dc.creatorPorto, Maria Fernanda
dc.creatorBenitez Agudelo, Juan Camilo
dc.creatorAguirre-Acevedo, Daniel Camilo
dc.creatorBarceló-Martinez, Ernesto
dc.creatorAllegri, Ricardo Francisco
dc.date2021-04-07T22:36:57Z
dc.date2021-04-07T22:36:57Z
dc.date2021-03-24
dc.date2022-03-24
dc.date.accessioned2023-10-03T19:28:13Z
dc.date.available2023-10-03T19:28:13Z
dc.identifier2327-9095
dc.identifier2327-9109
dc.identifierhttps://hdl.handle.net/11323/8104
dc.identifierhttps://doi.org/10.1080/23279095.2021.1897007
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9170248
dc.descriptionAlzheimer’s disease (AD) is a neurodegenerative disease that causes a gradual loss of cognitive functions and limits daily activities performance. Early diagnosis of AD is essential to start timely treatment. This study aimed to validate the Uniform Data Set neuropsychological battery version 3.0 (UDS 3.0) in a Colombian cohort. This study is a cross-sectional type, consecutive, incidental, with 143 persons, divided into two groups: 48 diagnosed AD cases and 95 healthy controls, between the ages of 50 and 80+, and between 1 and 19+ years of education.The results indicate differences between the control group and the AD group in most battery tests. A significant correlation was found between the Montreal Cognitive Assessment (MoCA), Multilingual Naming Test (MINT), Craft Story, Benson Figure Test, P-word and F-word Phonemic Fluency Test, and their respective reference tests. Cutoff points were found based on the Youden index for each sub-test. The results indicate that all sub-tests are above the reference line of the ROC curve. The use of the UDS 3.0 in Colombia would help improving clinical diagnostic routes because of its high accuracy and high correlation with tests that measure general impairment; it has good sensitivity and specificity, and it can be a useful tool for AD.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relation• Aguirre-Acevedo, D. C., Gómez, R. D., Moreno, S., Henao-Arboleda, E., Motta, M., Muñoz, C., Arana, A., Pineda, D., & Lopera, F. (2007). Validez y fiabilidad de la batería neuropsicológica CERAD-Col. Revista de Neurologia, 45(11), 655. https://doi.org/10.33588/rn.4511.2007086
dc.relation• Allegri, R. F., Arizaga, R. L., Bavec, C. V., Colli, L. P., Demey, I., Fernandez, M. C., Frontera, S. A., Garau, M. L., Jiménez, J. J., Golimstok, Á., Kremer, J., Labos, J., Mangone, C., Ollari, J. A., Rojas, G., Salmini, O., Ure, J. A., & Zuin, R. (2011). Enfermedad de Alzheimer. Guía de práctica clínica. Neurología Argentina, 3(2), 120–137. https://doi.org/10.1016/S1853-0028(11)70026-X
dc.relation• American Psychiatric Association (2014). Guía de consulta de los criterios diagnósticos del DSM-5®: Spanish Edition of the Desk Reference to the Diagnostic Criteria From DSM-5®. American Psychiatric Pub.
dc.relation• Apostolova, L. G., & Thompson, P. M. (2008). Mapping progressive brain structural changes in early Alzheimer' sdisease and mild cognitive impairment. Neuropsychologia, 46(6), 1597–1612. https://doi.org/10.1016/j.neuropsychologia.2007.10.026
dc.relation• Benson, G., De Felipe, J., Xiaodong , & Sano, M. (2014). Performance of Spanish-speaking community-dwelling elders in the United States on the Uniform Data Set. Alzheimer’s and Dementia, 10(5), 338–343. https://doi.org/10.1016/j.jalz.2013.09.002
dc.relation• Besser, L., Kukull, W., Knopman, D. S., Chui, H., Galasko, D., Weintraub, S., Jicha, G., Carlsson, C., Burns, J., Quinn, J., Sweet, R., Rascovsky, K., Teylan, M., Beekly, D., Thomas, G., Bollenbeck, M., Monsell, S., Mock, C., Hua Zhou, X., Thomas, N., … Morris, J. (2018). Version 3 of the National Alzheimer's Coordinating Center's Uniform Data Set. Alzheimer Disease and Associated Disorders, 32(4), 351–358. https://doi.org/10.1097/WAD.0000000000000279
dc.relation• Ciesielska, N., Sokołowski, R., Mazur, E., Podhorecka, M., Polak-Szabela, A., & Kędziora-Kornatowska, K. (2016). Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis. Psychiatria Polska, 50(5), 1039–1052. https://doi.org/10.12740/PP/45368
dc.relation• Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Erlbaum Associates.
dc.relation• Crivelli, L., Bonetto, M., Russo, M. J., Farez, M. F., Prado, C., Campos, J., Cohen, G., Chrem Méndez, P., Fernández Suarez, M., Sabe, L. R., & Allegri, R. F. (2016). Batería neuropsicológica para la predicción de la calidad de manejo vehicular en sujetos con demencia leve. Neurología Argentina, 8(2), 80–88. https://doi.org/10.1016/j.neuarg.2016.01.004
dc.relation• Cronin-Stubbs, D., Dekosky, S. T., Morris, J. C., & Evans, D. A. (2000). Promoting interactions with basic scientists and clinicians: The NIA Alzheimer’s disease data coordinating center. Statistics in Medicine, 19(11–12), 1453–1461. https://doi.org/10.1002/(SICI)1097-0258(20000615/30)19:11/12<1453::AID-SIM437>3.0.CO;2-7
dc.relation• Culhane, J. E., Chan, K. C., Teylan, M. A., Chen, Y. C., Mock, C., Gauthreaux, K., & Kukull, W. A. (2020). Factor consistency of neuropsychological test battery versions in the NACC Uniform Data Set. Alzheimer Disease and Associated Disorders, 34(2), 175–177. https://doi.org/10.1097/WAD.0000000000000376
dc.relation• De Santi, S., Pirraglia, E., Ferris, S. H., Morris, J. C., Weintraub, S., & Johnson, N. (2010). Robust norms for the ADC-UDS cognitive test battery. Alzheimer’s & Dementia, 6(4), 495–496. https://doi.org/10.1016/j.jalz.2010.05.1655
dc.relation• Fritz, C. O., Morris, P. E., & Richler, J. J. (2012). Effect size estimates: Current use, calculations, and interpretation. Journal of Experimental Psychology. General, 141(1), 2–18. https://doi.org/10.1037/a0024338
dc.relation• Gil, L., Ruiz De Sánchez, C., Gil, F., Romero, S. J., & Pretelt Burgos, F. (2015). Validation of the Montreal Cognitive Assessment (MoCA) in Spanish as a screening tool for mild cognitive impairment and mild dementia in patients over 65 years old in Bogotá, Colombia. International Journal of Geriatric Psychiatry, 30(6), 655–662.
dc.relation• González, A. M., Sánchez, J. R. P., & Chicote, A. C. (2015). Diagnóstico diferencial etiopatogénico de la demencia: otras demencias. Medicine (Spain), 11(72), 4345–4349. https://doi.org/10.1016/j.med.2015.01.007
dc.relation• Hernández, B., & Velasco-Mondragón, H. E. (2000). Encuestas transversales. Salud Pública de México, 42(5), 447–455. https://doi.org/10.1590/S0036-36342000000500011
dc.relation• Hernández-Sampieri, R. (2018). Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta. México.
dc.relation• John, S. E., Gurnani, A. S., Bussell, C., Saurman, J. L., Griffin, J. W., & Gavett, B. E. (2016). The effectiveness and unique contribution of neuropsychological tests and the δ latent phenotype in the differential diagnosis of dementia in the uniform data set. Neuropsychology, 30(8), 946–960. https://doi.org/10.1037/neu0000315
dc.relation• John, S., Gurnani, A., & Gavett, B. (2015). B-08Use of the latent dementia phenotype for differential diagnosis in the NACC UDS. Archives of Clinical Neuropsychology, 30(6), 524.4–524. https://doi.org/10.1093/arclin/acv047.104
dc.relation• Ley, N. 1090 de 2006. (2006). Ministerio de protección social. Colombia, Septiembre 06 del 2016.
dc.relation• Lun, T. Y. (2014). The Alzheimer’s disease centers Uniform Data Set (UDS): Using various algorithms to predict dementia types with MMSE and CDR NACC is funded by the national institute on aging (Uo1 Ag016976). Alzheimer's & Dementia, 10(4), P676–P676. https://doi.org/10.1016/j.jalz.2014.05.1220
dc.relation• Mathews, M., Abner, E., Kryscio, R., Jicha, G., Cooper, G., Smith, C., Caban-Holt, A., & Schmitt, F. A. (2014). Diagnostic accuracy and practice effects in the National Alzheimer’s Coordinating Center Uniform Data Set neuropsychological battery. Alzheimer's & Dementia, 10(6), 675–683. https://doi.org/10.1016/j.jalz.2013.11.007
dc.relation• Monsell, S. E., Dodge, H. H., Zhou, X. H., Bu, Y., Besser, L. M., Mock, C., Hawes, S. E., Kukull, W. A., & Weintraub, S. (2016). Results from the NACC uniform data set neuropsychological battery crosswalk study. Alzheimer Disease and Associated Disorders, 30(2), 134–139. https://doi.org/10.1097/WAD.0000000000000111
dc.relation• Morris, J. C., Weintraub, S., Chui, H. C., Cummings, J., DeCarli, C., Ferris, S., Foster, N., Galasko, D., Graff-Radford, N., Peskind, E. R., Beekly, D., Ramos, E. M., & Kukull, W. A. (2006). The Uniform Data Set (UDS): Clinical and cognitive variables and descriptive data from Alzheimer disease centers. Alzheimer Disease and Associated Disorders, 20(4), 210–216. https://doi.org/10.1097/01.wad.0000213865.09806.92
dc.relation• Ospina García, N. A. (2015). Adaptación y validación en Colombia del addenbrooke’s cognitive examination-revisado (ACE-R) en pacientes con deterioro cognoscitivo leve y demencia. Departamento de Medicina Interna.
dc.relation• Phillips, C. D., & Morris, J. N. (1997). The potential for using administrative and clinical data to analyze outcomes for the cognitively impaired: An assessment of the Minimum Data Set for nursing homes. Alzheimer Disease and Associated Disorders, 11, 162–167.
dc.relation• Porto, M. F., Russo, M. J., & Allegri, R. (2018). Batería neuropsicológica Set de Datos Uniformes (UDS) para la evaluación de enfermedad de Alzheimer y deterioro cognitivo leve: Una revisión sistemática. Revista Ecuatoriana de Neurología, 27(2), 55–62.
dc.relation• Pradilla, G., Vesga, B., & Leon-Sarmiento, F. (2003). Estudio neuroepidemiológico nacional (EPINEURO) colombiano. Revista Panamericana de Salud Pública, 14(2), 104.
dc.relation• Putcha, D., Dickerson, B. C., Brickhouse, M., Johnson, K. A., Sperling, R. A., & Papp, K. V. (2020). Word retrieval across the biomarker-confirmed Alzheimer's disease syndromic spectrum. Neuropsychologia, 140, 107391. https://doi.org/10.1016/j.neuropsychologia.2020.107391
dc.relation• Rosselli, D., Ardila, A., Pradilla, G., Morillo, L., Bautista, L., Rey, O., & Camacho, M. (2000). The Mini-Mental State Examination as a selected diagnostic test for dementia: a Colombian population study. GENECO. Revista de neurologia, 30(5), 428–432.
dc.relation• Russo, M. J., Iturry, M., Sraka, M. A., Bartoloni, L., Carnero Pardo, C., & Allegri, R. F. (2014). Diagnostic accuracy of the phototest for cognitive impairment and dementia in argentina. The Clinical Neuropsychologist, 28(5), 826–840. https://doi.org/10.1080/13854046.2014.928748
dc.relation• Salazar, A., Pereira, A., Guzmán, J., Rubio, A., Guzmán, V., Obando, K., Guevara, N. (2016). Validación colombiana ADAS cog. Revista Argentina de Neuropsicología, 28, 22–38. http://www.revneuropsi.com.ar
dc.relation• Sánchez, C. R., Nariño, D., Fernando, J., & Cerón, M. (2010). Epidemiología y carga de la Enfermedad de Alzheimer. Acta Neurológica Colombiana, 26(3), 87–94. https://www.acnweb.org/acta/acta_2010_26_Supl3_1_87-94.pdf
dc.relation• Scheltens, P., Blennow, K., Breteler, M. B., De Strooper, B., Frisoni, G. B., Salloway, S., & Van Der Flier, W. M. (2016). Alzheimer’s disease. The Lancet Neurology, 388(10043), 505–517. https://doi.org/10.1016/S0140-6736(15)01124-1
dc.relation• Schisterman, E. F., Perkins, N. J., Liu, A., & Bondell, H. (2005). Optimal cut-point and its corresponding Youden Index to discriminate individuals using pooled blood samples. Epidemiology (Cambridge, Mass.), 16 (1), 73–81. https://doi.org/10.1097/01.ede.0000147512.81966.ba
dc.relation• Schultz, R. R., Siviero, M. O., & Bertolucci, P. H. F. (2001). ADAS-Cog in a Brazilian sample. Brazilian Journal of Medical and Biological Research, 34(10), 1295–1302. https://doi.org/10.1590/S0100-879X2001001000009
dc.relation• Shan, G. (2015). Improved confidence intervals for the youden index. PLoS One, 10(7), e0127272. https://doi.org/10.1371/journal.pone.0127272
dc.relation• Shirk, S. D., Mitchell, M. B., Shaughnessy, L. W., Sherman, J. C., Locascio, J. J., Weintraub, S., & Atri, A. (2011). A web-based normative calculator for the uniform data set (UDS) neuropsychological test battery. Alzheimer's Research & Therapy, 3(6), 32. https://doi.org/10.1186/alzrt94
dc.relation• Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., Iwatsubo, T., Jack, C. R., Kaye, J., Montine, T. J., Park, D. C., Reiman, E. M., Rowe, C. C., Siemers, E., Stern, Y., Yaffe, K., Carrillo, M. C., Thies, B., Morrison-Bogorad, M., Wagster, M. V., & Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia, 7(3), 280–292. https://doi.org/10.1016/j.jalz.2011.03.003
dc.relation• Thompson, P. M., & Apostolova, L. G. (2007). Computational anatomical methods as applied to ageing and dementia. The British Journal of Radiology, 80(special_issue_2), S78–S91. https://doi.org/10.1259/BJR/20005470
dc.relation• Trevethan, R. (2017). Sensitivity, specificity, and predictive values: foundations, pliabilities, and pitfalls in research and practice. Frontiers in Public Health, 5, 307. https://doi.org/10.3389/fpubh.2017.00307
dc.relation• Weintraub, S., Besser, L., Dodge, H. H., Teylan, M., Ferris, S., Goldstein, F. C., Giordani, B., Kramer, J., Loewenstein, D., Marson, D., Mungas, D., Salmon, D., Welsh-Bohmer, K., Zhou, X.-H., Shirk, S. D., Atri, A., Kukull, W. A., Phelps, C., & Morris, J. C. (2018). Version 3 of the Alzheimer Disease Centers’ Neuropsychological Test Battery in the Uniform Data Set (UDS). Alzheimer Disease and Associated Disorders, 32(1), 10–18. https://doi.org/10.1097/WAD.0000000000000223
dc.relation• Weintraub, S., Salmon, D., Mercaldo, N., Ferris, S., Graff-Radford, N. R., Chui, H., Cummings, J., DeCarli, C., Foster, N. L., Galasko, D., Peskind, E., Dietrich, W., Beekly, D. L., Kukull, W. A., & Morris, J. C. (2009). The Alzheimer’s disease centers’ Uniform Data Set (UDS): The neuropsychologic test battery. Alzheimer Disease and Associated Disorders, 23(2), 91–101. https://doi.org/10.1097/WAD.0b013e318191c7dd
dc.relation• World Health Organization and Alzheimer’s Disease International (ADI). (2013). Dementia: a public health priority. Demencia. https://doi.org/10.1016/S0304-5412(11)70067-1
dc.relation• World Health Organization (WHO) (1992). Internacional statical classification of diseases and realed health problems (10th revision). Author.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceApplied Neuropsychology: Adult
dc.sourcehttps://www.tandfonline.com/eprint/VKCRZ8YKAQEFH8FQFGKG/full?target=10.1080/23279095.2021.1897007
dc.subjectAlzheimer’s disease
dc.subjectROC curve
dc.subjectSensitivity
dc.subjectSpecificity
dc.subjectUniform Data Set
dc.titleDiagnostic accuracy of the UDS 3.0 neuropsychological battery in a cohort with Alzheimer’s disease in Colombia
dc.typePre-Publicación
dc.typehttp://purl.org/coar/resource_type/c_816b
dc.typeText
dc.typeinfo:eu-repo/semantics/preprint
dc.typeinfo:eu-repo/semantics/draft
dc.typehttp://purl.org/redcol/resource_type/ARTOTR
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución