dc.creatorSalcedo, Dixon
dc.creatorGuerrero Santander, Cesar Dario
dc.creatorSaeed, Khalid
dc.creatorMardini, Johan
dc.creatorCalderón-Benavides, Liliana
dc.creatorHenríquez, Carlos
dc.creatorMendoza, Andrés
dc.date2023-05-17T23:29:00Z
dc.date2023-05-17T23:29:00Z
dc.date2022-12-03
dc.date.accessioned2023-10-03T19:24:50Z
dc.date.available2023-10-03T19:24:50Z
dc.identifierSalcedo, D.; Guerrero, C.; Saeed, K.; Mardini, J.; Calderon-Benavides, L.; Henriquez, C.; Mendoza, A. Machine Learning Algorithms Application in COVID-19 Disease: A Systematic Literature Review and Future Directions. Electronics 2022, 11, 4015. https://doi.org/10.3390/electronics11234015
dc.identifierhttps://hdl.handle.net/11323/10139
dc.identifier10.3390/electronics11234015
dc.identifier2079-9292
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9170009
dc.descriptionSince November 2019, the COVID-19 Pandemic produced by Severe Acute Respiratory Syndrome Severe Coronavirus 2 (hereafter COVID-19) has caused approximately seven million deaths globally. Several studies have been conducted using technological tools to prevent infection, to prevent spread, to detect, to vaccinate, and to treat patients with COVID-19. This work focuses on identifying and analyzing machine learning (ML) algorithms used for detection (prediction and diagnosis), monitoring (treatment, hospitalization), and control (vaccination, medical prescription) of COVID-19 and its variants. This study is based on PRISMA methodology and combined bibliometric analysis through VOSviewer with a sample of 925 articles between 2019 and 2022 derived in the prioritization of 32 papers for analysis. Finally, this paper discusses the study’s findings, which are directions for applying ML to address COVID-19 and its variants.
dc.format24 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.publisherSwitzerland
dc.relationElectronics
dc.relation1. Ifeoluwapo, R.A.; Supriyanto, E.; Taheri, S. COVID-19 Death Risk Assessment in Iran using Artificial Neural Network. J. Phys. Conf. Ser. 2021, 1964, 062117. [CrossRef]
dc.relation2. Weyori, B.A.; Appiahene, P.; Kutiame, S.; Millham, R.; Adekoya, A.F.; Tettey, M. Application of Machine Learning Algorithms in Coronary Heart Disease: A Systematic Literature Review and Meta-Analysis Predicting Blocking Bugs View project Machine Learning and Big Financial Data View project Application of Machine Learning Algorithms in Coronary Heart Disease: A Systematic Literature Review and Meta-Analysis. IJACSA Int. J. Adv. Comput. Sci. Appl. 2022, 13, 2022. [CrossRef]
dc.relation3. Mohan, S.; Thirumalai, C.; Srivastava, G. Effective heart disease prediction using hybrid machine learning techniques. IEEE Access 2019, 7, 81542–81554. [CrossRef]
dc.relation4. Zhong, X.; Ye, Y. Application of machine learning for predicting the spread of COVID-19. arXiv 2022, arXiv:2204.04364.
dc.relation5. Ellahham, S. Artificial intelligence in the diagnosis and management of COVID-19: A narrative review. J. Med. Artif. Intell. 2021. [CrossRef]
dc.relation6. Chamola, V.; Hassija, V.; Gupta, V.; Guizani, M. A Comprehensive Review of the COVID-19 Pandemic and the Role of IoT, Drones, AI, Blockchain, and 5G in Managing its Impact. IEEE Access 2020, 8, 90225–90265. [CrossRef]
dc.relation7. Manoj, M.; Srivastava, G.; Somayaji, S.R.K.; Gadekallu, T.R.; Maddikunta, P.K.R.; Bhattacharya, S. An Incentive Based Approach for COVID-19 planning using Blockchain Technology. In Proceedings of the IEEE Globecom Workshops, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [CrossRef]
dc.relation8. Buch, V.H.; Ahmed, I.; Maruthappu, M. Artificial intelligence in medicine: Current trends and future possibilities. Br. J. Gen. Pract. 2018, 68, 143–144. [CrossRef]
dc.relation9. Oh, S.H.; Lee, S.J.; Park, J. Precision Medicine for Hypertension Patients with Type 2 Diabetes via Reinforcement Learning. J. Pers. Med. 2022, 12, 87. [CrossRef]
dc.relation10. Wang, L.; He, X.; Zhang, W.; Zha, H. Supervised reinforcement learning with recurrent neural network for dynamic treatment recommendation. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, London, UK, 19–23 August 2018; 2018; pp. 2447–2456. [CrossRef]
dc.relation11. Shameer, K.; Johnson, K.W.; Glicksberg, B.S.; Dudley, J.T.; Sengupta, P.P. Machine learning in cardiovascular medicine: Are we there yet? Heart 2018, 104, 1156–1164. [CrossRef]
dc.relation12. Steuwer, B.; Eyal, N. SARS-CoV-2 human challenge studies. N. Engl. J. Med. 2021, 385, 1727–1728. [CrossRef]
dc.relation13. Ramos, C. COVID-19: La nueva enfermedad causada por un coronavirus. Salud Pública De Mex. 2020, 62, 225–227. [CrossRef]
dc.relation14. Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020, 109, 102433. [CrossRef]
dc.relation15. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [CrossRef]
dc.relation16. Abas, A.H.; Marfuah, S.; Idroes, R.; Kusumawaty, D.; Park, M.N.; Siyadatpanah, A.; Alhumaydhi, F.; Mahmud, S.; Tallei, T.E.; Emran, T.B.; et al. Can the SARS-CoV-2 Omicron Variant Confer Natural Immunity against COVID-19? Molecules 2022, 27, 2221. [CrossRef]
dc.relation17. Mohapatra, R.K.; Kandi, V.; Tuli, H.S.; Chakraborty, C.; Dhama, K. The recombinant variants of SARS-CoV-2: Concerns continues amid COVID-19 pandemic. J. Med. Virol. 2022, 94, 3506. [CrossRef]
dc.relation18. Macedo, A.; Gonçalves, N.; Febra, C. COVID-19 fatality rates in hospitalized patients: Systematic review and meta-analysis. Ann. Epidemiol. 2021, 57, 14–21. [CrossRef]
dc.relation19. Chen, J.M. Novel statistics predict the COVID-19 pandemic could terminate in 2022. J. Med. Virol. 2022, 94, 2845–2848. [CrossRef]
dc.relation20. Gómez-Pavón, J.; González Del Castillo, J.; Martín-Delgado, M.; Martín-Sánchez, F.; Martínez-Sellés, M.; Molero García, J.; Moreno Guillén, S.; Rodríguez-Artalejo, F.; Ruiz-Galiana, J.; Cantón, R.; et al. COVID-19: Some unresolved issues. Rev. Esp. Quimioter. 2022, 35, 421–434. [CrossRef]
dc.relation21. Kommers, P.; Thanh, D.N.H.; Juwono, F.; Owan, V.J.; Akah, L.U.; Alawa, D.A. ICT Deployment for Teaching in the COVID-19 Era: A Quantitative Assessment of Availability and Challenges in Public Universities. Front. Educ. 2022, 7, 920932. [CrossRef]
dc.relation22. Dattner, I.; Huppert, A. Modern statistical tools for inference and prediction of infectious diseases using mathematical models. Stat. Methods Med. Res. 2018, 27, 1927–1929. [CrossRef]
dc.relation23. Rodríguez-Velásquez, J.O.; Prieto-Bohórquez, S.E.; Correa-Herrera, S.C.; Pérez-Díaz, C.E.; Soracipa-Muñoz, M.Y. Dinámica de la epidemia de malaria en Colombia: Predicción probabilística temporal. Rev. Salud Pública 2017, 19, 52–59. [CrossRef] [PubMed]
dc.relation24. Alanazi, S.A.; Kamruzzaman, M.M.; Alruwaili, M.; Alshammari, N.; Alqahtani, S.A.; Karime, A. Measuring and Preventing COVID-19 Using the SIR Model and Machine Learning in Smart Health Care. J. Healthc. Eng. 2020, 2020, 8857346. [CrossRef] [PubMed]
dc.relation25. Lu, M.; Ishwaran, H. Cure and death play a role in understanding dynamics for COVID-19: Data-driven competing risk compartmental models, with and without vaccination. PLoS ONE 2021, 16, e0254397. [CrossRef] [PubMed]
dc.relation26. Haouari, M.; Mhiri, M. A particle swarm optimization approach for predicting the number of COVID-19 deaths. Sci. Rep. 2021, 11, 16587. [CrossRef] [PubMed]
dc.relation27. Bartoszko, J.; Dranitsaris, G.; Wilcox, M.E.; Del Sorbo, L.; Mehta, S.; Peer, M.; Parotto, M.; Bogoch, I.; Riazi, S. Development of a repeated-measures predictive model and clinical risk score for mortality in ventilated COVID-19 patients. Can. J. Anesth. 2022, 69, 343–352. [CrossRef] [PubMed]
dc.relation28. Hao, B.; Sotudian, S.; Wang, T.; Xu, T.; Hu, Y.; Gaitanidis, A.; Breen, K.; Velmahos, G.C.; Paschalidis, I.C. Early prediction of level-of-care requirements in patients with COVID-19. Elife 2020, 9, 1–23. [CrossRef]
dc.relation29. Williams, J.; Stebbing, J. COVID-19 and the risk to cancer patients in China. Int. J. Cancer 2021, 148, 265–266. [CrossRef]
dc.relation30. Boukhris, M.; Hillani, A.; Moroni, F.; Annabi, M.S.; Addad, F.; Harada, M.; Mansour, S.; Zhao, X.; Ybarra, L.F.; Abbate, A.; et al. Cardiovascular Implications of the COVID-19 Pandemic: A Global Perspective. Can. J. Cardiol. 2020, 36, 1068–1080. [CrossRef]
dc.relation31. Naudé, W. Artificial Intelligence versus COVID-19 in Developing Countries: Priorities and Trade-Offs; WIDER Background Note; UNU-WIDER: Helsinki, Sweden, 2020. [CrossRef]
dc.relation32. Unberath, M.; Ghobadi, K.; Levin, S.; Hinson, J.; Hager, G.D. Artificial Intelligence-based Clinical Decision Support for COVID19—Where Art Thou? Adv. Intell. Syst. 2020, 2, 2000104. [CrossRef]
dc.relation33. D Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A. Blockchain and AI-Based Solutions to Combat Coronavirus (COVID19)-Like Epidemics: A Survey. IEEE Access 2021, 9, 95730–95753. [CrossRef]
dc.relation34. Ulhaq, A.; Khan, A.; Gomes, D.; Paul, M. Computer Vision For COVID-19 Control: A Survey. arXiv 2020, arXiv:2004.09420. [CrossRef]
dc.relation35. Shaikh, F.; Andersen, M.; Sohail, M.; Mulero, F.; Awan, O.; Dupont-Roettger, D.; Kubassova, O.; Dehmeshki, J.; Bisdas, S. Current Landscape of Imaging and the Potential Role for Artificial Intelligence in the Management of COVID-19. Curr. Probl. Diagn. Radiol. 2021, 50, 430–435. [CrossRef]
dc.relation36. Alamo, T.; Reina, D.G.; Gata, P.M. Data-Driven Methods to Monitor, Model, Forecast and Control COVID-19 Pandemic: Leveraging Data Science, Epidemiology and Control Theory. arXiv 2020, arXiv:2006.01731. [CrossRef]
dc.relation37. Shinde, G.R.; Kalamkar, A.B.; Mahalle, P.N.; Dey, N.; Chaki, J.; Hassanien, A.E. Forecasting Models for Coronavirus Disease (COVID-19): A Survey of the State-of-the-Art. SN Comput. Sci. 2020, 1, 197. [CrossRef]
dc.relation38. Ahmad, A.; Garhwal, S.; Ray, S.K.; Kumar, G.; Malebary, S.J.; Barukab, O.M. The Number of Confirmed Cases of COVID-19 by using Machine Learning: Methods and Challenges. Arch. Comput. Methods Eng. 2020, 28, 2645–2653. [CrossRef]
dc.relation39. Kannan, S.; Subbaram, K.; Ali, S.; Kannan, H. The Role of Artificial Intelligence and Machine Learning Techniques: Race for COVID-19 Vaccine. Arch. Clin. Infect. Dis. 2020, 15, 103232. [CrossRef]
dc.relation40. Rahmatizadeh, S.; Valizadeh-Haghi, S.; Dabbagh, A. The role of artificial intelligence in management of critical COVID-19 patients. J. Cell. Mol. Anesth. 2020, 5, 16–22. [CrossRef]
dc.relation41. Bhattacharya, S.; Maddikunta, P.K.R.; Pham, Q.V.; Gadekallu, T.R.; Chowdhary, C.L.; Alazab, M.; Piran, M.J. Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey. Sustain. Cities Soc. 2021, 65, 102589. [CrossRef]
dc.relation42. Henriquez, C.; Mardin, J.; Salcedo, D.; Pulgar-Emiliani, M.; Avendaño, I.; Angulo, L.; Pinedo, J. Predictive Model of Cardiovascular Diseases Implementing Artificial Neural Networks. In International Conference on Computer Information Systems and Industrial Management; Springer: Cham, Switzerland, 2022; pp. 231–242.
dc.relation43. Shah, S.K.; A McElfish, P. Cancer Screening Recommendations During the COVID-19 Pandemic: Scoping Review. JMIR Cancer 2022, 8, e34392. [CrossRef]
dc.relation44. Palazzuoli, A.; Lavie, C.J.; Severino, P.; Dastidar, A.; Sammut, E.; McCullough, P.A. Co-Management of COVID-19 and Heart Failure During the COVID-19 Pandemic: Lessons Learned. Rev. Cardiovasc. Med. 2022, 23, 218. [CrossRef]
dc.relation45. Bostanghadiri, N.; Jazi, F.M.; Razavi, S.; Fattorini, L.; Darban-Sarokhalil, D. Mycobacterium tuberculosis and SARS-CoV-2 Coinfections: A Review. Front. Microbiol. 2022, 12, 747827. [CrossRef] [PubMed]
dc.relation46. Al-Taie, A.; Arueyingho, O.; Khoshnaw, J.; Hafeez, A. Clinical outcomes of multidimensional association of type 2 diabetes mellitus, COVID-19 and sarcopenia: An algorithm and scoping systematic evaluation. Arch. Physiol. Biochem. 2022, 1–19. [CrossRef] [PubMed]
dc.relation47. Yusuf, E.; Seghers, L.; Hoek, R.A.S.; van den Akker, J.P.C.; Bode, L.G.M.; Rijnders, B.J.A. Aspergillus in critically ill COVID-19 patients: A scoping review. J. Clin. Med. 2021, 10, 2469. [CrossRef] [PubMed]
dc.relation48. Thatiparthi, A.; Martin, A.; Liu, J.; Egeberg, A.; Wu, J.J. Biologic Treatment Algorithms for Moderate-to-Severe Psoriasis with Comorbid Conditions and Special Populations: A Review. Am. J. Clin. Dermatol. 2021, 22, 425–442. [CrossRef] [PubMed]
dc.relation49. Mitaka, H.; Kuno, T.; Takagi, H.; Patrawalla, P. Incidence and mortality of COVID-19-associated pulmonary aspergillosis: A systematic review and meta-analysis. Mycoses 2021, 64, 993–1001. [CrossRef]
dc.relation50. Casalini, G.; Giacomelli, A.; Ridolfo, A.; Gervasoni, C.; Antinori, S. Invasive Fungal Infections Complicating COVID-19: A Narrative Review. J. Fungi 2021, 7, 921. [CrossRef]
dc.relation51. Khalsa, R.K.; Khashkhusha, A.; Zaidi, S.; Harky, A.; Bashir, M. Artificial intelligence and cardiac surgery during COVID-19 era. J. Card. Surg. 2021, 36, 1729–1733. [CrossRef]
dc.relation52. Douedi, S.; Mararenko, A.; Alshami, A.; Al-Azzawi, M.; Ajam, F.; Patel, S.; Douedi, H.; Calderon, D. COVID-19 induced bradyarrhythmia and relative bradycardia: An overview. J. Arrhythm. 2021, 37, 888–892. [CrossRef]
dc.relation53. Tamuzi, J.L.; Ayele, B.T.; Shumba, C.S.; Adetokunboh, O.O.; Uwimana-Nicol, J.; Haile, Z.T.; Inugu, J.; Nyasulu, P.S. Implications of COVID-19 in high burden countries for HIV/TB: A systematic review of evidence. BMC Infect. Dis. 2020, 20, 744. [CrossRef]
dc.relation54. Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Rev. Esp. Nutr. Hum. Diet. 2016, 20, 148–160. [CrossRef]
dc.relation55. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [CrossRef]
dc.relation56. Selcuk, A.A. A Guide for Systematic Reviews: PRISMA. Turk. Arch. Otorhinolaryngol. 2019, 57, 57–58. [CrossRef]
dc.relation57. Atlam, M.; Torkey, H.; El-Fishawy, N.; Salem, H. Coronavirus disease 2019 (COVID-19): Survival analysis using deep learning and Cox regression model. Pattern Anal. Appl. 2021, 24, 993–1005. [CrossRef]
dc.relation58. Khan, I.U.; Aslam, N.; Aljabri, M.; Aljameel, S.S.; Kamaleldin, M.M.A.; Alshamrani, F.M.; Chrouf, S.M.B. Computational Intelligence-Based Model for Mortality Rate Prediction in COVID-19 Patients. Int. J. Environ. Res. Public Health 2021, 18, 6429. [CrossRef]
dc.relation59. Mohammad, R.M.A.; Aljabri, M.; Aboulnour, M.; Mirza, S.; Alshobaiki, A. Classifying the Mortality of People with Underlying Health Conditions Affected by COVID-19 Using Machine Learning Techniques. Appl. Comput. Intell. Soft Comput. 2022, 2022, 3783058. [CrossRef]
dc.relation60. Shafiekhani, S.; Rafiei, S.; Abdollahzade, S.; Souri, S.; Moomeni, Z. Risk Factors Associated with In-Hospital Mortality in Iranian Patients with COVID-19: Application of Machine Learning. Pol. J. Med. Phys. Eng. 2022, 28, 19–29. [CrossRef]
dc.relation61. Hou, W.; Zhao, Z.; Chen, A.; Li, H.; Duong, T.Q. Machining learning predicts the need for escalated care and mortality in COVID-19 patients from clinical variables. Int. J. Med. Sci. 2021, 18, 1739–1745. [CrossRef]
dc.relation62. Xu, W.; Sun, N.N.; Gao, H.N.; Chen, Z.Y.; Yang, Y.; Ju, B.; Tang, L. Risk factors analysis of COVID-19 patients with ARDS and prediction based on machine learning. Sci. Rep. 2021, 11, 2933. [CrossRef]
dc.relation63. Ikemura, K.; Bellin, E.; Yagi, Y.; Billett, H.; Saada, M.; Simone, K.; Stahl, L.; Szymanski, J.; Goldstein, D.Y.; Gil, M.R. Using automated machine learning to predict the mortality of patients with COVID-19: Prediction model development study. J. Med. Internet Res. 2021, 23, e23458. [CrossRef]
dc.relation64. Sankaranarayanan, S.; Balan, J.; Walsh, J.; Wu, Y.; Minnich, S. Piazza, A.; Osborne, C.; Oliver, G.; Lesko, J.; Bates, K.L.; et al. COVID-19 mortality prediction from deep learning in a large multistate electronic health record and laboratory information system data set: Algorithm development and validation. J. Med. Internet Res. 2021, 23, e30157. [CrossRef]
dc.relation65. Lima, T.P.F.; Sena, G.R.; Neves, C.S.; Vidal, S.A.; Lima, J.T.O.; Mello, M.J.G.; Silva, F.A. Death risk and the importance of clinical features in elderly people with COVID-19 using the random forest algorithm. Rev. Bras. Saúde Matern. Infant. 2021, 21, S445–S451. [CrossRef]
dc.relation66. Di Castelnuovo, A.; Bonaccio, M.; Costanzo, S.; Gialluisi, A.; Antinori, A.; Berselli, N.; Blandi, L.; Bruno, R.; Cauda, R.; Guaraldi, G.; et al. Common cardiovascular risk factors and in-hospital mortality in 3,894 patients with COVID-19: Survival analysis and machine learning-based findings from the multicentre Italian CORIST Study. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1899–1913. [CrossRef] [PubMed]
dc.relation67. Guadiana-Alvarez, J.L.; Hussain, F.; Morales-Menendez, R.; Rojas-Flores, E.; García-Zendejas, A.; Escobar, C.A.; RamírezMendoza, R.A.; Wang, J. Prognosis patients with COVID-19 using deep learning. BMC Med. Inform. Decis. Mak. 2022, 22, 78. [CrossRef] [PubMed]
dc.relation68. Khadem, H.; Nemat, H.; Eissa, M.R.; Elliott, J.; Benaissa, M. COVID-19 mortality risk assessments for individuals with and without diabetes mellitus: Machine learning models integrated with interpretation framework. Comput. Biol. Med. 2022, 144, 105361. [CrossRef] [PubMed]
dc.relation69. Meng, L.; Dong, D.; Li, L.; Niu, M.; Bai, Y.; Wang, M.; Qiu, X.; Zha, Y.; Tian, J. A Deep Learning Prognosis Model Help Alert for COVID-19 Patients at High-Risk of Death: A Multi-Center Study. IEEE J. Biomed. Heal. Inform. 2020, 24, 3576–3584. [CrossRef]
dc.relation70. Nieto-Codesido, I.; Calvo-Alvarez, U.; Diego, C.; Hammouri, Z.; Mallah, N.; Ginzo-Villamayor, M.J.; Salgado, F.J.; Carreira, J.M.; Rábade, C.; Barbeito, G.; et al. Risk Factors of Mortality in Hospitalized Patients With COVID-19 Applying a Machine Learning Algorithm. Open Respir. Arch. 2022, 4, 100162. [CrossRef]
dc.relation71. Shanbehzadeh, M.; Valinejadi, A.; Afrah, R.; Kazemi-Arpanahi, H.; Orooji, A.; Kaffashian, M. Comparison of Machine-Learning Algorithms Efficiency to Build a Predictive Model for Mortality Risk in COVID-19 Hospitalized Patients. Koomesh 2022, 24, 128–138. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125205351&partnerID=40&md5=877e6 0c345b975a6d6c62b881ec38ca6 (accessed on 18 March 2022).
dc.relation72. Tezza, F.; Lorenzoni, G.; Azzolina, D.; Barbar, S.; Leone, L.; Gregori, D. Predicting in-Hospital Mortality of Patients with COVID-19 Using Machine Learning Techniques. J. Pers. Med. 2021, 11, 343. [CrossRef]
dc.relation73. Wang, J.M.; Liu, W.; Chen, X.; McRae, M.P.; McDevitt, J.T.; Fenyö, D. Predictive Modeling of Morbidity and Mortality in Patients Hospitalized With COVID-19 and its Clinical Implications: Algorithm Development and Interpretation. J. Med. Internet Res. 2021, 23, e29514. [CrossRef]
dc.relation74. Yu, L.; Halalau, A.; Dalal, B.; Abbas, A.E.; Ivascu, F.; Amin, M.; Nair, G.B. Machine learning methods to predict mechanical ventilation and mortality in patients with COVID-19. PLoS ONE 2021, 16, e0249285. [CrossRef]
dc.relation75. Amini, N.; Mahdavi, M.; Choubdar, H.; Abedini, A.; Shalbaf, A.; Lashgari, R. Automated prediction of COVID-19 mortality outcome using clinical and laboratory data based on hierarchical feature selection and random forest classifier. Comput. Methods Biomech. Biomed. Eng. 2022. [CrossRef]
dc.relation76. Becerra-Sánchez, A.; Rodarte-Rodríguez, A.; Escalante-García, N.I.; Olvera-González, J.E.; De la Rosa-Vargas, J.I.; Zepeda-Valles, G.; Velásquez-Martínez, E.D.J. Mortality Analysis of Patients with COVID-19 in Mexico Based on Risk Factors Applying Machine Learning Techniques. Diagnostics 2022, 3, 1396. [CrossRef]
dc.relation77. Das, A.K.; Mishra, S.; Gopalan, S.S. Predicting COVID-19 community mortality risk using machine learning and development of an online prognostic tool. PeerJ 2020, 8, e10083. [CrossRef]
dc.relation78. Halasz, G.; Sperti, M.; Villani, M.; Michelucci, U.; Agostoni, P.; Biagi, A.; Rossi, L.; Botti, A.; Mari, C.; Maccarini, M.; et al. A machine learning approach for mortality prediction in COVID-19 pneumonia: Development and evaluation of the Piacenza score. J. Med. Internet Res. 2021, 23, e29058. [CrossRef]
dc.relation79. Kar, S.; Chawla, R.; Haranath, S.P.; Ramasubban, S.; Ramakrishnan, N.; Vaishya, R.; Sibal, A.; Reddy, S. Multivariable mortality risk prediction using machine learning for COVID-19 patients at admission (AICOVID). Sci. Rep. 2021, 11, 12801. [CrossRef]
dc.relation80. Khozeimeh, F.; Sharifrazi, D.; Izadi, N.H.; Joloudari, J.H.; Shoeibi, A.; Alizadehsani, R.; Gorriz, J.M.; Hussain, S.; Sani, Z.A.; Moosaei, H.; et al. Combining a convolutional neural network with autoencoders to predict the survival chance of COVID-19 patients. Sci. Rep. 2021, 11, 15343. [CrossRef]
dc.relation81. Parchure, P.; Joshi, H.; Dharmarajan, K.; Freeman, R.; Reich, D.L.; Mazumdar, M.; Timsina, P.; Kia, A. Development and validation of a machine learning-based prediction model for near-term in-hospital mortality among patients with COVID-19. BMJ Support. Palliat. Care 2020, 12, e424–e431. [CrossRef]
dc.relation82. Rasmy, L.; Nigo, M.; Kannadath, B.S.; Xie, Z.; Mao, B.; Patel, K.; Zhou, Y.; Zhang, W.; Ross, A.; Xu, H.; et al. Recurrent neural network models (CovRNN) for predicting outcomes of patients with COVID-19 on admission to hospital: Model development and validation using electronic health record data. Lancet Digit. Health 2022, 4, e415–e425. [CrossRef]
dc.relation83. Ryan, L.; Lam, C.; Mataraso, S.; Allen, A.; Green-Saxena, A.; Pellegrini, E.; Hoffman, J.; Barton, C.; McCoy, A.; Das, R. Mortality prediction model for the triage of COVID-19, pneumonia, and mechanically ventilated ICU patients: A retrospective study. Ann. Med. Surg. 2020, 59, 207–216. [CrossRef]
dc.relation84. Stachel, A.; Daniel, K.; Ding, D.; Francois, F.; Phillips, M.; Lighter, J. Development and validation of a machine learning model to predict mortality risk in patients with COVID-19. BMJ Health Care Inform. 2021, 28, e100235. [CrossRef]
dc.relation85. Yun, J.; Basak, M.; Han, M.-M. Bayesian Rule Modeling for Interpretable Mortality Classification of COVID-19 Patients. Comput. Mater. Contin. 2021, 69, 2827–2843. [CrossRef]
dc.relation86. Aggarwal, A.; Chakradar, M.; Bhatia, M.S.; Kumar, M.; Stephan, T.; Gupta, S.K.; Alsamhi, S.H.; Al-Dois, H. COVID-19 Risk Prediction for Diabetic Patients Using Fuzzy Inference System and Machine Learning Approaches. J. Healthc. Eng. 2022, 2022. [CrossRef] [PubMed]
dc.relation87. Ebrahimi, V.; Sharifi, M.; Mousavi-Roknabadi, R.S.; Sadegh, R.; Khademian, M.H.; Moghadami, M.; Dehbozorgi, A. Predictive determinants of overall survival among re-infected COVID-19 patients using the elastic-net regularized Cox proportional hazards model: A machine-learning algorithm. BMC Public Health 2022, 22, 10. [CrossRef]
dc.relation88. Elghamrawy, S.M.; Hassanien, A.E.; Vasilakos, A.V. Genetic-based adaptive momentum estimation for predicting mortality risk factors for COVID-19 patients using deep learning. Int. J. Imaging Syst. Technol. 2021, 32, 614–628. [CrossRef]
dc.relation89. Ma, J.; Wang, Y.; Niu, X.; Jiang, S.; Liu, Z. A comparative study of mutual information-based input variable selection strategies for the displacement prediction of seepage-driven landslides using optimized support vector regression. Stoch. Environ. Res. Risk Assess. 2022, 36, 3109–3129. [CrossRef]
dc.relation90. Rockova, V.; McAlinn, K. Dynamic Variable Selection with Spike-and-Slab Process Priors. Bayesian Anal. 2021, 16, 233–269. [CrossRef]
dc.relation91. Medeiros, M.C.; Vasconcelos, G.; Veiga, Á.; Zilberman, E. Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods. J. Bus. Econ. Stat. 2019, 39, 98–119. [CrossRef]
dc.relation92. Mustafa, S.; Ali, A.; Salahuddin, H.; Chaudhry, M.U. Two-step Feature Selection for Predicting Mortality Risk in COVID-19 Patients. In Proceedings of the International Conference on Computing, Electronic and Electrical Engineering, ICE Cube, Quetta, Pakistan, 26–27 October 2021. [CrossRef]
dc.relation93. Why Accuracy Is Not A Good Metric For Imbalanced Data—Towards AI. Available online: https://towardsai.net/p/l/whyaccuracy-is-not-a-good-metric-for-imbalanced-data (accessed on 18 November 2022).
dc.relation94. Folleco, A.; Khoshgoftaar, T.M.; Napolitano, A. Comparison of four performance metrics for evaluating sampling techniques for low quality class-imbalanced data. In Proceedings of the 7th International Conference on Machine Learning and Applications, ICMLA 2008, San Diego, CA, USA, 11–13 December 2008; pp. 153–158. [CrossRef]
dc.relation95. Luque, A.; Carrasco, A.; Martín, A.; de las Heras, A. The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognit. 2019, 91, 216–231. [CrossRef]
dc.relation96. Raeder, T.; Forman, G.; Chawla, N.V. Learning from Imbalanced Data: Evaluation Matters. Intell. Syst. Ref. Libr. 2012, 23, 315–331. [CrossRef]
dc.relation24
dc.relation1
dc.relation23
dc.relation11
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://www.mdpi.com/2079-9292/11/23/4015
dc.subjectCOVID-19
dc.subjectMachine learning
dc.subjectPrediction algorithms
dc.subjectMortality prediction
dc.titleMachine learning algorithms application in COVID-19 disease: a systematic literature review and future directions
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_dcae04bc
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ARTREV
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución