dc.creator | de O. Salomón, Yamil L. | |
dc.creator | georgin, jordana | |
dc.creator | P. Franco, Dison S. | |
dc.creator | Netto, Matias S. | |
dc.creator | A. Piccilli, Daniel G. | |
dc.creator | Foletto, Edson | |
dc.creator | Pinto, Diana | |
dc.creator | S. Oliveira, Marcos L. | |
dc.creator | Dotto, Guilherme Luiz | |
dc.date | 2022-06-08T12:33:01Z | |
dc.date | 2022-11-10 | |
dc.date | 2022-06-08T12:33:01Z | |
dc.date | 2021-11-10 | |
dc.date.accessioned | 2023-10-03T19:27:10Z | |
dc.date.available | 2023-10-03T19:27:10Z | |
dc.identifier | Yamil L. Salomón, Jordana Georgin, Dison S.P. Franco, Matias S. Netto, Daniel G.A. Piccilli, Edson Luiz Foletto, Diana Pinto, Marcos L.S. Oliveira, Guilherme L. Dotto,
Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon,
Journal of Molecular Liquids, Volume 347, 2022, 117990, ISSN 0167-7322, https://doi.org/10.1016/j.molliq.2021.117990 (https://www.sciencedirect.com/science/article/pii/S016773222102715X) | |
dc.identifier | 0167-7322 | |
dc.identifier | https://hdl.handle.net/11323/9220 | |
dc.identifier | https://doi.org/10.1016/j.molliq.2021.117990 | |
dc.identifier | 10.1016/j.molliq.2021.117990 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9170161 | |
dc.description | In this work, Diospyros kaki fruit waste was employed as a precursor material to develop a high surface area activated carbon, which efficiently removed the toxic herbicide atrazine (ATZ) from synthetic water solutions and river waters. The alternative activated carbon presented excellent characteristics and structure, including high values of specific surface area (1067 m2 g 1) and pore volume (0.530 cm3 g 1) and some important functional groups on the surface. The temperature positively influenced the adsorption capacity, from 194.20 to 211.51 mg g 1. The Freundlich model was the proper one to represent the equilibrium data. Thermodynamic parameters confirmed the endothermic nature of the adsorption process. Kinetic studies confirmed that equilibrium was reached until 240 min, regardless of ATZ initial concentration. The LDF model adjusted well to the kinetic data, resulting in a diffusion coefficient ranging from 0.89x10-9 to 1.63x10-9 cm2 s 1 as the ATZ concentration increased. The activated carbon also decreased 85% of the ATZ concentration in a river water sample. Overall, the activated carbon developed from Diospyros kaki fruit waste presented an efficient ATZ removal from aqueous matrices. | |
dc.format | 12 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Elsevier | |
dc.publisher | Netherlands | |
dc.relation | Journal of Molecular Liquids | |
dc.relation | [1] I. Akpinar, A.O. Yazaydin, Adsorption of Atrazine from Water in Metal-Organic
Framework Materials, J. Chem. Eng. Data. 63 (7) (2018) 2368–2375, https://doi.
org/10.1021/acs.jced.7b0093010.1021/acs.jced.7b00930.s001. | |
dc.relation | [2] R. Grillo, A.E.S. Pereira, C.S. Nishisaka, R. De Lima, K. Oehlke, R. Greiner, L.F.
Fraceto, Chitosan/tripolyphosphate nanoparticles loaded with paraquat
herbicide: An environmentally safer alternative for weed control, J. Hazard.
Mater. 278 (2014) 163–171, https://doi.org/10.1016/j.jhazmat.2014.05.079. | |
dc.relation | [3] V. Kumar, P. Jha, Influence of herbicides applied postharvest in wheat stubble
on control, fecundity, and progeny fitness of Kochia scoparia in the US Great
Plains, Crop Prot. 71 (2015) 144–149, https://doi.org/10.1016/j.
cropro.2015.02.016. | |
dc.relation | [4] Y. Gao, Z. Jiang, J. Li, W. Xie, Q. Jiang, M. Bi, Y. Zhang, A comparison of the
characteristics and atrazine adsorption capacity of co-pyrolysed and mixed
biochars generated from corn straw and sawdust, Environ. Res. 172 (2019)
561–568, https://doi.org/10.1016/j.envres.2019.03.010. | |
dc.relation | [5] P. Vanraes, G. Willems, A. Nikiforov, P. Surmont, F. Lynen, J. Vandamme, J. Van
Durme, Y.P. Verheust, S.W.H. Van Hulle, A. Dumoulin, C. Leys, Removal of
atrazine in water by combination of activated carbon and dielectric barrier
discharge, J. Hazard. Mater. 299 (2015) 647–655, https://doi.org/10.1016/j.
jhazmat.2015.07.075. | |
dc.relation | [6] M. Kica, S. Ronka, The Removal of Atrazine from Water using Specific
Polymeric Adsorbent, Sep. Sci. Technol. 49 (11) (2014) 1634–1642, https://
doi.org/10.1080/01496395.2014.906461. | |
dc.relation | [7] S.S. Caldas, J.L.O. Arias, C. Rombaldi, L.L. Mello, M.B.R. Cerqueira, A.F. Martins, E.
G. Primel, Occurrence of pesticides and PPCPs in surface and drinking water in
southern Brazil: Data on 4-year monitoring, J. Braz. Chem. Soc. 30 (2019) 71–
80, https://doi.org/10.21577/0103-5053.20180154. | |
dc.relation | [8] G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water
treatment, J. Environ. Chem. Eng. 8 (4) (2020) 103988, https://doi.org/10.1016/
j.jece:2020.103988. | |
dc.relation | [9] S. Salvestrini, P. Sagliano, P. Iovino, S. Capasso, C. Colella, Atrazine adsorption
by acid-activated zeolite-rich tuffs, Appl. Clay Sci. 49 (3) (2010) 330–335,
https://doi.org/10.1016/j.clay.2010.04.008. | |
dc.relation | [10] X.M. Yan, B.Y. Shi, J.J. Lu, C.H. Feng, D.S. Wang, H.X. Tang, Adsorption and
desorption of atrazine on carbon nanotubes, J. Colloid Interface Sci. 321 (1)
(2008) 30–38, https://doi.org/10.1016/j.jcis.2008.01.047. | |
dc.relation | [11] Y. Jia, R. Wang, A.G. Fane, Atrazine adsorption from aqueous solution using
powdered activated carbon - Improved mass transfer by air bubbling
agitation, Chem. Eng. J. 116 (2006) 53–59, https://doi.org/10.1016/j.
cej.2005.10.014. | |
dc.relation | [12] L. Zhang, L. Sellaoui, D. Franco, G.L. Dotto, A. Bajahzar, H. Belmabrouk, A.
Bonilla-Petriciolet, M.L.S. Oliveira, Z. Li, Adsorption of dyes brilliant blue,
sunset yellow and tartrazine from aqueous solution on chitosan: Analytical
interpretation via multilayer statistical physics model, Chem. Eng. J. 382
(2020) 122952, https://doi.org/10.1016/j.cej.2019.122952. | |
dc.relation | [13] M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Cationic and anionic
dye adsorption by agricultural solid wastes: A comprehensive review,
Desalination. 280 (1-3) (2011) 1–13, https://doi.org/10.1016/j.
desal.2011.07.019. | |
dc.relation | [14] J. Georgin, F.C. Drumm, P. Grassi, D. Franco, D. Allasia, G.L. Dotto, Potential of
Araucaria angustifolia bark as adsorbent to remove Gentian Violet dye from
aqueous effluents, Water Sci. Technol. 78 (2018) 1693–1703, https://doi.org/
10.2166/wst.2018.448. | |
dc.relation | [15] S. Hokkanen, A. Bhatnagar, M. Sillanpää, A review on modification methods to
cellulose-based adsorbents to improve adsorption capacity, Water Res. 91
(2016) 156–173, https://doi.org/10.1016/j.watres.2016.01.008. | |
dc.relation | [16] N. Eibisch, R. Schroll, R. Fuß, R. Mikutta, M. Helfrich, H. Flessa, Pyrochars and
hydrochars differently alter the sorption of the herbicide isoproturon in an
agricultural soil, Chemosphere. 119 (2015) 155–162, https://doi.org/10.1016/j.
chemosphere.2014.05.059. | |
dc.relation | [17] Y.J. Liu, C.Y. Hu, S.L. Lo, Direct and indirect electrochemical oxidation of aminecontaining pharmaceuticals using graphite electrodes, J. Hazard. Mater. 366
(2019) 592–605, https://doi.org/10.1016/j.jhazmat.2018.12.037. | |
dc.relation | [18] X. Wei, Z. Wu, Z. Wu, B.C. Ye, Adsorption behaviors of atrazine and Cr(III) onto
different activated carbons in single and co-solute systems, Powder Technol.
329 (2018) 207–216, https://doi.org/10.1016/j.powtec.2018.01.060. | |
dc.relation | [19] E. Tchikuala, P. Mourão, J. Nabais, Valorisation of Natural Fibres from African
Baobab Wastes by the Production of Activated Carbons for Adsorption of
Diuron, Procedia Eng. 200 (2017) 399–407, https://doi.org/10.1016/j.
proeng.2017.07.056. | |
dc.relation | [20] Y.L.d.O. Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L.
Foletto, L.F.S. Oliveira, G.L. Dotto, High-performance removal of 2,4-
dichlorophenoxyacetic acid herbicide in water using activated carbon
derived from Queen palm fruit endocarp (Syagrus romanzoffiana), J. Environ.
Chem. Eng. 9 (1) (2021) 104911, https://doi.org/10.1016/j.jece:2020.104911. | |
dc.relation | [21] Q.A. Binh, H.-H. Nguyen, Investigation the isotherm and kinetics of adsorption
mechanism of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on corn cob
biochar, Bioresour. Technol. Reports. 11 (2020) 100520, https://doi.org/
10.1016/j.biteb.2020.100520. | |
dc.relation | [22] C. Guan, P. Zhang, M. Wu, M. Zeng, S. Chachar, X. Ruan, R. Wang, Y. Yang,
Discovery of a millennial androecious germplasm and its potential in
persimmon (Diospyros kaki Thunb.) breeding, Sci. Hortic. (Amsterdam). 269
(2020) 109392, https://doi.org/10.1016/j.scienta.2020.109392. | |
dc.relation | [23] H. Ko, G. Huh, S.H. Jung, H. Kwon, Y. Jeon, Y.N. Park, Y.-J. Kim, Diospyros kaki
leaves inhibit HGF/Met signaling-mediated EMT and stemness features in
hepatocellular carcinoma, Food Chem. Toxicol. 142 (2020) 111475, https://doi.
org/10.1016/j.fct.2020.111475. | |
dc.relation | [24] Y. Zhang, L. Zhao, S.W. Huang, W. Wang, S.J. Song, Triterpene saponins with
neuroprotective effects from the leaves of Diospyros kaki Thunb, Fitoterapia.
129 (2018) 138–144, https://doi.org/10.1016/j.fitote.2018.06.023. | |
dc.relation | [25] M.P. Cano, A. Gómez-Maqueo, R. Fernández-López, J. Welti-Chanes, T. GarcíaCayuela, Impact of high hydrostatic pressure and thermal treatment on the
stability and bioaccessibility of carotenoid and carotenoid esters in astringent
persimmon (Diospyros kaki Thunb, var. Rojo Brillante), Food Res. Int. 123
(2019) 538–549, https://doi.org/10.1016/j.foodres.2019.05.017. | |
dc.relation | [26] C. Ancillotti, S. Orlandini, L. Ciofi, B. Pasquini, C. Caprini, C. Droandi, S.
Furlanetto, M. Del Bubba, Quality by design compliant strategy for the
development of a liquid chromatography–tandem mass spectrometry method
for the determination of selected polyphenols in Diospyros kaki, J. Chromatogr.
A. 1569 (2018) 79–90, https://doi.org/10.1016/j.chroma.2018.07.046. | |
dc.relation | [27] H. Freundlich, Über die Adsorption in Lösungen, Zeitschrift Für Phys. Chemie.
57U (1907). https://doi.org/10.1515/zpch-1907-5723. | |
dc.relation | [28] M.M. Dubinin, V.A. Astakhov, Development of the concepts of volume filling of
micropores in the adsorption of gases and vapors by microporous adsorbents,
Bull. Acad. Sci. USSR Div. Chem. Sci. 20 (1) (1971) 3–7, https://doi.org/10.1007/
BF00849307. | |
dc.relation | [29] M. Temkin, V. Pyzhev, Kinetics of the synthesis of ammonia on promoted iron
catalysts, Jour. Phys. Chem. (U.S.S.R.). 13 (1939) 851–867. | |
dc.relation | [30] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and
platinum, J. Am. Chem. Soc. 40 (9) (1918) 1361–1403, https://doi.org/
10.1021/ja02242a004. | |
dc.relation | [31] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, A
critical review of the estimation of the thermodynamic parameters on
adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof
equation for calculation of thermodynamic parameters of adsorption, J. Mol.
Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048. | |
dc.relation | [32] E. Glueckauf, Theory of chromatography. Part 10.—Formulæ for diffusion into
spheres and their application to chromatography, Trans. Faraday Soc. 51 (0)
(1955) 1540–1551, https://doi.org/10.1039/TF9555101540. | |
dc.relation | [33] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J.
Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the
evaluation of surface area and pore size distribution (IUPAC Technical Report),
Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/10.1515/pac-2014-
1117. | |
dc.relation | [34] D.R. Lima, A. Hosseini-Bandegharaei, P.S. Thue, E.C. Lima, Y.R.T. de
Albuquerque, G.S. dos Reis, C.S. Umpierres, S.L.P. Dias, H.N. Tran, Efficient
acetaminophen removal from water and hospital effluents treatment by
activated carbons derived from Brazil nutshells, Colloids Surfaces A
Physicochem. Eng. Asp. 583 (2019) 123966, https://doi.org/10.1016/
j.colsurfa.2019.123966. | |
dc.relation | [35] F.M. Kasperiski, E.C. Lima, C.S. Umpierres, G.S. dos Reis, P.S. Thue, D.R. Lima, S.L.
P. Dias, C. Saucier, J.B. da Costa, Production of porous activated carbons from
Caesalpinia ferrea seed pod wastes: Highly efficient removal of captopril from
aqueous solutions, J. Clean. Prod. 197 (2018) 919–929, https://doi.org/
10.1016/j.jclepro.2018.06.146. | |
dc.relation | [36] A.B. Leite, C. Saucier, E.C. Lima, G.S. dos Reis, C.S. Umpierres, B.L. Mello, M.
Shirmardi, S.L.P. Dias, C.H. Sampaio, Activated carbons from avocado seed:
optimisation and application for removal of several emerging organic
compounds, Environ. Sci. Pollut. Res. 25 (8) (2018) 7647–7661, https://doi.
org/10.1007/s11356-017-1105-9. | |
dc.relation | [37] J. Georgin, D. Franco, F.C.F.C. Drumm, P. Grassi, M.S.M.S. Netto, D. Allasia, G.L.G.
L. Dotto, Powdered biosorbent from the mandacaru cactus (cereus jamacaru)
for discontinuous and continuous removal of Basic Fuchsin from aqueous
solutions, Powder Technol. 364 (2020) 584–592, https://doi.org/10.1016/j.
powtec.2020.01.064. | |
dc.relation | [38] J. Georgin, Y.L. de O. Salomón, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L.
Foletto, G.L. Dotto, Successful adsorption of bright blue and methylene blue on
modified pods of Caesalpinia echinata in discontinuous system, Environ. Sci.
Pollut. Res. 28 (7) (2021) 8407–8420, https://doi.org/10.1007/s11356-020-
11210-3. | |
dc.relation | [39] Y.L. de O. Salomón, J. Georgin, G.S. dos Reis, É.C. Lima, M.L.S. Oliveira, D.S.P.
Franco, M.S. Netto, D. Allasia, G.L. Dotto, Utilization of Pacara Earpod tree
(Enterolobium contortisilquum) and Ironwood (Caesalpinia leiostachya) seeds
as low-cost biosorbents for removal of basic fuchsin, Environ. Sci. Pollut. Res.
27 (26) (2020) 33307–33320, https://doi.org/10.1007/s11356-020-09471-z. | |
dc.relation | [40] A. Medhat, H.H. El-Maghrabi, A. Abdelghany, N.M. Abdel Menem, P. Raynaud,
Y.M. Moustafa, M.A. Elsayed, A.A. Nada, Efficiently activated carbons from corn
cob for methylene blue adsorption, Appl. Surf. Sci. Adv. 3 (2021) 100037,
https://doi.org/10.1016/j.apsadv.2020.100037. | |
dc.relation | [41] M. Bounaas, A. Bouguettoucha, D. Chebli, J.M. Gatica, H. Vidal, Role of the Wild
Carob as Biosorbent and as Precursor of a New High-Surface-Area Activated
Carbon for the Adsorption of Methylene Blue, Arab. J. Sci. Eng. 46 (1) (2021)
325–341, https://doi.org/10.1007/s13369-020-04739-5. | |
dc.relation | [42] H.N. Tran, S.J. You, H.P. Chao, Fast and efficient adsorption of methylene green
5 on activated carbon prepared from new chemical activation method, J.
Environ. Manage. 188 (2017) 322–336, https://doi.org/10.1016/
j.jenvman.2016.12.003. | |
dc.relation | [43] N.L.I. Zailuddin, S. Husseinsyah, F.N. Hahary, H. Ismail, Treatment of oil palm
empty fruit bunch regenerated cellulose biocomposite films using methacrylic acid, BioResources. 11 (2016) 873–885. https://doi.org/10.15376/biores.11.1.
873-885. | |
dc.relation | [44] X. Zhu, Y. Liu, C. Zhou, G. Luo, S. Zhang, J. Chen, A novel porous carbon derived
from hydrothermal carbon for efficient adsorption of tetracycline, Carbon N. Y.
77 (2014) 627–636, https://doi.org/10.1016/j.carbon.2014.05.067. | |
dc.relation | [45] K. Le Van, T.T. Luong Thi, Activated carbon derived from rice husk by NaOH
activation and its application in supercapacitor, Prog. Nat. Sci. Mater. Int. 24
(3) (2014) 191–198, https://doi.org/10.1016/j.pnsc.2014.05.012. | |
dc.relation | [46] J. Georgin, G.L. Dotto, M.A. Mazutti, E.L. Foletto, Preparation of activated
carbon from peanut shell by conventional pyrolysis and microwave
irradiation-pyrolysis to remove organic dyes from aqueous solutions, J.
Environ. Chem. Eng. 4 (1) (2016) 266–275, https://doi.org/10.1016/
j.jece:2015.11.018. | |
dc.relation | [47] M.A. Ahmad, N.A. Ahmad Puad, O.S. Bello, Kinetic, equilibrium and
thermodynamic studies of synthetic dye removal using pomegranate peel
activated carbon prepared by microwave-induced KOH activation, Water
Resour, Ind. 6 (2014) 18–35, https://doi.org/10.1016/j.wri.2014.06.002. | |
dc.relation | [48] M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto,
New biochar from pecan nutshells as an alternative adsorbent for removing
reactive red 141 from aqueous solutions, J. Clean. Prod. 171 (2018) 57–65,
https://doi.org/10.1016/j.jclepro.2017.10.007. | |
dc.relation | [49] L.M. Ndjientcheu Yossa, S.K. Ouiminga, S.S. Sidibe, I.W.K. Ouedraogo, Synthesis
of a cleaner potassium hydroxide-activated carbon from baobab seeds hulls
and investigation of adsorption mechanisms for diuron, Sci. African. 9 (2020)
e00476, https://doi.org/10.1016/j.sciaf.2020.e00476. | |
dc.relation | [50] Z. Xie, W. Guan, F. Ji, Z. Song, Y. Zhao, Production of biologically activated
carbon from orange peel and landfill leachate subsequent treatment
technology, J. Chem. 2014 (2014) 1–9, https://doi.org/10.1155/2014/491912. | |
dc.relation | [51] Y. Cui, A. Masud, N. Aich, J.D. Atkinson, Phenol and Cr(VI) removal using
materials derived from harmful algal bloom biomass: Characterization and
performance assessment for a biosorbent, a porous carbon, and Fe/C
composites, J. Hazard. Mater. 368 (2019) 477–486, https://doi.org/10.1016/j.
jhazmat.2019.01.075. | |
dc.relation | [52] A.C. Lua, T. Yang, J. Guo, Effects of pyrolysis conditions on the properties of
activated carbons prepared from pistachio-nut shells, J. Anal. Appl. Pyrolysis.
72 (2) (2004) 279–287, https://doi.org/10.1016/j.jaap.2004.08.001. | |
dc.relation | [53] G.F. De Oliveira, R.C. De Andrade, M.A.G. Trindade, H.M.C. Andrade, C.T. De
Carvalho, Thermogravimetric and spectroscopic study (Tg-DTA/FT-IR) of
activated carbon from the renewable biomass source babassu, Quim. Nova.
40 (2017) 284–292. https://doi.org/10.21577/0100-4042.20160191. | |
dc.relation | [54] S.F. Lütke, A.V. Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval,
Preparation of activated carbon from black wattle bark waste and its
application for phenol adsorption, J. Environ. Chem. Eng. 7 (5) (2019)
103396, https://doi.org/10.1016/j.jece:2019.103396. | |
dc.relation | [55] N.K. Niazi, I. Bibi, M. Shahid, Y.S. Ok, S.M. Shaheen, J. Rinklebe, H. Wang, B.
Murtaza, E. Islam, M. Farrakh Nawaz, A. Lüttge, Arsenic removal by Japanese
oak wood biochar in aqueous solutions and well water: Investigating arsenic
fate using integrated spectroscopic and microscopic techniques, Sci. Total
Environ. 621 (2018) 1642–1651, https://doi.org/10.1016/j.
scitotenv.2017.10.063. | |
dc.relation | [56] H.B. Quesada, T.P. de Araújo, L.F. Cusioli, M.A.S.D. de Barros, R.G. Gomes, R.
Bergamasco, Evaluation of novel activated carbons from chichá-do-cerrado
(Sterculia striata St. Hil. et Naud) fruit shells on metformin adsorption and
treatment of a synthetic mixture, J. Environ Chem. Eng. 9 (1) (2021) 104914,
https://doi.org/10.1016/j.jece:2020.104914. | |
dc.relation | [57] Y. Wang, S.-L. Wang, T. Xie, J. Cao, Activated carbon derived from waste
tangerine seed for the high-performance adsorption of carbamate pesticides
from water and plant, Bioresour. Technol. 316 (2020) 123929, https://doi.org/
10.1016/j.biortech.2020.123929. | |
dc.relation | [58] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila, Adsorption
Processes for Water Treatment and Purification, Springer International
Publishing, Cham (2017), https://doi.org/10.1007/978-3-319-58136-1. | |
dc.relation | [59] G. Moussavi, R. Khosravi, The removal of cationic dyes from aqueous solutions
by adsorption onto pistachio hull waste, Chem. Eng. Res. Des. 89 (10) (2011)
2182–2189, https://doi.org/10.1016/j.cherd.2010.11.024. | |
dc.relation | [60] A. Alahabadi, G. Moussavi, Preparation, characterization and atrazine
adsorption potential of mesoporous carbonate-induced activated biochar
(CAB) from Calligonum Comosum biomass: Parametric experiments and
kinetics, equilibrium and thermodynamic modeling, J. Mol. Liq. 242 (2017)
40–52, https://doi.org/10.1016/j.molliq.2017.06.116. | |
dc.relation | [61] P. Chingombe, B. Saha, R.J. Wakeman, Sorption of atrazine on conventional and
surface modified activated carbons, J. Colloid Interface Sci. 302 (2) (2006) 408–
416, https://doi.org/10.1016/j.jcis.2006.06.065. | |
dc.relation | [62] N.W. Brown, E.P.L. Roberts, A. Chasiotis, T. Cherdron, N. Sanghrajka, Atrazine
removal using adsorption and electrochemical regeneration, Water Res. 38
(13) (2004) 3067–3074, https://doi.org/10.1016/j.watres.2004.04.043. | |
dc.relation | [63] I.D. Kovaios, C.A. Paraskeva, P.G. Koutsoukos, Adsorption of atrazine from
aqueous electrolyte solutions on humic acid and silica, J. Colloid Interface Sci.
356 (1) (2011) 277–285, https://doi.org/10.1016/j.jcis.2011.01.002. | |
dc.relation | [64] D.L.D. Lima, C.P. Silva, R.J. Schneider, V.I. Esteves, Development of an ELISA
procedure to study sorption of atrazine onto a sewage sludge-amended luvisol
soil, Talanta. 85 (3) (2011) 1494–1499, https://doi.org/10.1016/
j.talanta.2011.06.024. | |
dc.relation | [65] J. Li, Y. Li, J. Lu, Adsorption of herbicides 2,4-D and acetochlor on inorganicorganic bentonites, Appl. Clay Sci. 46 (3) (2009) 314–318, https://doi.org/
10.1016/j.clay.2009.08.032. | |
dc.relation | [66] Y. Tang, S. Luo, Y. Teng, C. Liu, X. Xu, X. Zhang, L. Chen, Efficient removal of
herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced
graphene oxide co-decorated TiO2 nanotube arrays, J. Hazard. Mater. 241–
242 (2012) 323–330, https://doi.org/10.1016/j.jhazmat.2012.09.050. | |
dc.relation | [67] J. Lladó, C. Lao-Luque, B. Ruiz, E. Fuente, M. Solé-Sardans, A.D. Dorado, Role of
activated carbon properties in atrazine and paracetamol adsorption
equilibrium and kinetics, Process Saf. Environ. Prot. 95 (2015) 51–59,
https://doi.org/10.1016/j.psep.2015.02.013. | |
dc.relation | [68] L. Yue, C.J. Ge, D. Feng, H. Yu, H. Deng, B. Fu, Adsorption–desorption behavior of
atrazine on agricultural soils in China, J. Environ. Sci. (China) 57 (2017) 180–
189, https://doi.org/10.1016/j.jes.2016.11.002. | |
dc.relation | [69] X. Wei, Z. Wu, C. Du, Z. Wu, B.C. Ye, G. Cravotto, Enhanced adsorption of
atrazine on a coal-based activated carbon modified with sodium dodecyl
benzene sulfonate under microwave heating, J. Taiwan Inst. Chem. Eng. 77
(2017) 257–262, https://doi.org/10.1016/j.jtice.2017.04.004. | |
dc.relation | [70] Y. Zhang, B. Cao, L. Zhao, L. Sun, Y. Gao, J. Li, F. Yang, Biochar-supported
reduced graphene oxide composite for adsorption and coadsorption of
atrazine and lead ions, Appl. Surf. Sci. 427 (2018) 147–155, https://doi.org/
10.1016/j.apsusc.2017.07.237. | |
dc.relation | [71] B. Chen, Z. Chen, Sorption of naphthalene and 1-naphthol by biochars of
orange peels with different pyrolytic temperatures, Chemosphere. 76 (1)
(2009) 127–133, https://doi.org/10.1016/j.chemosphere.2009.02.004. | |
dc.relation | [72] X. Zhao, J. Chen, F. Chen, X. Wang, Q. Zhu, Q. Ao, Surface characterization of
corn stalk superfine powder studied by FTIR and XRD, Colloids Surfaces B
Biointerfaces. 104 (2013) 207–212, https://doi.org/10.1016/
j.colsurfb.2012.12.003. | |
dc.relation | [73] H.P. Toledo-Jaldin, A. Blanco-Flores, V. Sánchez-Mendieta, O. MartínHernández, Influence of the chain length of surfactant in the modification of
zeolites and clays. Removal of atrazine from water solutions, Environ. Technol.
(United Kingdom). 39 (20) (2018) 2679–2690, https://doi.org/10.1080/
09593330.2017.1365097. | |
dc.relation | [74] Y. Tao, S. Hu, S. Han, H. Shi, Y. Yang, H. Li, Y. Jiao, Q. Zhang, M.S. Akindolie, M. Ji,
Z. Chen, Y. Zhang, Efficient removal of atrazine by iron-modified biochar
loaded Acinetobacter lwoffii DNS32, Sci. Total Environ. 682 (2019) 59–69,
https://doi.org/10.1016/j.scitotenv.2019.05.134. | |
dc.relation | [75] F.M. Machado, C.P. Bergmann, T.H.M. Fernandes, E.C. Lima, B. Royer, T. Calvete,
S.B. Fagan, Adsorption of Reactive Red M-2BE dye from water solutions by
multi-walled carbon nanotubes and activated carbon, J. Hazard. Mater. 192 (3)
(2011) 1122–1131, https://doi.org/10.1016/j.jhazmat.2011.06.020. | |
dc.relation | [76] M. Vithanage, S.S. Mayakaduwa, I. Herath, Y.S. Ok, D. Mohan, Kinetics,
thermodynamics and mechanistic studies of carbofuran removal using
biochars from tea waste and rice husks, Chemosphere. 150 (2016) 781–789,
https://doi.org/10.1016/j.chemosphere.2015.11.002. | |
dc.relation | [77] A. Zuorro, G. Maffei, R. Lavecchia, Kinetic modeling of azo dye adsorption on
non-living cells of Nannochloropsis oceanica, J. Environ. Chem. Eng. 5 (4)
(2017) 4121–4127, https://doi.org/10.1016/j.jece:2017.07.078. | |
dc.relation | [78] J. Moreno-Pérez, P.S. Pauletto, A.M. Cunha, Á. Bonilla-Petriciolet, N.P.G. Salau,
G.L. Dotto, Three-dimensional mass transport modeling of pharmaceuticals
adsorption inside ZnAl/biochar composite, Colloids Surfaces A Physicochem.
Eng. Asp. 614 (2021) 126170, https://doi.org/10.1016/j.colsurfa.2021.126170. | |
dc.relation | [79] X. Pang, L. Sellaoui, D. Franco, M.S. Netto, J. Georgin, G. Luiz Dotto, M.K. Abu
Shayeb, H. Belmabrouk, A. Bonilla-Petriciolet, Z. Li, Preparation and
characterization of a novel mountain soursop seeds powder adsorbent and
its application for the removal of crystal violet and methylene blue from
aqueous solutions, Chem. Eng. J. 391 (2020) 123617, https://doi.org/10.1016/j.
cej.2019.123617. | |
dc.relation | [80] X. Pang, L. Sellaoui, D. Franco, G.L. Dotto, J. Georgin, A. Bajahzar, H.
Belmabrouk, A. Ben Lamine, A. Bonilla-Petriciolet, Z. Li, Adsorption of crystal
violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark
and palm cactus: Experimental study and theoretical modeling via monolayer
and double layer statistical physics models, Chem. Eng. J. 378 (2019) 122101,
https://doi.org/10.1016/j.cej.2019.122101. | |
dc.relation | [81] L. Sellaoui, H. Guedidi, S. Knani, L. Reinert, L. Duclaux, A.B. Lamine, Application
of statistical physics formalism to the modeling of adsorption isotherms of
ibuprofen on activated carbon, Fluid phase Equilib. 387 (2015) 103–110,
https://doi.org/10.1016/j.fluid.2014.12.018. | |
dc.relation | [82] A. Nakbi, M. Bouzid, F. Ayachi, F. Aouaini, A. Ben Lamine, Investigation of
caffeine taste mechanism through a statistical physics modeling of caffeine
dose-taste response curve by a biological putative caffeine adsorption process
in electrophysiological response, Prog. Biophys. Mol. Biol. 149 (2019) 70–85,
https://doi.org/10.1016/j.pbiomolbio.2018.12.013. | |
dc.relation | [83] A. Nakbi, M. Bouzid, F. Ayachi, N. Bouaziz, A. Ben Lamine, Quantitative
characterization of sucrose taste by statistical physics modeling parameters
using an analogy between an experimental physicochemical isotherm of
sucrose adsorption on b-cyclodextrin and a putative biological sucrose
adsorption from sucrose d, J. Mol. Liq. 298 (2020), https://doi.org/10.1016/
j.molliq.2019.111950 111950. | |
dc.relation | 117990 | |
dc.relation | 347 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | 2021 Elsevier B.V. All rights reserved. | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.source | https://www-sciencedirect-com.ezproxy.cuc.edu.co/science/article/pii/S016773222102715X?via%3Dihub#! | |
dc.subject | Diospyros | |
dc.subject | kaki | |
dc.subject | Adsorption | |
dc.subject | Atrazine | |
dc.subject | Isotherms | |
dc.subject | Thermodynamics | |
dc.title | Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |