dc.relation | Ajai, J. T., Imoko, B. I., & Emmanuel, I. O. (2013). Comparison of the Learning Effectiveness
of Problem-Based Learning ( PBL ) and Conventional Method of Teaching Algebra.
Journal of Education and Practice, 4(1), 131–136. Retrieved from http://www.
iiste.org/Journals/index.php/JEP/article/view/4053
Ali, R., Hukamdad, D., Akhter, A., & Khan, A. (2010). Effect of Using Problem Solving
Method in Teaching Mathematics on the Achievement of Mathematics Students.
Asian Social Science, 6(2), 67. https://doi.org/10.5539/ass.v6n2p67
Ashraf, S. S., Marzouk, S. A. M., Shehadi, I. A., & Murphy, B. M. (2011). An Integrated
Professional and Transferable Skills Course for Undergraduate Chemistry Students.
Journal of Chemical Education, 88(1), 44–48. https://doi.org/10.1021/ed100275y
Bledsoe, K. E., & Flick, L. (2012). Concept Development and Meaningful Learning
Among Electrical Engineering Students Engaged in a Problem-Based Laboratory
Experience. Journal of Science Education and Technology, 21(2), 226–245. https://
doi.org/10.1007/s10956-011-9303-6
Chen, W. H. (2013). Teaching geometry through problem-based learning and creative
design. Jurnal Teknologi (Social Sciences), 63, 123–127.
Cowden, C. D., & Santiago, M. F. (2016). Interdisciplinary Explorations: Promoting
Critical Thinking via Problem-Based Learning in an Advanced Biochemistry Class.
Journal of Chemical Education, 93(3), 464–469. https://doi.org/10.1021/acs.
jchemed.5b00378
Eaton, J. (2016). GNU Octave.
Fakayode, S. O., King, A. G., Yakubu, M., Mohammed, A. K., & Pollard, D. A. (2012).
Determination of Fe Content of Some Food Items by Flame Atomic Absorption
Spectroscopy (FAAS): A Guided-Inquiry Learning Experience in Instrumental
Analysis Laboratory. Journal of Chemical Education, 89(1), 109–113. https://doi.
org/10.1021/ed1011585
Graovac, A., & Gutman, I. (1979). The Determinant of the Adjacency Matrix of a Molecular
Graph. MATCH Communications in Mathematical and in COMputational Chemistry,
6, 49–73.
Gron, L. U., Bradley, S. B., McKenzie, J. R., Shinn, S. E., & Teague, M. W. (2013). How To
Recognize Success and Failure: Practical Assessment of an Evolving, First-Semester
Laboratory Program Using Simple, Outcome-Based Tools. Journal of Chemical
Education, 90(6), 694–699. https://doi.org/10.1021/ed200523w
Gurses, A., Dogar, C., & Geyik, E. (2015). Teaching of the Concept of Enthalpy Using
Problem Based Learning Approach. Procedia - Social and Behavioral Sciences,
197, 2390–2394. https://doi.org/10.1016/J.SBSPRO.2015.07.298
Gutman, I., & Vidovic, D. (2002). The Largest Eigenvalues of Adjacency and Laplacian
Matrices, and Ionization Potentials of Alkanes. Indian Journal of Chemistry, 41A,
893–896.
Hailikari, T. K., & Nevgi, A. (2010). How to Diagnose At‐risk Students in Chemistry: The
case of prior knowledge assessment. International Journal of Science Education,
32(15), 2079–2095. https://doi.org/10.1080/09500690903369654
Hopkins, T. A., & Samide, M. (2013). Using a Thematic Laboratory-Centered Curriculum
To Teach General Chemistry. Journal of Chemical Education, 90(9), 1162–1166.
https://doi.org/10.1021/ed300438t
Jansson, S., Söderström, H., Andersson, P. L., & Nording, M. L. (2015). Implementation
of Problem-Based Learning in Environmental Chemistry. Journal of Chemical
Education, 92(12), 2080–2086. https://doi.org/10.1021/ed500970y
Jones, B. D., Epler, C. M., Tech, V., Bryant, L. H., Paretti, M. C., Jones, B. D., … Paretti, L.
H. (2013). The Effects of a Collaborative Problem-based Learning Experience on
Students’ Motivation in Engineering Capstone Courses. Interdisciplinary Journal
of Problem-Based Learning, 7(2), 5–16. https://doi.org/10.7771/1541-5015.1344
Kerber, A., Laue, R., Meringer, M., Rücker, C., & Schymanski, E. (2014). Mathematical
chemistry and chemoinformatics: Structure generation, elucidation and
quantitative structure-property relationships. Mathematical Chemistry and
Chemoinformatics: Structure Generation, Elucidation and Quantitative StructureProperty Relationships. https://doi.org/10.1515/9783110254075
Kolb, A. Y., & Kolb, D. A. (2012). Experiential Learning Theory. In Seel N.M. (Ed.),
Encyclopedia of the Sciences of Learning (pp. 1215–1219). Boston, MA: Springer
US. https://doi.org/10.1007/978-1-4419-1428-6_227
Lin, Y. I., Son, J. Y., & Rudd, J. A. (2016). Asymmetric translation between multiple
representations in chemistry. International Journal of Science Education, 38(4),
644–662. https://doi.org/10.1080/09500693.2016.1144945
Llorens-Molina, J.-A. (2010). El aprendizaje basado en problemas como estrategia para el
cambio metodológico en los trabajos de laboratorio. Química Nova, 33(4), 994–
999. https://doi.org/10.1590/S0100-40422010000400043
Maplesoft. (2016). MAPLE.
Marrero-Ponce, Y. (2003). Total and Local Quadratic Indices of the Molecular
Pseudograph’s Atom Adjacency Matrix: Applications to the Prediction of Physical
Properties of Organic Compounds. Molecules, 8(9), 687–726. https://doi.
org/10.3390/80900687
Marrero-Ponce, Y., Garit, J., Torrens, F., Zaldivar, V., & Castro, E. (2004). Atom, AtomType, and Total Linear Indices of the “Molecular Pseudograph’s Atom Adjacency
Matrix”: Application to QSPR/QSAR Studies of Organic Compounds. Molecules,
9(12), 1100–1123. https://doi.org/10.3390/91201100
Marrero-Ponce, Y., Khan, M. T. H., Casañola Martín, G. M., Ather, A., Sultankhodzhaev, M.
N., Torrens, F., & Rotondo, R. (2007). Prediction of Tyrosinase Inhibition Activity
Using Atom-Based Bilinear Indices. ChemMedChem, 2(4), 449–478. https://doi.
org/10.1002/cmdc.200600186
Marrero Ponce, Y. (2004). Total and local (atom and atom type) molecular quadratic
indices: significance interpretation, comparison to other molecular descriptors,
and QSPR/QSAR applications. Bioorganic & Medicinal Chemistry, 12(24), 6351–
6369. https://doi.org/10.1016/J.BMC.2004.09.034
MATLAB. (2016). MATLAB. MATLAB. https://doi.org/10.1201/9781420034950
Mihalić, Z., & Trinajstić, N. (1992). A graph-theoretical approach to structure-property
relationships. Journal of Chemical Education, 69(9), 701. https://doi.org/10.1021/
ed069p701
Murphy, P. M. (2007). Teaching Structure–Property Relationships: Investigating Molecular
Structure and Boiling Point. Journal of Chemical Education, 84(1), 97. https://doi.
org/10.1021/ed084p97
Pelligrino, J. W., & Hilton, M. L. (Eds.). (2012). Education for Life and Work. Washington:
National Academies Press. https://doi.org/10.17226/13398
Ram, P. (1999). Problem-Based Learning in Undergraduate Instruction. A Sophomore
Chemistry Laboratory. Journal of Chemical Education, 76(8), 1122. https://doi.
org/10.1021/ed076p1122
Ross, A., & Willson, V. (2012). The Effects of Representations, Constructivist Approaches,
and Engagement on Middle School Students’ Algebraic Procedure and Conceptual
Understanding. School Science and Mathematics, 112(2), 117–128. https://doi.
org/10.1111/j.1949-8594.2011.00125.x
SageMath. (2016). SageMath Kernel.
Sahin, M. (2010). Effects of Problem-Based Learning on University Students’
Epistemological Beliefs About Physics and Physics Learning and Conceptual
Understanding of Newtonian Mechanics. Journal of Science Education and
Technology, 19(3), 266–275. https://doi.org/10.1007/s10956-009-9198-7
Todeschini, R., & Consonni, V. (2009). Molecular Descriptors for Chemoinformatic. (R.
Todeschini & V. Consonni, Eds.) (Vol. 41). Weinheim, Germany: Wiley-VCH. | |