dc.creator | Porto, Maria Fernanda | |
dc.creator | Benitez Agudelo, Juan Camilo | |
dc.creator | Aguirre-Acevedo, Daniel Camilo | |
dc.creator | Barceló-Martinez, Ernesto | |
dc.creator | Allegri, Ricardo Francisco | |
dc.date | 2021-04-07T22:36:57Z | |
dc.date | 2021-04-07T22:36:57Z | |
dc.date | 2021-03-24 | |
dc.date | 2022-03-24 | |
dc.date.accessioned | 2023-10-03T19:28:13Z | |
dc.date.available | 2023-10-03T19:28:13Z | |
dc.identifier | 2327-9095 | |
dc.identifier | 2327-9109 | |
dc.identifier | https://hdl.handle.net/11323/8104 | |
dc.identifier | https://doi.org/10.1080/23279095.2021.1897007 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9170248 | |
dc.description | Alzheimer’s disease (AD) is a neurodegenerative disease that causes a gradual loss of cognitive functions and limits daily activities performance. Early diagnosis of AD is essential to start timely treatment. This study aimed to validate the Uniform Data Set neuropsychological battery version 3.0 (UDS 3.0) in a Colombian cohort. This study is a cross-sectional type, consecutive, incidental, with 143 persons, divided into two groups: 48 diagnosed AD cases and 95 healthy controls, between the ages of 50 and 80+, and between 1 and 19+ years of education.The results indicate differences between the control group and the AD group in most battery tests. A significant correlation was found between the Montreal Cognitive Assessment (MoCA), Multilingual Naming Test (MINT), Craft Story, Benson Figure Test, P-word and F-word Phonemic Fluency Test, and their respective reference tests. Cutoff points were found based on the Youden index for each sub-test. The results indicate that all sub-tests are above the reference line of the ROC curve. The use of the UDS 3.0 in Colombia would help improving clinical diagnostic routes because of its high accuracy and high correlation with tests that measure general impairment; it has good sensitivity and specificity, and it can be a useful tool for AD. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | • Aguirre-Acevedo, D. C., Gómez, R. D., Moreno, S., Henao-Arboleda, E., Motta, M., Muñoz, C., Arana, A., Pineda, D., & Lopera, F. (2007). Validez y fiabilidad de la batería neuropsicológica CERAD-Col. Revista de Neurologia, 45(11), 655. https://doi.org/10.33588/rn.4511.2007086 | |
dc.relation | • Allegri, R. F., Arizaga, R. L., Bavec, C. V., Colli, L. P., Demey, I., Fernandez, M. C., Frontera, S. A., Garau, M. L., Jiménez, J. J., Golimstok, Á., Kremer, J., Labos, J., Mangone, C., Ollari, J. A., Rojas, G., Salmini, O., Ure, J. A., & Zuin, R. (2011). Enfermedad de Alzheimer. Guía de práctica clínica. Neurología Argentina, 3(2), 120–137. https://doi.org/10.1016/S1853-0028(11)70026-X | |
dc.relation | • American Psychiatric Association (2014). Guía de consulta de los criterios diagnósticos del DSM-5®: Spanish Edition of the Desk Reference to the Diagnostic Criteria From DSM-5®. American Psychiatric Pub. | |
dc.relation | • Apostolova, L. G., & Thompson, P. M. (2008). Mapping progressive brain structural changes in early Alzheimer' sdisease and mild cognitive impairment. Neuropsychologia, 46(6), 1597–1612. https://doi.org/10.1016/j.neuropsychologia.2007.10.026 | |
dc.relation | • Benson, G., De Felipe, J., Xiaodong , & Sano, M. (2014). Performance of Spanish-speaking community-dwelling elders in the United States on the Uniform Data Set. Alzheimer’s and Dementia, 10(5), 338–343. https://doi.org/10.1016/j.jalz.2013.09.002 | |
dc.relation | • Besser, L., Kukull, W., Knopman, D. S., Chui, H., Galasko, D., Weintraub, S., Jicha, G., Carlsson, C., Burns, J., Quinn, J., Sweet, R., Rascovsky, K., Teylan, M., Beekly, D., Thomas, G., Bollenbeck, M., Monsell, S., Mock, C., Hua Zhou, X., Thomas, N., … Morris, J. (2018). Version 3 of the National Alzheimer's Coordinating Center's Uniform Data Set. Alzheimer Disease and Associated Disorders, 32(4), 351–358. https://doi.org/10.1097/WAD.0000000000000279 | |
dc.relation | • Ciesielska, N., Sokołowski, R., Mazur, E., Podhorecka, M., Polak-Szabela, A., & Kędziora-Kornatowska, K. (2016). Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis. Psychiatria Polska, 50(5), 1039–1052. https://doi.org/10.12740/PP/45368 | |
dc.relation | • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Erlbaum Associates. | |
dc.relation | • Crivelli, L., Bonetto, M., Russo, M. J., Farez, M. F., Prado, C., Campos, J., Cohen, G., Chrem Méndez, P., Fernández Suarez, M., Sabe, L. R., & Allegri, R. F. (2016). Batería neuropsicológica para la predicción de la calidad de manejo vehicular en sujetos con demencia leve. Neurología Argentina, 8(2), 80–88. https://doi.org/10.1016/j.neuarg.2016.01.004 | |
dc.relation | • Cronin-Stubbs, D., Dekosky, S. T., Morris, J. C., & Evans, D. A. (2000). Promoting interactions with basic scientists and clinicians: The NIA Alzheimer’s disease data coordinating center. Statistics in Medicine, 19(11–12), 1453–1461. https://doi.org/10.1002/(SICI)1097-0258(20000615/30)19:11/12<1453::AID-SIM437>3.0.CO;2-7 | |
dc.relation | • Culhane, J. E., Chan, K. C., Teylan, M. A., Chen, Y. C., Mock, C., Gauthreaux, K., & Kukull, W. A. (2020). Factor consistency of neuropsychological test battery versions in the NACC Uniform Data Set. Alzheimer Disease and Associated Disorders, 34(2), 175–177. https://doi.org/10.1097/WAD.0000000000000376 | |
dc.relation | • De Santi, S., Pirraglia, E., Ferris, S. H., Morris, J. C., Weintraub, S., & Johnson, N. (2010). Robust norms for the ADC-UDS cognitive test battery. Alzheimer’s & Dementia, 6(4), 495–496. https://doi.org/10.1016/j.jalz.2010.05.1655 | |
dc.relation | • Fritz, C. O., Morris, P. E., & Richler, J. J. (2012). Effect size estimates: Current use, calculations, and interpretation. Journal of Experimental Psychology. General, 141(1), 2–18. https://doi.org/10.1037/a0024338 | |
dc.relation | • Gil, L., Ruiz De Sánchez, C., Gil, F., Romero, S. J., & Pretelt Burgos, F. (2015). Validation of the Montreal Cognitive Assessment (MoCA) in Spanish as a screening tool for mild cognitive impairment and mild dementia in patients over 65 years old in Bogotá, Colombia. International Journal of Geriatric Psychiatry, 30(6), 655–662. | |
dc.relation | • González, A. M., Sánchez, J. R. P., & Chicote, A. C. (2015). Diagnóstico diferencial etiopatogénico de la demencia: otras demencias. Medicine (Spain), 11(72), 4345–4349. https://doi.org/10.1016/j.med.2015.01.007 | |
dc.relation | • Hernández, B., & Velasco-Mondragón, H. E. (2000). Encuestas transversales. Salud Pública de México, 42(5), 447–455. https://doi.org/10.1590/S0036-36342000000500011 | |
dc.relation | • Hernández-Sampieri, R. (2018). Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta. México. | |
dc.relation | • John, S. E., Gurnani, A. S., Bussell, C., Saurman, J. L., Griffin, J. W., & Gavett, B. E. (2016). The effectiveness and unique contribution of neuropsychological tests and the δ latent phenotype in the differential diagnosis of dementia in the uniform data set. Neuropsychology, 30(8), 946–960. https://doi.org/10.1037/neu0000315 | |
dc.relation | • John, S., Gurnani, A., & Gavett, B. (2015). B-08Use of the latent dementia phenotype for differential diagnosis in the NACC UDS. Archives of Clinical Neuropsychology, 30(6), 524.4–524. https://doi.org/10.1093/arclin/acv047.104 | |
dc.relation | • Ley, N. 1090 de 2006. (2006). Ministerio de protección social. Colombia, Septiembre 06 del 2016. | |
dc.relation | • Lun, T. Y. (2014). The Alzheimer’s disease centers Uniform Data Set (UDS): Using various algorithms to predict dementia types with MMSE and CDR NACC is funded by the national institute on aging (Uo1 Ag016976). Alzheimer's & Dementia, 10(4), P676–P676. https://doi.org/10.1016/j.jalz.2014.05.1220 | |
dc.relation | • Mathews, M., Abner, E., Kryscio, R., Jicha, G., Cooper, G., Smith, C., Caban-Holt, A., & Schmitt, F. A. (2014). Diagnostic accuracy and practice effects in the National Alzheimer’s Coordinating Center Uniform Data Set neuropsychological battery. Alzheimer's & Dementia, 10(6), 675–683. https://doi.org/10.1016/j.jalz.2013.11.007 | |
dc.relation | • Monsell, S. E., Dodge, H. H., Zhou, X. H., Bu, Y., Besser, L. M., Mock, C., Hawes, S. E., Kukull, W. A., & Weintraub, S. (2016). Results from the NACC uniform data set neuropsychological battery crosswalk study. Alzheimer Disease and Associated Disorders, 30(2), 134–139. https://doi.org/10.1097/WAD.0000000000000111 | |
dc.relation | • Morris, J. C., Weintraub, S., Chui, H. C., Cummings, J., DeCarli, C., Ferris, S., Foster, N., Galasko, D., Graff-Radford, N., Peskind, E. R., Beekly, D., Ramos, E. M., & Kukull, W. A. (2006). The Uniform Data Set (UDS): Clinical and cognitive variables and descriptive data from Alzheimer disease centers. Alzheimer Disease and Associated Disorders, 20(4), 210–216. https://doi.org/10.1097/01.wad.0000213865.09806.92 | |
dc.relation | • Ospina García, N. A. (2015). Adaptación y validación en Colombia del addenbrooke’s cognitive examination-revisado (ACE-R) en pacientes con deterioro cognoscitivo leve y demencia. Departamento de Medicina Interna. | |
dc.relation | • Phillips, C. D., & Morris, J. N. (1997). The potential for using administrative and clinical data to analyze outcomes for the cognitively impaired: An assessment of the Minimum Data Set for nursing homes. Alzheimer Disease and Associated Disorders, 11, 162–167. | |
dc.relation | • Porto, M. F., Russo, M. J., & Allegri, R. (2018). Batería neuropsicológica Set de Datos Uniformes (UDS) para la evaluación de enfermedad de Alzheimer y deterioro cognitivo leve: Una revisión sistemática. Revista Ecuatoriana de Neurología, 27(2), 55–62. | |
dc.relation | • Pradilla, G., Vesga, B., & Leon-Sarmiento, F. (2003). Estudio neuroepidemiológico nacional (EPINEURO) colombiano. Revista Panamericana de Salud Pública, 14(2), 104. | |
dc.relation | • Putcha, D., Dickerson, B. C., Brickhouse, M., Johnson, K. A., Sperling, R. A., & Papp, K. V. (2020). Word retrieval across the biomarker-confirmed Alzheimer's disease syndromic spectrum. Neuropsychologia, 140, 107391. https://doi.org/10.1016/j.neuropsychologia.2020.107391 | |
dc.relation | • Rosselli, D., Ardila, A., Pradilla, G., Morillo, L., Bautista, L., Rey, O., & Camacho, M. (2000). The Mini-Mental State Examination as a selected diagnostic test for dementia: a Colombian population study. GENECO. Revista de neurologia, 30(5), 428–432. | |
dc.relation | • Russo, M. J., Iturry, M., Sraka, M. A., Bartoloni, L., Carnero Pardo, C., & Allegri, R. F. (2014). Diagnostic accuracy of the phototest for cognitive impairment and dementia in argentina. The Clinical Neuropsychologist, 28(5), 826–840. https://doi.org/10.1080/13854046.2014.928748 | |
dc.relation | • Salazar, A., Pereira, A., Guzmán, J., Rubio, A., Guzmán, V., Obando, K., Guevara, N. (2016). Validación colombiana ADAS cog. Revista Argentina de Neuropsicología, 28, 22–38. http://www.revneuropsi.com.ar | |
dc.relation | • Sánchez, C. R., Nariño, D., Fernando, J., & Cerón, M. (2010). Epidemiología y carga de la Enfermedad de Alzheimer. Acta Neurológica Colombiana, 26(3), 87–94. https://www.acnweb.org/acta/acta_2010_26_Supl3_1_87-94.pdf | |
dc.relation | • Scheltens, P., Blennow, K., Breteler, M. B., De Strooper, B., Frisoni, G. B., Salloway, S., & Van Der Flier, W. M. (2016). Alzheimer’s disease. The Lancet Neurology, 388(10043), 505–517. https://doi.org/10.1016/S0140-6736(15)01124-1 | |
dc.relation | • Schisterman, E. F., Perkins, N. J., Liu, A., & Bondell, H. (2005). Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. Epidemiology (Cambridge, Mass.), 16 (1), 73–81. https://doi.org/10.1097/01.ede.0000147512.81966.ba | |
dc.relation | • Schultz, R. R., Siviero, M. O., & Bertolucci, P. H. F. (2001). ADAS-Cog in a Brazilian sample. Brazilian Journal of Medical and Biological Research, 34(10), 1295–1302. https://doi.org/10.1590/S0100-879X2001001000009 | |
dc.relation | • Shan, G. (2015). Improved confidence intervals for the youden index. PLoS One, 10(7), e0127272. https://doi.org/10.1371/journal.pone.0127272 | |
dc.relation | • Shirk, S. D., Mitchell, M. B., Shaughnessy, L. W., Sherman, J. C., Locascio, J. J., Weintraub, S., & Atri, A. (2011). A web-based normative calculator for the uniform data set (UDS) neuropsychological test battery. Alzheimer's Research & Therapy, 3(6), 32. https://doi.org/10.1186/alzrt94 | |
dc.relation | • Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., Iwatsubo, T., Jack, C. R., Kaye, J., Montine, T. J., Park, D. C., Reiman, E. M., Rowe, C. C., Siemers, E., Stern, Y., Yaffe, K., Carrillo, M. C., Thies, B., Morrison-Bogorad, M., Wagster, M. V., & Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia, 7(3), 280–292. https://doi.org/10.1016/j.jalz.2011.03.003 | |
dc.relation | • Thompson, P. M., & Apostolova, L. G. (2007). Computational anatomical methods as applied to ageing and dementia. The British Journal of Radiology, 80(special_issue_2), S78–S91. https://doi.org/10.1259/BJR/20005470 | |
dc.relation | • Trevethan, R. (2017). Sensitivity, specificity, and predictive values: foundations, pliabilities, and pitfalls in research and practice. Frontiers in Public Health, 5, 307. https://doi.org/10.3389/fpubh.2017.00307 | |
dc.relation | • Weintraub, S., Besser, L., Dodge, H. H., Teylan, M., Ferris, S., Goldstein, F. C., Giordani, B., Kramer, J., Loewenstein, D., Marson, D., Mungas, D., Salmon, D., Welsh-Bohmer, K., Zhou, X.-H., Shirk, S. D., Atri, A., Kukull, W. A., Phelps, C., & Morris, J. C. (2018). Version 3 of the Alzheimer Disease Centers’ Neuropsychological Test Battery in the Uniform Data Set (UDS). Alzheimer Disease and Associated Disorders, 32(1), 10–18. https://doi.org/10.1097/WAD.0000000000000223 | |
dc.relation | • Weintraub, S., Salmon, D., Mercaldo, N., Ferris, S., Graff-Radford, N. R., Chui, H., Cummings, J., DeCarli, C., Foster, N. L., Galasko, D., Peskind, E., Dietrich, W., Beekly, D. L., Kukull, W. A., & Morris, J. C. (2009). The Alzheimer’s disease centers’ Uniform Data Set (UDS): The neuropsychologic test battery. Alzheimer Disease and Associated Disorders, 23(2), 91–101. https://doi.org/10.1097/WAD.0b013e318191c7dd | |
dc.relation | • World Health Organization and Alzheimer’s Disease International (ADI). (2013). Dementia: a public health priority. Demencia. https://doi.org/10.1016/S0304-5412(11)70067-1 | |
dc.relation | • World Health Organization (WHO) (1992). Internacional statical classification of diseases and realed health problems (10th revision). Author. | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | Applied Neuropsychology: Adult | |
dc.source | https://www.tandfonline.com/eprint/VKCRZ8YKAQEFH8FQFGKG/full?target=10.1080/23279095.2021.1897007 | |
dc.subject | Alzheimer’s disease | |
dc.subject | ROC curve | |
dc.subject | Sensitivity | |
dc.subject | Specificity | |
dc.subject | Uniform Data Set | |
dc.title | Diagnostic accuracy of the UDS 3.0 neuropsychological battery in a cohort with Alzheimer’s disease in Colombia | |
dc.type | Pre-Publicación | |
dc.type | http://purl.org/coar/resource_type/c_816b | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/preprint | |
dc.type | info:eu-repo/semantics/draft | |
dc.type | http://purl.org/redcol/resource_type/ARTOTR | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |