (2018), pp. 218-225
dc.relationAmali and Dinakaran, 2019 Amali D., Dinakaran M. Wildebeest herd optimization: A new global optimization algorithm inspired by wildebeest herding behaviour J. Intell. Fuzzy Systems (Preprint) (2019), pp. 1-14
dc.relationBagheri et al., 2018 Bagheri M., et al. A novel wind power forecasting based feature selection and hybrid forecast engine bundled with honey bee mating optimization 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I & CPS Europe, IEEE (2018)
dc.relationCai et al., 2019 Cai W., et al. Optimal bidding and offering strategies of compressed air energy storage: A hybrid robust-stochastic approach Renew. Energy, 143 (2019), pp. 1-8
dc.relationChoi and Lee, 1998 Choi C., Lee J.-J. Chaotic local search algorithm Artif. Life Robot., 2 (1) (1998), pp. 41-47
dc.relationCuevas et al., 2020 Cuevas E., Fausto F., González A. The locust swarm optimization algorithm New Advancements in Swarm Algorithms: Operators and Applications, Springer (2020), pp. 139-159
dc.relationDhiman and Kumar, 2017 Dhiman G., Kumar V. Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications Adv. Eng. Softw., 114 (2017), pp. 48-70
dc.relationEner Fuel Inc, 2020 Ener fuel inc (2020) Available from: https://www.enerfuel.com/humid2.aspx
dc.relationFan et al., 2020a Fan X., et al. High voltage gain DC/DC converter using coupled inductor and VM techniques IEEE Access, 8 (2020), Article 131975-131987
dc.relationFan et al., 2020b Fan X., et al. Multi-objective optimization for the proper selection of the best heat pump technology in a fuel cell-heat pump micro-CHP system Energy Rep., 6 (2020), pp. 325-335
dc.relationFei et al., 2019 Fei X., Xuejun R., Razmjooy N. Optimal configuration and energy management for combined solar chimney, solid oxide electrolysis, and fuel cell: a case study in Iran Energy Sources A (2019), pp. 1-21
dc.relationGhiasi et al., 2019 Ghiasi M., Ghadimi N., Ahmadinia E. An analytical methodology for reliability assessment and failure analysis in distributed power system SN Appl. Sci., 1 (1) (2019), p. 44
dc.relationGuo et al., 2020a Guo Y., et al. An optimal configuration for a battery and PEM fuel cell-based hybrid energy system using developed Krill herd optimization algorithm for locomotive application Energy Rep., 6 (2020), pp. 885-894
dc.relationGuo et al., 2020b Guo H., et al. Optimized parameter estimation of a PEMFC model based on improved grass Fibrous root optimization algorithm Energy Rep., 6 (2020), pp. 1510-1519
dc.relationHamian et al., 2018 Hamian M., et al. A framework to expedite joint energy-reserve payment cost minimization using a custom-designed method based on mixed integer genetic algorithm Eng. Appl. Artif. Intell., 72 (2018), pp. 203-212
dc.relationHosseini Firouz and Ghadimi, 2016 Hosseini Firouz M., Ghadimi N. Optimal preventive maintenance policy for electric power distribution systems based on the fuzzy AHP methods Complexity, 21 (6) (2016), pp. 70-88
dc.relationJia et al., 2009 Jia J., et al. Modeling and dynamic characteristic simulation of a proton exchange membrane fuel cell IEEE Trans. Energy Convers., 24 (1) (2009), pp. 283-291
dc.relationKaveh et al., 2020 Kaveh A., Eslamlou A.D., Khodadadi N. Dynamic water strider algorithm for optimal design of skeletal structures Period. Polytech. Civ. Eng., 64 (3) (2020), pp. 904-916
dc.relationLi et al., 2018 Li X., Niu P., Liu J. Combustion optimization of a boiler based on the chaos and levy flight vortex search algorithm Appl. Math. Model., 58 (2018), pp. 3-18
dc.relationLiu et al., 2020 Liu J., et al. An IGDT-based risk-involved optimal bidding strategy for hydrogen storage-based intelligent parking lot of electric vehicles J. Energy Storage, 27 (2020), Article 101057
dc.relationMani et al., 2018 Mani M., Bozorg-Haddad O., Chu X. Ant lion optimizer (ALO) algorithm Advanced Optimization By Nature-Inspired Algorithms, Springer (2018), pp. 105-116
dc.relationMeng et al., 2020 Meng Q., et al. A single-phase transformer-less grid-tied inverter based on switched capacitor for PV application J. Control Autom. Electr. Syst., 31 (1) (2020), pp. 257-270
dc.relationMir et al., 2020 Mir M., et al. Application of hybrid forecast engine based intelligent algorithm and feature selection for wind signal prediction Evol. Syst., 11 (4) (2020), pp. 559-573
dc.relationMirjalili et al., 2016 Mirjalili S., Mirjalili S.M., Hatamlou A. Multi-verse optimizer: a nature-inspired algorithm for global optimization Neural Comput. Appl., 27 (2) (2016), pp. 495-513
dc.relationNavid Razmjooy and Ghadimi, 2018 Navid Razmjooy F.R.S., Ghadimi Noradin A hybrid neural network – world cup optimization algorithm for melanoma detection Open Med., 13 (2018), pp. 9-16
dc.relationRamezani et al., 2020 Ramezani M., Bahmanyar D., Razmjooy N. A new optimal energy management strategy based on improved multi-objective antlion optimization algorithm: applications in smart home SN Appl. Sci., 2 (12) (2020), pp. 1-17
dc.relationRazmjooy et al., 2020 Razmjooy N., Estrela V.V., Loschi H.J. Entropy-based breast cancer detection in digital mammograms using world cup optimization algorithm Int. J. Swarm Intell. Res. (IJSIR), 11 (3) (2020), pp. 1-18
dc.relationRazmjooy et al., 2016 Razmjooy N., Khalilpour M., Ramezani M. A new meta-heuristic optimization algorithm inspired by FIFA world cup competitions: theory and its application in PID designing for AVR system J. Control Autom. Electr. Syst., 27 (4) (2016), pp. 419-440
dc.relationRazmjooy et al., 2017 Razmjooy N., Ramezani M., Ghadimi N. Imperialist competitive algorithm-based optimization of neuro-fuzzy system parameters for automatic red-eye removal Int. J. Fuzzy Syst., 19 (4) (2017), pp. 1144-1156
dc.relationSaeedi et al., 2019 Saeedi M., et al. Robust optimization based optimal chiller loading under cooling demand uncertainty Appl. Therm. Eng., 148 (2019), pp. 1081-1091
dc.relationShabani et al., 2020 Shabani A., et al. Search and rescue optimization algorithm: A new optimization method for solving constrained engineering optimization problems Expert Syst. Appl., 161 (2020), Article 113698
dc.relationTejani et al., 2016 Tejani G.G., Savsani V.J., Patel V.K. Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization J. Comput. Des. Eng., 3 (3) (2016), pp. 226-249
dc.relationTejani et al., 2017 Tejani G.G., et al. Topology, shape, and size optimization of truss structures using modified teaching-learning based optimization Adv. Comput. Des., 2 (4) (2017), pp. 313-331
dc.relationTejani et al., 2018a Tejani G.G., et al. Size, shape, and topology optimization of planar and space trusses using mutation-based improved metaheuristics J. Comput. Des. Eng., 5 (2) (2018), pp. 198-214
dc.relationTejani et al., 2018b Tejani G.G., et al. Truss optimization with natural frequency bounds using improved symbiotic organisms search Knowl.-Based Syst., 143 (2018), pp. 162-178
dc.relationTejani et al., 2019 Tejani G.G., et al. Topology optimization of truss subjected to static and dynamic constraints by integrating simulated annealing into passing vehicle search algorithms Eng. Comput., 35 (2) (2019), pp. 499-517
dc.relationTian et al., 2020 Tian M.-W., et al. New optimal design for a hybrid solar chimney, solid oxide electrolysis and fuel cell based on improved deer hunting optimization algorithm J. Cleaner Prod., 249 (2020), Article 119414
dc.relationWang et al., 2015 Wang G.-G., Deb S., Coelho L.d.S. Elephant herding optimization 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI), IEEE (2015)
dc.relationXu et al., 2020 Xu H., et al. Exergy analysis and optimization of a HT-PEMFC using developed manta ray foraging optimization algorithm Int. J. Hydrogen Energy, 45 (55) (2020), pp. 30932-30941
dc.relationYanda et al., 2020 Yanda L., Yuwei Z., Razmjooy N. Optimal arrangement of a micro-CHP system in the presence of fuel cell-heat pump based on metaheuristics Int. J. Ambient Energy (2020), pp. 1-12
dc.relationYang, 2008 Yang X.-S. Firefly algorithm (2008)
dc.relationYang et al., 2020 Yang Z., et al. Model parameter estimation of the PEMFCs using improved barnacles mating optimization algorithm Energy (2020), Article 118738
dc.relationYe et al., 2020 Ye H., et al. High step-up interleaved dc/dc converter with high efficiency Energy Sources A (2020), pp. 1-20
dc.relationYin and Razmjooy, 2020 Yin Z., Razmjooy N. PEMFC identification Using deep learning developed by improved deer hunting optimization algorithm Int. J. Power Energy Syst., 40 (2) (2020)
dc.relationYu and Ghadimi, 2019 Yu D., Ghadimi N. Reliability constraint stochastic UC by considering the correlation of random variables with copula theory IET Renew. Power Gener., 13 (14) (2019), pp. 2587-2593
dc.relationYu et al., 2019 Yu D., et al. System identification of PEM fuel cells using an improved elman neural network and a new hybrid optimization algorithm Energy Rep., 5 (2019), pp. 1365-1374
dc.relationYu et al., 2020 Yu D., et al. Energy management of wind-PV-storage-grid based large electricity consumer using robust optimization technique J. Energy Storage, 27 (2020), Article 101054
dc.relationYuan et al., 2020 Yuan Z., et al. A new technique for optimal estimation of the circuit-based PEMFCs using developed sunflower optimization algorithm Energy Rep., 6 (2020), pp. 662-671
dc.relationZhang et al., 2020a Zhang G., Xiao C., Razmjooy N. Optimal operational strategy of hybrid PV/Wind renewable energy system using homer: A case study Int. J. Ambient Energy (2020), pp. 1-33
dc.relationZhang et al., 2020b Zhang G., Xiao C., Razmjooy N. Optimal parameter extraction of PEM fuel cells by meta-heuristics Int. J. Ambient Energy (2020), pp. 1-10
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceEnergy Reports
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S235248472101074X
dc.subjectProton exchange membrane fuel cell
dc.subjectModel parameters estimation
dc.subjectBalanced Water Strider optimizer
dc.subjectA total of squared error
dc.subjectTerminal voltage
dc.subjectPractical test case
dc.titleOptimal parameters estimation of the PEMFC using a balanced version of water strider algorithm
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución