dc.creatorXia, J.S.
dc.creatorKhabaz, Mohamad Khaje
dc.creatorPatra, Indrajit
dc.creatorKhalid, Imran
dc.creatorNúñez Álvarez, José Ricardo
dc.creatorRahmanian, Alireza
dc.creatorEftekhari, S. Ali
dc.creatorToghraie, Davood
dc.date2023-02-28T16:45:20Z
dc.date2025
dc.date2023-02-28T16:45:20Z
dc.date2023
dc.date.accessioned2023-10-03T19:27:00Z
dc.date.available2023-10-03T19:27:00Z
dc.identifierJ.S. Xia, Mohamad Khaje Khabaz, Indrajit Patra, Imran Khalid, José Ricardo Nuñez Alvarez, Alireza Rahmanian, S. Ali Eftekhari, Davood Toghraie, Using feed-forward perceptron Artificial Neural Network (ANN) model to determine the rolling force, power and slip of the tandem cold rolling, ISA Transactions, Volume 132, 2023, Pages 353-363, ISSN 0019-0578, https://doi.org/10.1016/j.isatra.2022.06.009.
dc.identifier0019-0578
dc.identifierhttps://hdl.handle.net/11323/9928
dc.identifier10.1016/j.isatra.2022.06.009
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9170137
dc.descriptionIn this paper, an Artificial Neural Network (ANN) is used to investigate the influence of rolling parameters such as thickness reduction, inter-strand tension, rolling speed and friction on the rolling force, rolling power, and slip of tandem cold rolling. For this reason, the rolling power was derived for 195 various experiments through a series of observation tests. The network is trained and tested using real data collected from a practical tandem rolling line. The best topology of the ANN is determined by Broyden–Fletcher–Goldfarb–Shanno (BFGS) training algorithm and error, and nine neurons in the hidden layer had the best performance. The average of the training, testing, and validating correlation coefficients data sets are mentioned 0.947, 0.924, and 0.943, respectively. The obtained results show MSE value 4.2 × 10−4 for predicting slip. In addition, the effect of friction and angular velocity condition on the cold rolling critical slip phenomena are investigated. The results show that ANNs can accurately predict the cold rolling parameters considered in this study.
dc.format11 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherISA - Instrumentation, Systems, and Automation Society
dc.publisherUnited States
dc.relationISA Transactions
dc.relation[1] Yang J-m, Zhang Q, Che H-j, Han X-y. Multi-objective optimization for tandem cold rolling schedule. J Iron Steel Res Int 2010;17(11):34–9.
dc.relation[2] Chen H, et al. Intelligent Model-based Integrity Assessment of Nonstationary Mechanical System. J Web Eng 2021;20(2).
dc.relation[3] Zhang Y, et al. Review on deep learning applications in frequency analysis and control of modern power system. Int J Electr Power Energy Syst 2022;136:107744.
dc.relation[4] Lv Z, et al. Safety Poka Yoke in Zero-Defect Manufacturing Based on Digital Twins. IEEE Trans Industr Inform 2022;1. http://dx.doi.org/10.1109/TII.2021.3139897.
dc.relation[5] Ruhani B, et al. Statistical investigation for developing a new model for rheological behavior of Silica–ethylene glycol/Water hybrid Newtonian nanofluid using experimental data. Physica A 2019;525:616–27.
dc.relation[6] Dixit U, Chandra S. A neural network based methodology for the prediction of roll force and roll torque in fuzzy form for cold flat rolling process. Int J Adv Manuf Technol 2003;22(11–12):883–9.
dc.relation[7] Rath S, Singh A, Bhaskar U, Krishna B, Santra B, Rai D, et al. Artificial neural network modeling for prediction of roll force during plate rolling process. Mater Manuf Process 2010;25(1–3):149–53.
dc.relation[8] Kim D, Kim Y, Kim B. Optimization of the irregular shape rolling process with an artificial neural network. J Mater Process Technol 2001;113(1–3):131–5.
dc.relation[9] Ghaisari J, Jannesari H, Vatani M. Artificial neural network predictors for mechanical properties of cold rolling products. Adv Eng Softw 2012;45(1):91–9.
dc.relation[10] Peng Y, Liu H, Du R. A neural network-based shape control system for cold rolling operations. J Mater Process Technol 2008;202(1–3):54–60.
dc.relation[11] Mahmoodkhani Y, Wells M, Song G. Prediction of roll force in skin pass rolling using numerical and artificial neural network methods. Ironmak Steelmak 2017;44(4):281–6.
dc.relation[12] Asl YD, Woo YY, Kim Y, Moon YH. Non-sorting multi-objective optimization of flexible roll forming using artificial neural networks. Int J Adv Manuf Technol 2020;107(5):2875–88.
dc.relation[13] Esendağ K, Orta AH, Kayabaşı İ, İlker S. Prediction of reversible cold rolling process parameters with artificial neural network and regression models for industrial applications: A case study. Procedia CIRP 2019;79:644–8.
dc.relation[14] Orta AH, Kayabasi I, Senol M. Prediction of mechanical properties of cold rolled and continuous annealed steel grades via analytical model integrated neural networks. Ironmak Steelmak 2019.
dc.relation[15] Cho S, Cho Y, Yoon S. Reliable roll force prediction in cold mill using multiple neural networks. IEEE Trans Neural Netw 1997;8(4):874–82.
dc.relation[16] Kang G-W, Liu H-B, editors. Surface defects inspection of cold rolled strips based on neural network. In: 2005 international conference on machine learning and cybernetics. IEEE; 2005.
dc.relation[17] Mohanty* I, Datta S, Bhattacharjee D. Composition–processing–property correlation of cold-rolled IF steel sheets using neural network. Mater Manuf Process 2008;24(1):100–5.
dc.relation[18] Lu X, Sun J, Song Z, Li G, Wang Z, Hu Y, et al. Prediction and analysis of cold rolling mill vibration based on a data-driven method. Appl Soft Comput 2020;96:106706.
dc.relation[19] Larkiola J, Myllykoski P, Nylander J, Korhonen A. Prediction of rolling force in cold rolling by using physical models and neural computing. J Mater Process Technol 1996;60(1–4):381–6.
dc.relation[20] Gudur P, Dixit U. A neural network-assisted finite element analysis of cold flat rolling. Eng Appl Artif Intell 2008;21(1):43–52.
dc.relation[21] Heidari A, Forouzan MR. Optimization of cold rolling process parameters in order to increasing rolling speed limited by chatter vibrations. J Adv Res 2013;4(1):27–34.
dc.relation[22] Zhao C, Li C, Hu L. Rolling and sliding between non-spherical particles. Physica A 2018;492:181–91.
dc.relation[23] Guzelbey IH, Cevik A, Erklig A. Prediction of web crippling strength of cold-formed steel sheetings using neural networks. J Constr Steel Res 2006;62(10):962–73.
dc.relation[24] Hemmat Esfe M, Hajian M, Toghraie D, Khaje khabaz M, Rahmanian A, Pirmoradian M, et al. Prediction the dynamic viscosity of MWCNTAl2o3 (30:70)/ oil 5W50 hybrid nano-lubricant using principal component analysis (PCA) with artificial neural network (ANN). Egypt Inform J 2022.
dc.relation[25] Wang Q, Sun J, Li X, Wang Z, Wang P, Zhang D. Analysis of lateral metal flow-induced flatness deviations of rolled steel strip: mathematical modeling and simulation experiments. Appl Math Model 2020;77:289–308.
dc.relation[26] Zárate LE, Dias SM. Qualitative behavior rules for the cold rolling process extracted from trained ANN via the FCANN method. Eng Appl Artif Intell 2009;22(4–5):718–31.
dc.relation[27] Babajamali Z, Khaje khabaz M, Aghadavoudi F, Farhatnia F, Eftekhari SA, Toghraie D. Pareto multi-objective optimization of tandem cold rolling settings for reductions and inter stand tensions using NSGA-II. ISA Trans 2022.
dc.relation[28] Khaje khabaz M, Eftekhari A, Hashemian M. Free vibration analysis of sandwich micro beam with piezoelectric based on modified couple stress theory and surface effects. J Simul Anal Nov Technol Mech Eng 2018;10(4):33–48.
dc.relation[29] Pittner J, Simaan MA. Tandem cold metal rolling mill control: using practical advanced methods. Springer Science & Business Media; 2010.
dc.relation[30] Zhao H. Regenerative chatter in cold rolling. Northwestern University; 2008.
dc.relation[31] Tieu A, Liu Y. Friction variation in the cold-rolling process. Tribol Int 2004;37(2):177–83.
dc.relation[32] Dixit U, Dixit P. Application of fuzzy set theory in the scheduling of a tandem cold-rolling mill. J Manuf Sci Eng 2000;122(3):494–500.
dc.relation[33] Whitton P, Ford H. Surface friction and lubrication in cold strip rolling. Proc Inst Mech Eng 1955;169(1):123–40.
dc.relation[34] Poursina M, Dehkordi NT, Fattahi A, Mirmohammadi H. Application of genetic algorithms to optimization of rolling schedules based on damage mechanics. Simul Model Pract Theory 2012;22:61–73.
dc.relation[35] Reddy NV, Suryanarayana G. A set-up model for tandem cold rolling mills. J Mater Process Technol 2001;116(2–3):269–77.
dc.relation[36] Farhatnia F, Salimi M. Effect of entry bending moment on exit curvature in asymmetrical rolling. Int J Eng Sci Technol 2011;3(4).
dc.relation[37] Gunasekera J, Jia Z, Malas J, Rabelo L. Development of a neural network model for a cold rolling process. Eng Appl Artif Intell 1998;11(5):597–603.
dc.relation[38] Tato A, Nkambou R. Improving adam optimizer. 2018.
dc.relation[39] Nikbakht S, Anitescu C, Rabczuk T. Optimizing the neural network hyperparameters utilizing genetic algorithm. J Zhejiang Univ Sci A 2021;22(6):407–26.
dc.relation[40] He S, Wu Q, Saunders J, editors. A group search optimizer for neural network training. In: International conference on computational science and its applications. Springer; 2006.
dc.relation[41] Li H, Deng J, Yuan S, Feng P, Arachchige DD. Monitoring and identifying wind turbine generator bearing faults using deep belief network and EWMA control charts. Front Energy Res 2021;770.
dc.relation[42] Li H, Deng J, Feng P, Pu C, Arachchige DD, Cheng Q. Short-term nacelle orientation forecasting using bilinear transformation and ICEEMDAN framework. Front Energy Res 2021;697.
dc.relation[43] Khaje khabaz M, Eftekhari SA, Toghraie D. Vibration and dynamic analysis of a cantilever sandwich microbeam integrated with piezoelectric layers based on strain gradient theory and surface effects. Appl Math Comput 2022;419(C).
dc.relation[44] Rahmanian A, Mireei SA, Sadri S, Gholami M, Nazeri M. Application of biospeckle laser imaging for early detection of chilling and freezing disorders in orange. Postharvest Biol Technol 2020;162:111118.
dc.relation363
dc.relation353
dc.relation132
dc.rights© 2022 ISA. Published by Elsevier Ltd. All rights reserved.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S0019057822003147
dc.subjectTandem cold rolling
dc.subjectPerceptron feed-forward ANN
dc.subjectRolling power and slip prediction
dc.titleUsing feed-forward perceptron Artificial Neural Network (ANN) model to determine the rolling force, power and slip of the tandem cold rolling
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución