dc.contributorSousa Santos, Vladimir
dc.contributorNoriega Angarita, Eliana
dc.creatorGuzmán Muñoz, Juan
dc.creatorOrtega Bolaños, Ramiro Hernán
dc.date2020-11-25T20:07:27Z
dc.date2020-11-25T20:07:27Z
dc.date2020
dc.date.accessioned2023-10-03T19:22:48Z
dc.date.available2023-10-03T19:22:48Z
dc.identifierhttps://hdl.handle.net/11323/7495
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9169818
dc.descriptionIn the present study, the characterization of the quality of the energy of an electrical system of an industry specialized in metalworking with non-linear variable electrical loads is carried out, for the identification of problems that affect the operation of the equipment. The study was based on the implementation of sequential steps based on the characteristics of the electrical system and the requirements of power quality standards. Measurements were made in the transformer of the common connection point and in the twelve distribution transformers of the plant with class A network analyzers. As a result of the study, problems of voltage variation and power factor were identified in all transformers, and it was shown that in 11 distribution transformers, there are non-conformities in relation to the limits of total distortion of current demand. It was possible to show that the individual harmonic of the fifth order current (negative sequence) predominated in six transformers, the individual harmonics of the seventh order current (positive sequence) predominated in five transformers, and the individual harmonics of the third order current (zero sequence).), were the most recurrent in a transformer.
dc.descriptionEn el presente estudio, se realiza la caracterización de la calidad de la energía de un sistema eléctrico de una industria especializada en metalmecánica con cargas eléctricas variables no lineales, para la identificación de problemas que afectan la operación de los equipos. El estudio se basó en la implementación de unos pasos secuenciales basados en las características del sistema eléctrico y en los requerimientos de las normas de calidad de la energía. Se realizó mediciones en el transformador del punto de conexión común y en los doce transformadores de distribución de la planta con analizadores de redes de clase A. Como resultado del estudio, se identificaron problemas de variación de tensión y factor de potencia en todos los transformadores, y se pudo demostrar que, en 11 transformadores de distribución, existieron no conformidades en relación con los límites de distorsión total de demanda de corriente. Se pudo evidenciar que el armónico individual de corriente de quinto orden (secuencia negativa) predominó en seis transformadores, los armónicos individuales de corriente del séptimo orden (secuencia positiva) predominaron en cinco transformadores, y los armónicos individuales de corriente del tercer orden (secuencia cero), fueron los más recurrentes en un transformador.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherCorporación Universidad de la Costa
dc.publisherIngeniería Eléctrica
dc.relationAESoluciones. (2014). AESoAESoluciones. 2014. “AESoluciones. 2014. ‘Los Efectos De Los Armónicos Y Sus Soluciones.’ : 10. Aesoluciones@aes.Com.Los Efectos De Los Armónicos Y Sus Soluciones.” : 10. aesoluciones@aes.com.luciones. 2014. “Los Efectos De Los Armónicos Y Sus Solucio. 10. aesoluciones@aes.com
dc.relationAramwanid, P., & Boonyaroonate, I. (2015). Power quality impact study and analysis of electrical power efficacy in sugar industry. ECTI-CON 2015 - 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 9–12. https://doi.org/10.1109/ECTICon.2015.7206958
dc.relationBhagavathy, P., Latha, R., & Elango, S. (2018). A Case Study on the Impact of Power Quality Analysis in Textile Industry. 2018 13th International Conference on Industrial and Information Systems, ICIIS 2018 - Proceedings, 978, 453–456. https://doi.org/10.1109/ICIINFS.2018.8721407
dc.relationBishop, M. T. (1996). Evaluating harmonic-induced transformer heating. IEEE Power Engineering Review, 16(1), 56–57.
dc.relationBoonseng, C., Chompoo-inwai, C., Kinnares, V., Nakawiwat, K., & Apiratikul, P. (2001). Failure analysis of dielectric of low voltage power capacitors due to related harmonic resonance effects. Proceedings Second International Conference on Properties and Applications, 3, 1003–1008.
dc.relationCarrera, E., & Ordoñez, F. (2011). Análisis De Calidad De Energía En Tagsa.
dc.relationCervantes, O. (2014). METODOLOGÍA DE MEDICIÓN DE CALIDAD DE ENERGÍA ELÉCTRICA EN BASE A NORMAS NACIONALES E INTERNACIONALES PARA LA UNIVERSIDAD DE LA COSTA - CUC (Vol. 1, Issue 4).
dc.relationChen, W., & Cheng, Z. (1988). An experimental study of the damaging effects of harmonics in power networks on the capacitor dielectrics. Proceedings Second International Conference on Properties and Applications, 2, . 645-648.
dc.relationChoi, W., Lee, W., Han, D., & Sarlioglu, B. (2018). New Configuration of Multifunctional Grid- Connected Inverter to Improve Both Current-Based and Voltage-Based Power Quality. IEEE Transactions on Industry Applications, 54(6), 6374–6382. https://doi.org/10.1109/TIA.2018.2861737
dc.relationChurio Silvera, O., Vanegas Chamorro, M., & Valencia Ochoa, G. (2018). Estudio y diagnóstico de la calidad de la energía de un campus universitario en la costa norte de Colombia. AVANCES: Investigación En Ingeniería, 15(1), 271–285. https://doi.org/10.18041/1794- 4953/avances.1.4739
dc.relationCommittee, D., Power, I., & Society, E. (2009). IEEE Std 1159 - IEEE Recommended Practice for Monitoring Electric Power Quality. IEEE Std 1159-2009 (Revision of IEEE Std 1159-1995), 2009(June), 1–81. https://doi.org/10.1109/IEEESTD.2009.5154067
dc.relationCommittee, D., Power, I., & Society, E. (2014). IEEE Std 519 - IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems IEEE Power and Energy Society Sponsored by the Transmission and Distribution Committee I. 2014. https://doi.org/10.1109/IEEESTD.2014.6826459
dc.relationCommittee, T., & Society, I. P. E. (1986). An American National Standard IEEE Recommended Practice for Establishing Transformer Capability When Supplying Nonsinusoidal Load Currents. ANSI/IEEE Std C57.110-1986, December, 0_1. https://doi.org/10.1109/IEEESTD.1988.81682
dc.relationCREG. (2018). Metodología para la remuneración de la actividad de distribución de energía electrica en el Sistema Interconectado Nacional. In Resolución 015 (p. 239). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/65f1aaf1d5772 6a90525822900064dac?OpenDocument
dc.relationDe Abreu, J. P. G., & Emanuel, A. E. (2002). Induction motor thermal aging caused by voltage distortion and imbalance: Loss of useful life and its estimated cost. IEEE Transactions on Industry Applications, 38(1), 12–20. https://doi.org/10.1109/28.980339
dc.relationDigalovski, M., Najdenkoski, K., & Rafajlovski, G. (2013). Impact of current high order harmonic to core losses of three-phase distribution transformer. IEEE EuroCon 2013, July, 1531– 1535. https://doi.org/10.1109/EUROCON.2013.6625181
dc.relationDonolo, P., Bosio, G., De Angelo, C., Castellino, A., & Garcia, G. (2016). Effects of voltage unbalance on IM power, torque and vibrations. 140, 866–873.
dc.relationDranetz. (2020). Dranetz HDPQ Visa Plus.
dc.relationEnríquez Harper, G. (2013). EL ABC de la calidad de la ENERGIA ELECTRICA. In Profesor titular de la ESIME-IPN (Vol. 0). https://doi.org/10.1017/CBO9781107415324.004
dc.relationICONTEC. (2008). NTC 5001: Calidad de la potencia eléctrica. Límites y metodología de evaluación en punto de conexión común (Issue 571).
dc.relationICONTEC. (2013). NTC 1340: Electrotecnia. Tensiones y frecuencia nominales en sistemas de energía eléctrica en redes de servicio público (Issue 571).
dc.relationIEC. (2015). Electromagnetic compatibility (EMC) – Part 4-30: Testing and measurement techniques – Power quality measurement methods.
dc.relationInan, A., & Attar, F. (2000). Life Expectancy Analysis for an Electric Motor. Proceedings Electrotechnical Conference, 2, 997–999.
dc.relationIngale, V. P., Jadhav, A. D., Takawale, N. K., & Mangate, S. D. (2018). Power Quality Analysis for Sugar Industry with Cogeneration. Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT 2018, Icicct, 776–781. https://doi.org/10.1109/ICICCT.2018.8472949
dc.relationJafari Aghbolaghi, A., Mahdavi Tabatabaei, N., Boushehri, N. S., & Hojjati Parast, F. (2017). Reactive Power Control in AC Power Systems. In Power Systems (pp. 345–409). https://doi.org/10.1007/978-3-319-51118-4
dc.relationJasinski, M., Sikorski, T., & Borkowski, K. (2018). Clusteringa tool to support the assessment of power quality in electrical power networks with distributed generation in the mining industry. Electric Power Systems Research. https://doi.org/https://doi.org/10.101/j.epsr.2018.09.020
dc.relationJiménez, A. F. S. (2015). Guía metodológica para el análisis de hundimientos de tensión en el sistema de distribución de la CHEC.
dc.relationMassey, G. W. (1994). Estimation Methods for Power System Harmonic Effects on Power Distribution Transformers. IEEE Transactions on Industry Applications, 30(2), 485–489. https://doi.org/10.1109/28.287505
dc.relationMetrel, 2017. (2017). Calidad de la energía Análisis de potencia , armónicos y perturbaciones de red en sistemas trifásicos de distribución. 20. https://doi.org/20 750 958
dc.relationMetrel d.d. (2020). MI 2892 Power Master Analizadores de la calidad de la energía.
dc.relationMiguel Torres, Guianella Ibarra, E. B. (2004). ESCUELA SUPERIOR POLITECNICA DEL LITORAL Facultad de Ingeniería en Electricidad y Computación.
dc.relationMiron, A., Chindriş, M., & Cziker, A. (2012). Impact of unbalance in harmonic polluted power networks. SPEEDAM 2012 - 21st International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 674–678. https://doi.org/10.1109/SPEEDAM.2012.6264475
dc.relationMonzón, M. (2013). Calidad De Suministro Eléctrico: Huecos De Tensión. Mitigación De Sus Efectos En Las Plantas Industriales.
dc.relationMovahed, S. R., Oraee Mirzamani, S. H., Rajabi, A., & Daneshvar, H. (2010). Estimation of insulation life of inverter-fed induction motors. PEDSTC 2010 - 1st Power Electronics and Drive Systems and Technologies Conference, 335–339. https://doi.org/10.1109/PEDSTC.2010.5471797
dc.relationNoriega, E., Cabello, J. J., Hernández, H., Sousa, V., Balbis, M., Silva, J. I., & Sagastume, A. (2019). Energy planning and management during battery manufacturing. Gestao e Producao, 26(4), 1–14. https://doi.org/10.1590/0104-530X3928-19
dc.relationNuñez, J. R., Pérez, Y., Benítez, I., & Noriega, E. (2021). Demilitarized network to secure the data stored in industrial networks. International Journal of Electrical and Computer Engineering, 11(1), 611–619. https://doi.org/10.11591/ijece.v11i1.pp611-619
dc.relationOraee, H. (2000). A quantative approach to estimate the life expectancy of motor insulation systems. IEEE Transactions on Dielectrics and Electrical Insulation, 7(6), 790–796. https://doi.org/10.1109/94.891990
dc.relationPierce, L. W. (1996). Transformer design and application considerations for nonsinusoidal load currents. IEEE Transactions on Industry Applications, 32(3), 633–645. https://doi.org/10.1109/28.502176
dc.relationRaja, R., Yash, S., Shubham, S., Indragandhi, V., Vijayakmar, V., Saravanan, P., & Subramaniyaswamy, V. (2020). IoT embedded cloud-based intelligent power quality monitoring system for industrial drive application. www.elsevier.com/locaate/fgcs
dc.relationRajarajan, R., & Prakash, R. (2020). A reformed adaptive frequency passivness control for unified power quality compensator with model parametrer ability to improve power quality. Micropocessors and Microsystems. www.elsevier.com/locate/micpro
dc.relationRawa, M. J. H., Thomas, D. W. P., & Sumner, M. (2013). Power quality monitoring and simulation of a personal computer based on IEEE 1459-2010. IEEE International Symposium on Electromagnetic Compatibility, 671–675.
dc.relationRönnberg, S., & Bollen, M. (2016). Power quality issues in the electric power system of the future. Electricity Journal, 29(10), 49–61. https://doi.org/10.1016/j.tej.2016.11.006
dc.relationSaid, D. M., Nor, K. M., & Majid, M. S. (2010). Analysis of distribution transformer losses and life expectancy using measured harmonic data. ICHQP 2010 - 14th International Conference on Harmonics and Quality of Power, 0–5. https://doi.org/10.1109/ICHQP.2010.5625403
dc.relationSECOVI. (2006). Estudio de Calidad de Energía ® SECOVI.
dc.relationShah, P., Hussain, I., Singh, B., Chandra, A., & Al-Haddad, K. (2019). GI-Based control scheme for single-stage grid interfaced SECS for power quality improvement. IEEE Transactions on Industry Applications, 55(1), 869–881. https://doi.org/10.1109/TIA.2018.2866375
dc.relationSingh, G. K. (2005). A research survey of induction motor operation with non-sinusoidal supply wave forms. Power Generation and Propulsion, Electrical Vehicles, 75, (2 3). https://doi.org/10.1016/s0140-6701(03)80027-9
dc.relationSouli, A., & Hellal, A. (2014). Design of a computer code to evaluate the influence of the harmonics in the Transient Stability studies of electrical networks. 2014 IEEE 11th International Multi-Conference on Systems, Signals and Devices, SSD 2014, 107–112. https://doi.org/10.1109/SSD.2014.6808804
dc.relationSousa, V., Herrera, H. H., Quispe, E. C., Viego, P. R., & Gómez, J. R. (2017). Harmonic distortion evaluation generated by PWM motor drives in electrical industrial systems. International Journal of Electrical and Computer Engineering, 7(6), 3207–3216. https://doi.org/10.11591/ijece.v7i6.pp3207-3216
dc.relationSousa, V., Viego, P., Gómez, J., Lemozy, N., Jurado, A., & Quispe, E. (2015). Procedure for determining induction motor efficiency working under distorted grid voltages. IEEE Transactions on Energy Conversion, 30(1), 331–339. https://doi.org/10.1109/TEC.2014.2335994
dc.relationStrandt, A., Hu, J., & Wei, L. (2014). No-load power losses and motor overheating effects versus PWM switching frequencies. 3rd International Conference on Renewable Energy Research and Applications, ICRERA 2014, 280–283. https://doi.org/10.1109/ICRERA.2014.7016570
dc.relationWang, Y., Bai, B., & Liu, W. F. (2014). Research on discharging bearing currents of PWM inverter-fed variable frequency induction motor. 2014 17th International Conference on Electrical Machines and Systems, ICEMS 2014, 2945–2949. https://doi.org/10.1109/ICEMS.2014.7014000
dc.relationWang, Y., Liu, W., Chen, Z., & Bai, B. (2014). Calculation of high frequency bearing currents of PWM inverter-fed VF induction motor. Proceedings - 2014 International Power Electronics and Application Conference and Exposition, IEEE PEAC 2014, 51277122, 1428–1433. https://doi.org/10.1109/PEAC.2014.7038074
dc.relationYadav, J. R., Vasudevan, K., Kumar, D., & Shanmugam, P. (2019). Power quality assessment for industrial plants: A comparative study. Proceedings - 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering, CPE- POWERENG 2019. https://doi.org/10.1109/CPE.2019.8862321
dc.relationYaghoobi, J., Abdullah, A., Kumar, D., Zare, F., & Soltani, H. (2019). Power Quality Issues of Distorted and Weak Distribution Networks in Mining Industry: A Review. IEEE Access, 7, 162500–162518. https://doi.org/10.1109/ACCESS.2019.2950911
dc.relationZhu, B., Bai, B., & He, H. (2008). Effects of the inverter parameters on the eddy current losses in induction motor fed by PWM inverter. Proceedings of the 11th International Conference on Electrical Machines and Systems, ICEMS 2008, 1, 4240–4243.
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectHarmonics
dc.subjectPower quality
dc.subjectNon-linear loads
dc.subjectVariable loads
dc.subjectIndustrial electrical systems
dc.subjectArmónicos
dc.subjectCalidad de la energía
dc.subjectCargas no lineales
dc.subjectCargas variables
dc.subjectSistemas eléctricos industriales
dc.titleCaracterización de la calidad de la energía de un sistema eléctrico industrial con cargas eléctricas variables no Lineales
dc.typeTrabajo de grado - Pregrado
dc.typehttp://purl.org/coar/resource_type/c_7a1f
dc.typeText
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/TP
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución