dc.creatorAdalberto, Ospino Castro
dc.creatorRobles Algarín, Carlos
dc.creatorTobón Perez, Juan
dc.creatorPeña Gallardo, Rafael
dc.creatorAcosta Col, Melisa
dc.date2021-03-10T15:32:34Z
dc.date2021-03-10T15:32:34Z
dc.date2020-03-10
dc.date.accessioned2023-10-03T19:26:05Z
dc.date.available2023-10-03T19:26:05Z
dc.identifierhttps://hdl.handle.net/11323/7977
dc.identifierhttps://doi.org/10.32479/ijeep.9560
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9170044
dc.descriptionThe inclusion of photovoltaic energy in the Colombian energy matrix has had several difficulties due to the lack of energy policies and regulations in renewable energy projects. The lack of government support with subsidies that extend the coverage of PV energy projects in residential areas has made the collection of funds more challenging. This paper presents a techno-economic analysis for the implementation of grid-connected photovoltaic projects on the roofs of residential areas, under the net metering policy framework. For the profitability analysis, the discounted cash flow (DCF) method was used. The revenues were obtained from the forecasts of the electrical power production of the PV system, based on the characteristics of the Colombian Caribbean Region. For this purpose, the meteorological data (2013-2017) of this region were used as an input for the calculation of the economic benefits that can be achieved with the implementation of PV systems. Based on the technical sizing and economic assumptions, it was proved that the DCF method allows to accurately determine the optimal debt ratio. After evaluating the three scenarios proposed, it was demonstrated that profitability and self-sustainability, with investment from creditors, is obtained from the implementation of PV systems of at least 3 kWp.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relationAbdin, G.C., Noussan, M. (2018), Electricity storage compared to net metering in residential PV applications. Journal of Cleaner Production, 176, 175-186.
dc.relationAkter, M.N., Mahmud, M.A., Oo, A.M. (2017), Comprehensive economic evaluations of a residential building with solar photovoltaic and battery energy storage systems: An Australian case study. Energy and Buildings, 138, 332-346.
dc.relationAsumadu, S.S., Owusu, P.A. (2016), The potential and economic viability of solar photovoltaic power in Ghana. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(5), 709-716.
dc.relationBanrep. (2017), Banco de la República, Tasas de Captación Semanales y Mensuales. Available from: http://www.banrep.gov.co/es/tasascaptacion-semanales-y-mensuales. [Last accessed on 2019 Apr 10].
dc.relationBurke, M.J., Stephens, J.C. (2018), Political power and renewable energy futures: A critical review. Energy Research and Social Science, 35, 78-93.
dc.relationChamorro, M.V., Silvera, O.C., Ochoa, G.V., Ortiz, E.V., Castro, A.O. (2017), Cálculo de las radiaciones total, directa y difusa a través de la transmisibilidad atmosférica en los departamentos del Cesar, La Guajira y Magdalena (Colombia). Espacios, 38(7), 1-8.
dc.relationDANE. (2017), Departamento Administrativo Nacional de Estadística. Encuesta Anual Manufacturera (EAM), 1997-2015. Available from: http://www.dane.gov.co/index.php/estadisticas-portema/industria/ encuesta-anual-manufacturera-enam/eam-historicos. [Last accessed on 2018 Jun 11].
dc.relationDANE. (2018), Departamento Administrativo Nacional de Estadística. Índice de Precios al Consumidor-IPC. Available from: https://www. dane.gov.co/index.php/estadisticas-por-tema/precios-y-costos/ indice-de-precios-al-consumidor-ipc. [Last accessed on 2018 Jan 15].
dc.relationDellosa, J.T. (2015), Financial Payback of Solar PV Systems and Analysis of the Potential IMPACT of Net-metering in Butuan city. Philippines: IEEE 15th International Conference on Environment and Electrical Engineering. p1453-1458.
dc.relationDufo-López, R., Bernal-Agustín, J.L. (2015), A comparative assessment of net metering and net billing policies. Study cases for Spain. Energy, 84, 684-694.
dc.relationEIA. (2018), Energy Information Administration, Capacity Factors for Utility Scale Generators Primarily Using Fossil Fuels. Available from: https://www.eia.gov/electricity/monthly/epm_table_grapher. php?t=epmt_6_07_b. [Last accessed on 2019 Jan 20].
dc.relationElectrificadora del Caribe S.A. E.S.P. (2018), Tarifas y Subsidios. Available from: http://www.electricaribe.co/tu-energia/#2017. [Last accessed on 2019 Jan 15].
dc.relationEras, J.J.C., Morejón, M.B., Gutiérrez, A.S., García, A.P., Ulloa, M.C., Martínez, F.J.R., Rueda-Bayona, J.G. (2018), A look to the electricity generation from non-conventional renewable energy sources in Colombia. International Journal of Energy Economics and Policy, 9(1), 15-25.
dc.relationGaona, E.E., Trujillo, C.L., Guacaneme, J.A. (2015), Rural microgrids and its potential application in Colombia. Renewable and Sustainable Energy Reviews, 51, 125-137.
dc.relationGarcía, J., Gutierrez, A., Tobón, L.V., Velasquez, H. (2018), Smart Grids and Demand Response Mechanism: The Case of the Colombian Electricity Market. United States: Center for Research in Economics and Finance (CIEF), Working Papers, 18-20.
dc.relationGriffiths, S., Mills, R. (2016), Potential of rooftop solar photovoltaics in the energy system evolution of the United Arab Emirates. Energy Strategy Reviews, 9, 1-7.
dc.relationIoannou, A.K., Stefanakis, N.E., Boudouvis, A.G. (2014), Design optimization of residential grid-connected photovoltaics on rooftops. Energy and Buildings, 76, 588-596.
dc.relationJamil, I., Zhao, J., Zhang, L., Jamil, R., Rafique, S.F. (2017), Evaluation of energy production and energy yield assessment based on feasibility, design, and execution of 3×50 MW grid-connected solar PV pilot project in Nooriabad. International Journal of Photoenergy, 2017, 1-18.
dc.relationKarki, I.B. (2015), Effect of temperature on the IV characteristics of a polycrystalline solar cell. Journal of Nepal Physical Society, 3(1), 35-40.
dc.relationKumar, N.M., Kumar, M.R., Rejoice, P.R., Mathew, M. (2017), Performance analysis of 100 kWp grid connected Si-poly photovoltaic system using PVsyst simulation tool. Energy Procedia, 117, 180-189.
dc.relationLima, D.A. (2019), Stochastic analysis of economic viability of photovoltaic panels installation for big consumers in Brazil. Electric Power Systems Research, 173, 164-172.
dc.relationLüdeke-Freund, F., Loock, M. (2011), Debt for brands: Tracking down a bias in financing photovoltaic projects in Germany. Journal of Cleaner Production, 19(12), 1356-1364.
dc.relationMalvoni, M., Leggieri, A., Maggiotto, G., Congedo, P.M., De Giorgi, M.G. (2017), Long term performance, losses and efficiency analysis of a 960 kWP photovoltaic system in the Mediterranean climate. Energy conversion and management, 145, 169-18.
dc.relationMiranda, R.F., Szklo, A., Schaeffer, R. (2015), Technical-economic potential of PV systems on Brazilian rooftops. Renewable Energy, 75, 694-713.
dc.relationMojonero, D.H., Villacorta, A.R., Kuong, J.L., Mojonero, D.H. (2018), Impact assessment of net metering for residential photovoltaic distributed generation in Peru. International Journal of Renewable Energy Research, 8(3), 1-10.
dc.relationMuñoz, Y., Zafra, D., Acevedo, V., Ospino, A. (2014), Analysis of energy production with different photovoltaic technologies in the Colombian geography. IOP Conference Series: Materials Science and Engineering, 59(1), 1-12.
dc.relationNúñez, J.R., Benítez, I.F., Proenza, R., Vázquez, L., Díaz, D. (2019), Metodología de diagnóstico de fallos para sistemas fotovoltaicos de conexión a red. Revista Iberoamericana de Automática e Informática Industrial, 17(1), 94-105.
dc.relationOspino-Castro, A., Peña-Gallardo, R., Hernández-Rodríguez, A., Segundo-Ramírez, J., Muñoz-Maldonado, Y.A. (2017), Technoeconomic Evaluation of a Grid-connected Hybrid PV-wind Power Generation System in San Luis Potosi. Mexico: Power, Electronics and Computing (ROPEC). p1-6.
dc.relationPaez, A.F., Maldonado, Y.M., Castro, A.O., Hernandez, N., Conde, E., Pacheco, L., Sotelo, O. (2017), Future scenarios and trends of energy demand in Colombia using long-range energy alternative planning. International Journal of Energy Economics and Policy, 7(5), 178-190.
dc.relationPark, J., Kim, H.G., Cho, Y., Shin, C. (2014), Simple modeling and simulation of photovoltaic panels using Matlab/Simulink. Advanced Science and Technology Letters, 73, 147-155.
dc.relationPeña-Gallardo, R., Ospino-Castro, A., Medina-Ríos, A. (2020), An image processing-based method to assess the monthly energetic complementarity of solar and wind energy in Colombia. Energies, 13(5), 1033.
dc.relationPradhan, P., Gadkari, P., Mahajani, S.M., Arora, A. (2019), A conceptual framework and techno-economic analysis of a pelletizationgasification based bioenergy system. Applied Energy, 249, 1-13.
dc.relationRamírez-Cerpa, E., Acosta-Coll, M., Vélez-Zapata, J. (2017), Analysis of the climatic conditions for short-term precipitation in urban areas: A case study Barranquilla, Colombia. IDESIA, 35(2), 87-94.
dc.relationRamírez-Sagner, G., Mata-Torres, C., Pino, A., Escobar, R.A. (2017), Economic feasibility of residential and commercial PV technology: The Chilean case. Renewable Energy, 111, 332-343.
dc.relationRekioua, D., Matagne, E. (2012), Optimization of Photovoltaic Power Systems: Modelization, Simulation and Control. Berlin, Germany: Springer Science and Business Media.
dc.relationREN 21. (2017), Renewables Now. Policy Landscape. Available from: http://www.ren21.net/gsr-2017/chapters/chapter_05/chapter_05. [Last accessed on 2019 Jan 18].
dc.relationRobles, A.C.A., Giraldo, J.A.T., Castro, A.J.O. (2018), A procedure for criteria selection in the energy planning of Colombian rural areas. Información Tecnológica, 29(3), 71-80.
dc.relationRocha, L.C.S., Aquila, G., de Oliveira Pamplona, E., de Paiva, A.P., Chieregatti, B.G., Lima, J.D.S. (2017), Photovoltaic electricity production in Brazil: A stochastic economic viability analysis for small systems in the face of net metering and tax incentives. Journal of Cleaner Production, 168, 1448-1462.
dc.relationRodrigues, S., Chen, X., Morgado-Dias, F.J.E. (2017), Economic analysis of photovoltaic systems for the residential market under China’s new regulation. Energy Policy, 101, 467-472.
dc.relationRodrigues, S., Torabikalaki, R., Faria, F., Cafôfo, N., Chen, X., Ivaki, A.R., Morgado-Dias, F.J.S. (2016), Economic feasibility analysis of small scale PV systems in different countries. Solar Energy, 131, 81-95.
dc.relationSajjad, I.A., Manganelli, M., Martirano, L., Napoli, R., Chicco, G., Parise, G. (2018), Net-Metering benefits for residential customers: The economic advantages of a proposed user-centric model in Italy. IEEE Industry Applications Magazine, 24(4), 39-49.
dc.relationSchelly, C., Louie, E.P., Pearce, J.M. (2017), Examining interconnection and net metering policy for distributed generation in the United States. Renewable Energy Focus, 22, 10-19.
dc.relationSecretaría Distrital de Planeación. (2012), Observatorio: Dinámicas Del Territorio DC. Available from: http://www.sdp.gov.co/sites/default/ files/dice145-tamanospromedios-29052012.pdf. [Last accessed on 2019 Mar 15].
dc.relationShivalkar], R.S., Jadhav, H.T., Deo, P. (2015), Feasibility Study for the Net Metering Implementation Energy Consumers. India: International Conference on Circuit, Power and Computing Technologies. p1-6. Sommerfeldt, N., Madani, H. (2017a), Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one-review. Renewable and Sustainable Energy Reviews, 74, 1379-1393.
dc.relationSommerfeldt, N., Madani, H. (2017b), Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part two-application. Renewable and Sustainable Energy Reviews, 74, 1394-1404.
dc.relationSUI. (2018), Sistema Único de Información de Servicios Públicos, Superintendencia de Servicios Públicos Domiciliarios. Available from: http://www.sui.gov.co/SUIAuth/portada.jsp?servicioPortada=4. [Last accessed on 2018 Nov 16].
dc.relationUr Rehman, W., Sajjad, I.A., Malik, T.N., Martirano, L., Manganelli, M. (2017), Economic Analysis of Net Metering Regulations for Residential Consumers in Pakistan. United States: Conference Proceedings-2017 17th IEEE International Conference on Environment and Electrical Engineering (EEEIC).
dc.relationWatts, D., Valdes, M.F., Jara, D., Watson, A. (2015), Potential residential PV development in Chile: The effect of net metering and net billing schemes for grid-connected PV systems. Renewable and Sustainable Energy Reviews, 41, 1037-1051.
dc.relationWen, I.J., Pei-Chi, C., Che-Ming, C., Chi-Ming, L. (2008), Performance assessment of ventilated BIPV roofs collocating with outdoor and indoor openings. Journal of Applied Sciences, 8(20), 3572-3582.
dc.relationYamaya, H., Ohigashi, T., Matsukawa, H., Kaizuka, I., Ikki, O. (2014), Feed-in tariff program and its impact on PV market in Japan. Tampa, FL, USA: Photovoltaic Specialist Conference, (PVSC). p910-913.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceInternational Journal of Energy Economics and Policy
dc.sourcehttps://www.scopus.com/record/display.uri?eid=2-s2.0-85092410001&doi=10.32479%2fijeep.9560&origin=inward&txGid=2340349b93c5b8b42babc17948a88507
dc.subjectPV Systems
dc.subjectnet Metering
dc.subjectdiscounted cash flow method
dc.subjectoptimal debt ratio
dc.titleFinancing of Residential Rooftop Photovoltaic Projects Under a Net Metering Policy Framework: The Case of the Colombian Caribbean Region
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución