dc.creatorMurillo, Michel
dc.creatorTutikian, Bernardo
dc.creatorChrist, Roberto
dc.creatorSilva Oliveira, Luis Felipe
dc.creatorMaschen, Makeli
dc.creatorGómez Plata, leandro
dc.creatorSilva Oliveira, Marcos Leandro
dc.date2020-07-21T13:26:22Z
dc.date2020-07-21T13:26:22Z
dc.date2020
dc.date.accessioned2023-10-03T19:19:32Z
dc.date.available2023-10-03T19:19:32Z
dc.identifier2238-7854
dc.identifierhttps://hdl.handle.net/11323/6749
dc.identifierhttps://doi.org/10.1016/j.jmrt.2020.06.088
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9169577
dc.descriptionSandwich panels (also known as insulated panels) have been traditionally used for industrial buildings and warehouses, but nowadays are being increasingly a favorable choice in building construction, mainly in wall cladding and roofing systems. This paper presents the results of an experimental and statistical comparative analysis of Fire Reaction development in sandwich panels consisting of steel sheeting and Polyisocyanurate (PIR) foam core. All these PIR core sandwich panels with joints kept the same dimensions (1000 mm × 1500 mm) + (500 mm × 1500 mm), but different thicknesses (30, 50, 100 and 150 mm). Five Single Burning Item (SBI) tests were carried out on individual PIR sandwich panels with vertical joints and their results were compared between themselves. It was possible to observe through an analysis of variance that there is an influence of the sample thickness in the individual results of the SBI test parameters; however, this variability has no significant influence on the Fire Reaction performance of the samples. Overall, the importance of these alternative sandwich panels is the increase in performance in the constructive processes and the offered comfort through its thermal insulation characteristics.
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relation[1] McNamee M, Meacham B, van Hees P, Bisby L, Chow WK, Coppalle A, et al. IAFSS agenda 2030 for a fire safe world. Fire Safety J 2019;110, http://dx.doi.org/10.1016/j.firesaf.2019.102889.
dc.relation[2] Global concepts in residential fire safety: part 3 – best practices from Canada. Puerto Rico, Mexico, and Dominican Republic: CDC, prepared by TriData Corporation; 2009.
dc.relation[3] Mock C, Peck M, Peden M, Krug E. A WHO plan for burn prevention and care. Geneva: World Health Organization; 2008.
dc.relation[4] Brushlinsky N, Ahrens M, Sokolov S, Wagner P. World fire statistics. Report no. 24. Centre of fire statistics. International Association of Fire and Rescue Service; 2019.
dc.relation[5] Allianz Global Corporate and Specialty - AGCS. Global claims review: the top causes of corporate insurance losses; 2018.
dc.relation[6] Pastor E, Corberó B, Rios O, Giraldo MP, Haurie L, Lacasta A, et al. Compartment and fac¸ade large scale tests: behavior comparison of different insulating materials in case of fire. Appl Struct Fire Eng, Croatia 2015, http://dx.doi.org/10.14311/asfe.2015.069.
dc.relation[7] Morada G, Ouadday R, Vadean A, Boukhili R. Low-velocity impact resistance of ath/epoxy core sandwich composite panels: experimental and numerical analyses. Compos B: Eng 2017;114:418–31, http://dx.doi.org/10.1016/j.compositesb.2017.01.070.
dc.relation[8] Riccio A, Raimondo A, Sellitto A, Acanfora V, Zarrelli M. Multifunctional polypropylene core for aerospace sandwich composite panels. Procedia Eng 2016;167:64–70.
dc.relation[9] Riccio A, Sellitto A, Saputo S, Conte G, Zarrelli M. Thermo-mechanical behaviour of a composite stiffened panel undergoing the tail-pipe fire event. Key Eng Mater 2018:101–6, 774 KEM.
dc.relation[10] Moreno JMC, Montero JS, Sacristán JP. Determinación de la resistencia a esfuerzo cortante en ensayos de flexión a paneles sándwich pur: análisis de las dificultades y simulación por elementos finitos. Informes Constr 2017;69:208, http://dx.doi.org/10.3989/id56079.
dc.relation[12] M X, Jomaas G. Experimental study on the influence of different thermal insulation materials on the fire dynamics in a reduced-scale enclosure. Fire Safety J 2017;93:114–25, http://dx.doi.org/10.1016/j.firesaf.2017.09.004.
dc.relation[13] Chai GB, Zhu SA. Review of low-velocity impact on sandwich structures. Inst Mech Eng, L: J Mater Des Appl 2011;225:207–30, http://dx.doi.org/10.1177/1464420711409985
dc.relation[14] Wang YC, Foster A. Experimental and numerical study of temperature developments in pir core sandwich panels with joint. Fire Safety J 2017;90:1–14, http://dx.doi.org/10.1016/j.firesaf.2017.03.003.
dc.relation[15] Torpey MR. A study of radiative heat transfer trough foam insulation. Master’s Thesis. Massachusetts Institute of Technology; 1987.
dc.relation[16] Penalva AG. Comportamiento al fuego de los paneles sándwich metálicos: análisis sobre el uso adecuado de este produto. Revista Obras Urbanas BIA 2017;(60):54–6.
dc.relation[17] Ruban S, Heudier L, Jamois D, Proust C, Bustamante-Valencia L, Jallais S, et al. Fire risk on high-pressure full composite cylinders for automotive applications. Int J Hydrogen Energy 2012;37(22):17630–8.
dc.relation[18] Riccio A, Damiano M, Zarrelli M, Scaramuzzino F. Three-dimensional modeling of composites fire behavior. J Reinf Plast Compos 2014;33(7):619–29.
dc.relation[19] EN 13823:2012. Reaction to fire tests for building products-building products excluding floorings exposed to the thermal attack by a Single Burning Item. Brussels: CEN; 2012.
dc.relation[20] EN 13238:2010. Reaction to fire tests for building products – Conditioning procedures and general rules for selection of substrates.
dc.relation[21] Sean TM, et al. Fire behaviour of modern fac¸ade materials – understanding the Grenfell Tower fire. J Hazardous Mater 2019;(368):115–23, http://dx.doi.org/10.1016/j.jhazmat.2018.12.077.
dc.relation[22] Mierlo RV, Sette B. The single burning item (sbi) test method: a decade of development and plans for the near future. Heron 2005;50(4), 191-07.
dc.relation[23] EN 60584-1:1995. Thermocouples - part 1: reference tables; 1995.
dc.relation[24] EN 13501-1:2007 - A1:2009. Fire classification of construction products and building elements - Part 1: classification using data from reaction to fire tests; 2007.
dc.relation[25] Corpo de Bombeiros do Estado de São Paulo, São Paulo Instruc¸ão Técnica no 10: controle de materiais de acabamento e revestimento; 2011.
dc.relation[26] Associac¸ão Brasileira De Normas Técnicas - ABNT. NBR 15575: 2013 – part 4: sistemas de vedac¸ões verticais internas e externas – SVVIE; 2013.
dc.relation[27] Associac¸ão Brasileira De Normas Técnicas - ABNT. NBR 16626: 2017 - Classificac¸ão da reac¸ão ao fogo de produtos de construc¸ão.
dc.relation[28] Abu Isa Ismat A, Jodeh Shehdeh W. Thermal properties of automotive polymers III—thermal characteristics and flammability of fire retardant polymers. Mater Res Innov 2001;4(2–3):135–43.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceJournal of Materials Research and Technology
dc.subjectAnalysis of variance
dc.subjectCore sandwich panel
dc.subjectFire reaction
dc.subjectPIR foam
dc.subjectSBI test
dc.titleAnalysis of the influence of thickness on fire reaction performance in polyisocyanurate core sandwich panels
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/draft
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución