dc.creatorAmaya Roncancio, S.
dc.creatorLinares, D.
dc.creatorSapag, K.
dc.creatorRestrepo Parra, E.
dc.date2022-06-22T14:44:51Z
dc.date2023-01-05
dc.date2022-06-22T14:44:51Z
dc.date2022-01-05
dc.date.accessioned2023-10-03T19:15:57Z
dc.date.available2023-10-03T19:15:57Z
dc.identifierS. Amaya-Roncancio, D. Linares, K. Sapag, E. Restrepo-Parra, Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces, Journal of Molecular Structure, Volume 1255, 2022, 132397, ISSN 0022-2860, https://doi.org/10.1016/j.molstruc.2022.132397.
dc.identifier0022-2860
dc.identifierhttps://hdl.handle.net/11323/9284
dc.identifierhttps://doi.org/10.1016/j.molstruc.2022.132397.
dc.identifier10.1016/j.molstruc.2022.132397.
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9169365
dc.descriptionDensity-functional theory calculations based on the GGA-PBE (generalized gradient approximation Perdew–Burke–Ernzerhof) exchange correlation functional were used to investigate the effect of hydrogen on the diffusion of adsorbed carbon, oxygen and hydrogen on the surface of Fe(100). The diffusion energy barrier was calculated for both clean surfaces and those with hydrogen, and it was found that hydrogen produced binding energies for carbon and oxygen. These bonds stabilized the binding of hydrogen with the Fe(100) surface. For all of the surface species studied here, the energy barrier was increased when hydrogen was coadsorbed, from 1.29 eV to 1.46 eV for C, from 0.33 eV to 0.53 eV for O and from 0.11 eV to 0.15 eV for H. An approximation of the diffusion coefficient was obtained from energy barrier calculations and a pre-exponential factor of diffusion was calculated. Carbon exhibited low diffusion at the surface under experimental temperatures, while oxygen diffusion was activated above 450 K and hydrogen was diffused in all the temperature ranges investigated
dc.descriptionElsevier
dc.format8 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherNetherlands
dc.relationJournal of Molecular Structure
dc.relation[1] H. Xing, P. Hu, S. Li, Y. Zuo, J. Han, X. Hua, K. Wang, F. Yang, P. Feng, T. Chang, Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: a review, J. Mater. Sci. Technol. 62 (2021) 180–194.
dc.relation[2] E. del V Gómez, S. Amaya-Roncancio, L.B. Avalle, D.H. Linares, M.C. Gimenez, DFT study of adsorption and diffusion of atomic hydrogen on metal surfaces, Appl. Surf. Sci. 420 (2017) 1–8.
dc.relation[3] R. Gomer, Diffusion of adsorbates on metal surfaces, Rep. Prog. Phys. 53 (1990) 917–1002.
dc.relation[4] L. Qiao, X. Zhang, S. Wang, S. Yu, X. Hu, L. Wang, Y. Zeng, W. Zheng, First-prin- ciples investigations on the adsorption and diffusion of carbon atoms on the surface and in the subsurface of Co (111) related to the growth of graphene, RSC Adv. 4 (2014) 34237–34243.
dc.relation[5] D.E. Jiang, E.A. Carter, Carbon dissolution and diffusion in ferrite and austen- ite from first principles, Phys. Rev. B 67 (214103) (2003) 1–11, doi:10.1103/ PhysRevB.67.214103.
dc.relation[6] Z. Zuo, W. Huang, P. Han, Z. Li, A density functional theory study of CH 4 dehydrogenation on Co (111), Appl. Surf. Sci. 256 (20) (2010) 5929–5934, doi:10.1016/j.apsusc.2010.03.078.
dc.relation[7] P. Ferrin, S. Kandoi, A.U. Nilekar, M. Mavrikakis, Hydrogen adsorption, absorp- tion and diffusion on and in transition metal surfaces: a DFT study, Surf. Sci. 606 (7–8) (2012) 679–689, doi:10.1016/j.susc.2011.12.017.
dc.relation[8] D.C. Sorescu, First-principles calculations of the adsorption and hydrogenation reactions of CH x (x = 0, 4) species on a Fe (100) surface, Phys. Rev. B 73 (2006) 155420.
dc.relation[9] M.T.M. Koper, R.A. Santen, Interaction of H, O and OH with metal surfaces, J. Electroanal. Chem. 472 (1999) 126–136.
dc.relation[10] D.E. Jiang, E.A. Carter, Carbon atom adsorption on and diffusion into Fe(110) and Fe(100) from first principles, Phys. Rev. B 71 (045402) (2005) 1–6.
dc.relation[11] C.F. Huo, J. Ren, Y.W. Li, J. Wang, H. Jiao, CO dissociation on clean and hydrogen precovered Fe(111) surfaces, J. Catal. 249 (2007) 174–184.
dc.relation[12] S. Amaya-Roncancio, D.H. Linares, K. Sapag, M.I. Rojas, Influence of coadsorbed H in CO dissociation and CH n formation on Fe(1 0 0): a DFT study, Appl. Surf. Sci. 346 (2015) 438–442.
dc.relation[13] S. Amaya-Roncancio, D.H. Linares, H.A. Duarte, K. Sapag, DFT study of hydro- gen-assisted dissociation of CO by HCO, COH, and HCOH formation on Fe(100), J. Phys. Chem. C 120 (2016) 10830–10837.
dc.relation[14] L. Xu, D. Kirvassilis, Y. Bai, M. Mavrikakis, Atomic and molecular adsorption on Fe(110), Surf. Sci. 667 (2018) 54–65.
dc.relation[15] L. Kristinsdóttir, E. Skúlason, A systematic DFT study of hydrogen diffusion on transition metal surfaces, Surf. Sci. 606 (2012) 1400–1404.
dc.relation[16] P. Giannozzi, et al., QUANTUM ESPRESSO: a modular and open-source soft- ware project for quantum simulations of materials, J. Phys. Condens. Matter 21 (2009) 395502.
dc.relation[17] https://www.quantum-espresso.org/pseudopotentials, 2014 (accessed 13 March 2019).
dc.relation[18] JP. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868.
dc.relation[19] M. Methfessel, A.T. Paxton, High-precision sampling for Brillouin-zone integra- tion in metals, Phys. Rev. B 40 (1989) 3616–3621.
dc.relation[20] D.C. Sorescu, First principles calculations of the adsorption and diffusion of hydrogen on Fe (100) surface and in the bulk, Catal.Today 105 (2005) 44–65.
dc.relation[21] G. Henkelman, BP. Uberuaga, H. Jónsson, Climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901–9904.
dc.relation[22] A. Kokalj, Graphics and graphical user interfaces as tools in simulations of mat- ter at the atomic scale, Comput. Mater. Sci. 28 (2003) 155–168.
dc.relation[23] T. Li, X. Wen, Y.W. Li, H. Jiao, Surface carbon hydrogenation on precovered Fe(110) with spectator-coverage-dependent chain initiation and propagation, J. Phys. Chem. C 123 (42) (2019) 25657–25667.
dc.relation[24] T. Li, X. Wen, Y.W. Li, H. Jiao, Successive dissociation of CO, CH4, C2H6, and CH3CHO on Fe(110): retrosynthetic understanding of FTS mechanism, J. Phys. Chem. C 122 (2018) 28846–28855.
dc.relation[25] S.J. Lombardo, A.T. Bell, A review of theoretical models of adsorption, diffusion, and reaction of gases on metal surfaces, Surf. Sci. Rep. 13 (1991) 1–72.
dc.relation[26] F. Cinquini, F. Delbecq, P. Sautet, A DFT comparative study of carbon adsorption and diffusion on the surface and subsurface of Ni and Ni3Pd alloy, Phys. Chem. Chem. Phys. 11 (2009) 11546–11556.
dc.relation[27] M.T. Curnan, C.M. Andolina, M. Li, Q. Zhu, H. Chi, WA. Saidi, J.C. Yang, Connect- ing oxide nucleation and growth to oxygen diffusion energetics on stepped Cu(011) Surfaces: an experimental and theoretical study, J. Phys. Chem. C 123 (1) (2019) 452–463.
dc.relation[28] M.C. Giménez, M.G. Del Pópolo, E.P.M. Leiva, S.G. Garcia, Theoretical consider- ations of electrochemical phase formation for an Ideal Frank-van der Merwe system, J. Electrochem. Soc. 149 (2002) E109–E116.
dc.relation[29] M.C. Giménez, MG. Del Pópolo, EP.M. Leiva, Kinetic Monte Carlo study of electrochemical growth in a heteroepitaxial system, Langmuir 18 (2002) 9087–9094.
dc.relation[30] M.E. Dry, T. Shingles, L.J. Boshoff, Rate of the Fischer-Tropsch reaction over iron catalysis, J. Catal. 25 (1972) 99–104.
dc.relation[31] M.P. Rohde, G. Schaub, S. Khajavi, J.C. Jansen, F. Kapteijn, Fischer–Tropsch syn- thesis with in situ H2 O removal-directions of membrane development, Micro- porous Mesoporous Mater. 115 (2008) 123–136. 8
dc.relation8
dc.relation1
dc.relation1255
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights© 2022 Published by Elsevier B.V.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/embargoedAccess
dc.rightshttp://purl.org/coar/access_right/c_f1cf
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S0022286022000709
dc.subjectGGA-PBE
dc.subjectBinding energy
dc.subjectHollow site
dc.subjectBridge site
dc.subjectDiffusion coefficient
dc.titleDiffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución