dc.creatorTrejos, Erika M.
dc.creatorSilva Oliveira, Luis Felipe
dc.creatorHower, James C.
dc.creatorFlores, Eriko M. M.
dc.creatorGonzález, Carlos Mario
dc.creatorPachón, Jorge E.
dc.creatorAristizábal, Beatriz H.
dc.date2020-12-14T14:50:58Z
dc.date2020-12-14T14:50:58Z
dc.date2021-03
dc.date.accessioned2023-10-03T19:19:53Z
dc.date.available2023-10-03T19:19:53Z
dc.identifierhttps://hdl.handle.net/11323/7574
dc.identifierhttps://doi.org/10.1016/j.gsf.2020.08.013
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9169633
dc.descriptionThe influence of emissions of an active volcano on the composition of nanoparticles and ultrafine road dust was identified in an urban area of the Andes. Although many cities are close to active volcanoes, few studies have evaluated their influence in road dust composition. Air quality in urban areas is significantly affected by non-exhaust emissions (e.g. road dust, brake wear, tire wear), however, natural sources such as volcanoes also impact the chemical composition of the particles. In this study, elements from volcanic emissions such as Si > Al > Fe > Ca > K > Mg, and Si Al with K were identified as complex hydrates. Similarly, As, Hg, Cd, Pb, As, H, Cd, Pb, V, and salammoniac were observed in nanoparticles and ultrafine material. Mineral composition was detected in the order of quartz> mullite> calcite> kaolinite> illite> goethite> magnetite> zircon> monazite, in addition to salammoniac, a tracer of volcanic sources. The foregoing analysis reflects the importance of carrying out more studies relating the influence of volcanic emissions in road dust in order to protect human health. The road dust load (RD10) ranged between 0.8 and 26.8 mg m−2 in the city.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relationAlarcón, E., Murcia, H., Borrero, C., Arnosio, M., 2020. Evidence for welding of a block and ash pyroclastic flow deposit: the case of Cerro Bravo Volcano, Colombia. Bull. Volcanol. 82 (3), 1–14. https://doi.org/10.1007/s00445-019-1334-5.
dc.relationAlleon, J., Bernard, S., Guillou, C., Marin-Carbonne, J., Pont, S., Beyssac, O., Mckeegan, K., Robert, F., 2016. Molecular preservation of 1.88 Ga Gunflint organic microfossils as a function of temperature and mineralogy. Nature. Communications 7, 11977. https://doi.org/10.1038/ncomms11977.
dc.relationAmato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., Moreno, T., 2009. Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos. Environ. 43 (9), 1650–1659. https://doi.org/10.1016/j.atmosenv.2008.12.009.
dc.relationAmato, F., Pandolfi, M., Moreno, T., Furger, M., Pey, J., Alastuey, A., Bukowiecki, N., Prevot, A.S.H., Baltensperger, U., Querol, X., 2011. Sources and variability of inhalable road dust particles in three European cities. Atmos. Environ. 45 (37), 6777–6787. https://doi.org/10.1016/j.atmosenv.2011.06.003.
dc.relationAmato, F., Pandolfi, M., Alastuey, A., Lozano, G., Contreras, J., Querol, X., 2013. Impact of traffic intensity and pavement aggregate size on road dust particles loading. Atmos. Environ. 77, 711–717. https://doi.org/10.1016/j.atmosenv.2013.05.020.
dc.relationBergbӓck, B., Johansson, K., Mohlander, U., 2001. Urban Metal Flows – a Case Study of Stockholm. Review and Conclusions. Water. Air Soil Pollut. 1, 3–24. https://doi.org/ 10.1023/A:1017531532576.
dc.relationBukowiecki, N., Lienemann, P., Hill, M., Furger, M., Richard, A., Amato, F., Prévôt, A.S.H., Baltensperger, U., Buchmann, B., Gehrig, R., 2010. PM10 emission factors for nonexhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland. Atmos. Environ. 44 (19), 2330–2340. https://doi.org/10.1016/j. atmosenv.2010.03.039.
dc.relationBuseck, P.R., Adachi, K., 2008. Nanoparticles in the Atmosphere. Elements 4 (6), 389–394. https://doi.org/10.2113/gselements.4.6.389.
dc.relationBusinger, S., Huff, R., Pattantyus, A., Horton, K., Sutton, A.J., Elias, T., Cherubini, T., 2015. Observing and forecasting Vog Dispersion from Kīlauea Volcano, Hawaii. Bull. Am. Meteorol. Soc. 96 (10), 1667–1686. https://doi.org/10.1175/BAMS-D-14-00150.1.
dc.relationCampos, A., Aragon, A., Alastuey, A., Galindo, I., Querol, X., 2011. Levels, composition and source apportionment of rural background PM10 in Western Mexico (State of Colima). Atmosp. Pollut. Res. 2 (4), 409–417. https://doi.org/10.5094/APR.2011.046.
dc.relationCangemi, M., Speziale, S., Madonia, P., D’Alessandro, W., Andronico, D., Bellomo, S., Brusca, L., Kyriakopoulos, K., 2017. Potentially harmful elements released by volcanic ashes: examples from the Mediterranean area. J. Volcanol. Geotherm. Res. 337, 16–28. https://doi.org/10.1016/j.jvolgeores.2017.03.015.
dc.relationCarn, S., Froyd, K., Anderson, B., Wennberg, P., Crounse, J., Spencer, K., Dibb, J., Krotkov, N., Browell, E., Hair, J., Diskin, G., Sachse, G., 2011. In situ measurements of tropospheric volcanic plumes in Ecuador and Colombia during TC4. J. Geophys. Res. 116, 1–24. https://doi.org/10.1029/2010JD014718.
dc.relationCarn, S., Fioletov, V., Mclinden, C., Li, C., Krotkov, N., 2017. A decade of global volcanic SO2 emissions measured from space. Sci. Rep. 7, 44095. https://doi.org/10.1038/ srep44095.
dc.relationCDIAC [Centro de Datos e Indicadores Ambientales de Caldas], 2019. Datos diarios de velocidad del viento 2019 – Estación meteorológica Hospital de Caldas. http://cdiac. manizales.unal.edu.co/etl-cdiac-app/externalReport/getReportStation.
dc.relationChen, H., Kwong, J., Copes, R., Hystad, P., van Donkelaar, A., Tu, K., Brook, J., Goldberg, M., Martin, R., Murray, B., Wilton, A., Kopp, A., Burnett, R., 2017. Exposure to ambient air pollution and the incidence of dementia: a population–based cohort study. Environ. Int. 108, 271–277. https://doi.org/10.1016/j.envint.2017.08.020.
dc.relationCheng, Y., Lee, S., Gu, Z., Ho, K., Zhang, Y., Huang, Y., Chow, J., Watson, J., Cao, J., Zhang, R., 2015. PM2.5 and PM10–2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology 18, 96–104. https://doi.org/10.1016/j.partic.2013.10.003.
dc.relationCiveira, M., Pinheiro, R.N., Gredilla, A., de Vallejuelo, S., Oliveira, M.L.S., Ramos, C.G., Taffarel, S.R., Kautzmann, R.M., Madariaga, J.M., Silva, L.F.O., 2016a. The properties of the nano-minerals and hazardous elements: potential environmental impacts of Brazilian coal waste fire. Sci. Total Environ. 544, 892–900. https://doi.org/10.1016/j. scitotenv.2015.12.026.
dc.relationCuesta, A., González, C., Velasco, M., Aristizábal, B., 2018. Distribución espacial de concentraciones de SO2, NOx y O3 en el aire ambiente de Manizales. Revista Internacional de Contaminación Ambiental 34, 489–504. https://doi.org/10.20937/ RICA.2018.34.03.11 (in Spanish with English abstract).
dc.relationCuesta, A., Wahl, M., Acosta, J., García, A., Aristizábal, B., 2020. Mixing layer height and slope wind oscillation: Factors that control ambient air SO2 in a tropical mountain city. Sustain. Cities Soc. 52, 101852. https://doi.org/10.1016/j.scs.2019.101852.
dc.relationCutruneo, C., Oliveira, M., Ward, C., Hower, J., Brum, I., Sampaio, C., Kautzmann, R., Taffarel, S., Calesso, T., Silva, L., 2014. A mineralogical and geochemical study of three Brazilian coal cleaning rejects: Demonstration of electron beam applications. Int. J. Coal Geol. 130, 33–52. https://doi.org/10.1016/j.coal.2014.05.009.
dc.relationDANE (Departamento Administrativo Nacional de Estadística), 2019. Censo Nacional de Población y Vivienda 2018. Población ajustada por cobertura. https://www.dane.gov.co/files/censo2018/informacion-tecnica/presentaciones-territorio/190801CNPV-presentacion-Caldas-Manizales.pdf (in Spanish with English abstract).
dc.relationEEA (European Environment Agency), 2004. EMEP/CORINAIR Atmospheric Emission Inventory Guidebook, third ed. Technical Report No. 30. European Environmental Agency, Copenhagen, Denmark.
dc.relationErazo, D., Londoño, A., Aristizabal, B., 2015. Study of the impact of volcanic fluids on the water resources of the Chinchiná river basin. Manage. Environ. 18 (2), 81–93.
dc.relationFernández, J.L., Saavedra, J., Ruggieri, F., Gimeno, D., Perez, F.J., Rodríguez, A., Galindo, G., 2012. Geoquímica de cenizas volcánicas a lo largo de dos transectas en Sudamérica: implicaciones ambientales. Geo-Temas 13, 2–5. http://hdl.handle.net/10261/53751 (in Spanish with English abstract).
dc.relationFindeter, 2017. Plan Maestro de Movilidad de Manizales. Manizales, Caldas, Colombia.
dc.relationGaines, R., Skinner, H., Foord, E., Mason, B., Rosenzweig, A., 1997. Dana’s New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana. eighth ed. John Wiley & Sons Inc, New York, p. 1819.
dc.relationGonzález, C., 2017. Dinámica e impacto de emisiones antrópicas y naturales en una ciudad andina empleando un modelo Euleriano de transporte químico on-line. Caso de estudio: Manizales, Colombia. Ph.D thesis. Universidad Nacional de Colombia - sede Manizales, Manizales, Colombia, pp. 234 (in Spanish with English abstract).
dc.relationGonzález, C., Aristizábal, B., 2012. Acid rain and particulate matter dynamics in a midsized Andean city: the effect of rain intensity onion scavenging. Atmos. Environ. 60, 164–171. https://doi.org/10.1016/j.atmosenv.2012.05.054.
dc.relationGredilla, A., Fdez-Ortiz de Vallejuelo, S., de Diego, A., Arana, G., Madariaga, J.M., 2014. A new index to sort estuarine sediments according to the contaminant content. Ecol. Indic. 45, 364–370. https://doi.org/10.1016/j.ecolind.2014.04.038.
dc.relationGredilla, A., Fdez-Ortiz de Vallejuelo, S., Gomez-Nubla, L., Carrero, J.A., de Leão, F.B., Madariaga, J.M., Silva, L.F., 2017. Are children playgrounds safe play areas? Inorganic analysis and lead isotope ratios for contamination assessment in recreational (Brazilian) parks. Environ. Sci. Pollut. Res. 24, 333–345. https://doi.org/10.1007/ s11356-017-9831-6.
dc.relationGrigoratos, T., Martini, G., 2015. Brake wear particle emissions: a review. Environ. Sci. Pollut. Res. 22, 2491–2504. https://doi.org/10.1007/s11356-014-3696-8.
dc.relationHarrison, R.M., Stedman, J., Derwent, D., 2008. New Directions: why are PM10 concentrations in Europe not falling? Atmos. Environ. 42 (3), 603–606. https://doi.org/10.1016/ j.atmosenv.2007.11.023.
dc.relationHussein, T., Johansson, C., Karlsson, H., Hansson, H.-C., 2008. Factors affecting non tail pipe aerosol particle emissions from paved roads: On-road measurements in Stockholm Sweden. Atmos. Environ. 42 (4), 688–702. https://doi.org/10.1016/j. atmosenv.2007.09.064.
dc.relationJuncos, R., Arcagni, M., Rizzo, A., Campbell, L., Arribére, M., Guevara, S.R., 2016. Natural origin arsenic in aquatic organisms from a deep oligotrophic lake under the influence of volcanic eruptions. Chemosphere 144, 2277–2289. https://doi.org/10.1016/j. chemosphere.2015.10.092.
dc.relationKaranasiou, A., Moreno, T., Amato, F., Lumbreras, J., Narros, A., Borge, R., Tobías, A., Boldo, E., Linares, C., Pey, J., Reche, C., Alastuey, A., 2011. Road dust contribution to PM levels – Evaluation of the effectiveness of street washing activities by means of Positive Matrix Factorization. Atmos. Environ. 45 (13), 2193–2201. https://doi.org/10.1016/j. atmosenv.2011.01.067.
dc.relationKioumourtzoglou, M., Schwartz, J., James, P., Dominici, F., Zanobetti, A., 2016. PM2.5 and Mortality in 207 US Cities: Modification by Temperature and City Characteristics. Epidemiology 27 (2), 221–227. https://doi.org/10.1097/EDE.0000000000000422.
dc.relationKumar, P., Fennell, P., Hayhurst, A., Britter, R., 2009. Street versus rooftop level concentrations of fine particles in a Cambridge street canyon. Bound.-Layer Meteorol. 131, 3–18. https://doi.org/10.1007/s10546-008-9300-3.
dc.relationKumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M., Harrison, R., Norford, L., Britter, R., 2014. Ultrafine particles in cities. Environ. Int. 66, 1–10. https://doi.org/10.1016/j.envint.2014.01.013.
dc.relationLabrada, G., Aragon, A., Campos, A., Castro, T., Amador, O., Villalobos, R., 2012. Chemical and morphological characterization of PM2.5 collected during MILAGRO campaign using scanning electron microscopy. Atmos. Pollut. Res. 3 (3), 289–300. https://doi. org/10.5094/APR.2012.032.
dc.relationLaj, P., Boutron, C., 1990. Trace elements in snow deposited at Nevado del Ruiz volcano, Colombia. J. Volcanol. Geotherm. Res. 42, 89–100. https://doi.org/10.1016/03770273(90)90071-M.
dc.relationLalla, E., Lopez-Reyes, G., Sansano, A., Arranz, A., Martínez-Frías, J., Medina, J., Rull, F., 2016. Raman-IR vibrational and XRD characterization of ancient and modern mineralogy from volcanic eruption in Tenerife Island: Implication for Mars. Geosci. Front. 7 (4), 673–681. https://doi.org/10.1016/j.gsf.2015.07.009.
dc.relationLepot, K., Addad, A., Knoll, A., Wang, J., Troadec, D., Béché, A., Javaux, E., 2017. Iron minerals within specific microfossil morphospecies of the 1.88Ga Gunflint Formation. Nat. Commun. 8, 1–11. https://doi.org/10.1038/ncomms14890.
dc.relationLestiani, D., Apryani, R., Lestari, L., Santoso, M., Hadisantoso, E., Kurniawati, S., 2018. Characteristics of Trace elements in Volcanic ash of Kelud Eruption in East Java, Indonesia. Indian J. Chem. 18 (3), 457–463. https://doi.org/10.22146/ijc.26876.
dc.relationLieke, K., Kristensen, T., Korsholm, U., Sørensen, J., Kandler, K., Weinbruch, S., Ceburnisd, D., Ovadnevaite, J., O'Dowd, C., Bilde, M., 2013. Characterization of volcanic ash from the 2011 Grímsvötn eruption by means of single-particle analysis. Atmos. Environ. 79, 411–420. https://doi.org/10.1016/j.atmosenv.2013.06.044.
dc.relationLongo, B.M., 2013. Adverse Health Effects Associated with increased activity at Kīlauea Volcano: a Repeated Population-based survey. ISRN Public Health 2013, 475962. https://doi.org/10.1155/2013/475962.
dc.relationMalek, A., Eom, H., Hwang, H., Hur, S., Hong, S., Hou, S., Ro, C., 2019. Single particle mineralogy of microparticles from Himalayan ice-cores using SEM/EDX and ATR-FTIR imaging techniques for identification of volcanic ash signatures. Chem. Geol. 504, 205–215. https://doi.org/10.1016/j.chemgeo.2018.11.010.
dc.relationManizales Cómo Vamos, 2019. Informe calidad de vida Manizales 2019. ISSN 2389-9514. http://manizalescomovamos.org/wp-content/uploads/2019/09/Calidad_de_vida_ 2019_compressed.pdf.
dc.relationMantovani, L., Tribaudino, M., Solzi, M., Barraco, V., De Munari, E., Pironi, C., 2018. Magnetic and SEM-EDS analyses of Tilia cordata leaves and PM10 filters as a complementary source of information on polluted air: results from the city of Parma (Northern Italy). Environ. Pollut. 239, 777–787. https://doi.org/10.1016/j.envpol.2018.04.055.
dc.relationOnat, B., Sahin, U.A., Akyuz, T., 2013. Elemental characterization of PM2.5 and PM1 in dense traffic area in Istanbul, Turkey. Atmos. Pollut. Res. 4 (1), 101–105. https://doi.org/ 10.5094/APR.2013.010.
dc.relationPachón, J.E., Vanegas, J., Saavedra, C., Amato, F., Silva, L.F.O., Blanco, K., Chaparro, R., Casas, O., 2020. Evaluation of factors influencing road dust loadings in a Latin American urban center. J. Air & Waste Manag. Assoc. https://doi.org/10.1080/ 10962247.2020.1806946.
dc.relationParnell, R., Burke, K., 1990. Impacts of acid emissions from Nevado del Ruiz volcano, Colombia, on selected terrestrial and aquatic ecosystems. J. Volcanol. Geotherm. Res. 42, 69–88. https://doi.org/10.1016/0377-0273(90)90070-V.
dc.relationQuerol, X., Alastuey, A., Rodríguez, S., Plana, F., Mantilla, E., Ruiz, C.R., 2001. Monitoring of PM10 and PM2.5 ambient air levels around primary anthropogenic emissions. Atmos. Environ. 35 (5), 848–858. https://doi.org/10.1016/S1352-2310(00)00387-3.
dc.relationRamírez, O., Verdona, A., Amato, F., Moreno, T., Silva, L., de la Rosa, J., 2019. Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Sci. Total Environ. 652, 434–446. https://doi.org/10.1016/j. scitotenv.2018.10.214.
dc.relationRibeiro, J., Flores, D., Ward, C., Silva, L.F.O., 2010. Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal. Sci. Total Environ. 408, 6032–6041. https://doi.org/10.1016/j.scitotenv.2010.08.046.
dc.relationRibeiro, J., Daboit, K., Flores, D., Kronbauer, M., Silva, L., 2013a. Extensive FE-SEM/EDS, HRTEM/EDS and ToF-SIMS studies of micron- to nano-particles in anthracite fly ash. Sci. Total Environ. 452-453, 98–107. https://doi.org/10.1016/j.scitotenv.2013.02.010.
dc.relationRibeiro, J., Taffarel, S.R., Sampaio, C.H., Flores, D., Silva, L.F.O., 2013b. Mineral speciation and fate of some hazardous contaminants in coal waste pile from anthracite mining in Portugal. Int. J. Coal Geol. 109-110, 15–23. https://doi.org/10.1016/j.coal.2013.01.007. Rodríguez, P.F., Shruti, V.C., Jonathan, M.P., Martinez, E., 2018. Metal concentrations and their potential ecological risks in fluvial sediments of Atoyac River basin, Central Mexico: Volcanic and anthropogenic influences. Ecotoxicol. Environ. Saf. 148, 1020–1033. https://doi.org/10.1016/j.ecoenv.2017.11.068.
dc.relationRuggieri, F., Fernandez, J., Saavedra, J., Gimeno, D., Polanco, E., Amigo, A., Galindo, G., Caselli, A., 2012. Contribution of volcanic ashes to the regional geochemical balance: the 2008 eruption of Chaiten volcano, Southern Chile. Sci. Total Environ. 425, 75–88. https://doi.org/10.1016/j.scitotenv.2012.03.011.
dc.relationSaikia, B.K., Saikia, J., Rabha, S., Silva, L.F.O., Finkelman, R., 2018. Ambient nanoparticles/ nanominerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geosci. Front. 9 (3), 863–875. https://doi. org/10.1016/j.gsf.2017.11.013.
dc.relationSchäfer, K., Thomas, W., Peters, A., Ries, L., Obleitner, F., Schnelle-Kreis, J., Birmili, W., Diemer, J., Fricke, W., Junkermann, W., Pitz, M., Emeis, S., Forkel, R., Suppan, P., Flentje, H., Gilge, S., Wichmann, H.E., Meinhardt, F., Zimmermann, R., Weinhold, K., Soentgen, J., Münkel, C., Freuer, C., Cyrys, J., 2011. Influences of the 2010 Eyjafjallajökull volcanic plume on air quality in the northern Alpine region. Atmos. Chem. Phys. 11, 8555–8575. https://doi.org/10.5194/acp-11-8555-2011.
dc.relationSGC [Servicio Geológico Colombiano], 2015. Mapa de amenaza volcánica del Volcán Nevado del Ruiz, v3. https://www2.sgc.gov.co/sgc/volcanes/VolcanNevadoRuiz/ Paginas/Mapa-amenaza.aspx.
dc.relationSGC [Servicio Geológico Colombiano], 2019. Boletín semanal de actividad del volcán Nevado del Ruiz. Manizales, Caldas. Dirección de Geoamenazas.
dc.relationSilva, L., Pinto, D., Neckel, A., Oliveira, M.L.S., Sampaio, C., 2020. Atmospheric nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation interactions. Chemosphere 254, 126822. https://doi.org/10.1016/j. chemosphere.2020.126822.
dc.relationSmedley, P.L., Kinniburgh, D.G., 2002. A review of the source, behavior and distribution of arsenic in natural waters. Appl. Geochem. 17 (5), 517–568. https://doi.org/10.1016/ S0883-2927(02)00018-5.
dc.relationSӧrme, L., Bergbäck, B., Lohm, U., 2001. Goods in the Anthroposphere as a Metal Emission Source a Case Study of Stockholm, Sweden. Water, Air Soil Pollut. 1, 213–227. https:// doi.org/10.1023/A:1017516523915.
dc.relationStafoggia, M., Faustini, A., 2018. Chapter 3 - Impact on Public Health—Epidemiological Studies: A Review of Epidemiological Studies on Non-Exhaust Particles: Identification of Gaps and Future needs. In: Amato, F. (Ed.), Non-Exhaust Emissions. Academic Press, London, pp. 67–88 https://doi.org/10.1016/B978-0-12-811770-5.00003-0.
dc.relationTROPOMI [TROPOspheric Monitoring Instrument], 2019. Satellite image of the volcanic ash emission, trajectory, and height of the SO2 column – Nevado del Ruiz volcano. Colombia. http://www.tropomi.eu/data-products/level-2-products
dc.relationUNAL [Universidad Nacional de Colombia – sede Manizales]., CORPOCALDAS [Corporación Autónoma Regional de Caldas], 2019. Aplicación de herramientas de simulación atmosférica en el estudio de la calidad del aire en Manizales. Convenio Interadministrativo 107–2018. Colombia, Manizales, Caldas, p. 233.
dc.relationVelasco, M., 2015. Evaluación de la concentración y caracterización preliminar del PM10 en la ciudad de Manizales. Master's thesis. Universidad del Valle. Santiago de Cali, Colombia. 105 pp.
dc.relationWembenyui, E., Collerson, K., Zhao, J., 2020. Evolution of Mount Cameroon volcanism: Geochemistry, mineral chemistry and radiogenic isotopes (Pb, Sr, Nd). Geosci. Front. https://doi.org/10.1016/j.gsf.2020.03.015 corrected proof.
dc.relationWHO [World Health Organization], 2016. World health statistics 2016: monitoring health for the SDGs, sustainable development goals. E-ISBN 9789240695696. https://www. who.int/gho/publications/world_health_statistics/2016/en/.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceGeoscience Frontiers
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S1674987120302036?via%3Dihub
dc.subjectNanoparticles
dc.subjectAmorphous phases
dc.subjectPotential hazardous elements
dc.subjectRoad dust
dc.subjectVolcano zone
dc.titleVolcanic emissions and atmospheric pollution: a study of nanoparticles
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución