dc.creatorGrau Merconchini, Frank
dc.creatorVázquez-Seisdedos, Luis
dc.creatorCervantes Oliva, Janette
dc.creatorNúñez Alvarez, José Ricardo
dc.creatorCHECA CERVANTES, DAVID
dc.date2023-09-11T18:58:50Z
dc.date2023-09-11T18:58:50Z
dc.date2023
dc.date.accessioned2023-10-03T19:15:38Z
dc.date.available2023-10-03T19:15:38Z
dc.identifier(Smith et al., 2021) Smith, J., Petrovic, P., Rose, M., De Souz, C., Muller, L., Nowak, B., & Martinez, J. (2021). Placeholder Text: A Study. The Journal of Citation Styles, 3. http://doi.org/10.11591/ijpeds.v14.i2.pp1044-1054
dc.identifierhttps://hdl.handle.net/11323/10471
dc.identifier10.11591/ijpeds.v14.i2.pp1044-1054
dc.identifier2088-8694
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9169323
dc.descriptionCurrently, as part of the distributed generation paradigm, photovoltaic energy has a growing development. The diversity of the loads, their nonlinearity, and the penetration of the renewable energy sources (RES) cause a worsening of the energy quality indicators. The main quality indicators that affect hybrid photovoltaic systems are voltage and current harmonic distortion, voltage deviation, and voltage and current asymmetry in the system. The construction of physical and mathematical models in software applications, such as MATLAB, Simulink, and Simscape, makes it possible to simulate the operating conditions of these systems and determine the values of the indicators that account for the quality of the electric power supplied. In this work, the modeling and simulation of a photovoltaic system connected to the network that feeds a mixed industrial area are carried out to determine the indicators of energy quality.
dc.format11 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherInstitute of Advanced Engineering and Science (IAES)
dc.publisherIndonesia
dc.relationInternational Journal of Power Electronics and Drive Systems
dc.relation[1] M. C. Fernandez, M. V. Lanes, M. L. F. S. de Rozas, A. S. Fuentefria, and M. R. Gamez, “Challenges and technical requirements for integration of renewable energy sources in Cuban electric system,” International Journal of Physical Sciences and Engineering, 2018, doi: 10.29332/ijpse.v2n3.190.
dc.relation[2] E. V. Mendoza Merchán, M. D. V. Gutiérrez, D. A. M. Montenegro, J. R. Nuñez Alvarez, and J. W. G. Guerrero, “An analysis of electricity generation with renewable resources in Germany,” International Journal of Energy Economics and Policy, vol. 10, no. 5, pp. 361–367, 2020, doi: 10.32479/ijeep.9369.
dc.relation[3] L. Vazquez et al., “Energy system planning towards renewable power system: energy matrix change in Cuba by 2030,” IFACPapersOnLine, vol. 51, no. 28, pp. 522–527, 2018, doi: 10.1016/j.ifacol.2018.11.756.
dc.relation[4] C. Milanés-Batista, H. Tamayo-Yero, D. De Oliveira, and J. R. Nũez-Alvarez, “Application of business intelligence in studies management of hazard, vulnerability and risk in Cuba,” IOP Conference Series: Materials Science and Engineering, vol. 844, no. 1, 2020, doi: 10.1088/1757-899X/844/1/012033.
dc.relation[5] M. Castilla, J. Miret, A. Camacho, J. Matas, and L. G. De Vicuna, “Reduction of current harmonic distortion in three-phase gridconnected photovoltaic inverters via resonant current control,” IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1464–1472, 2013, doi: 10.1109/TIE.2011.2167734.
dc.relation[6] A. Hassan, A. M. Azmy, D. M. Yehia, and Z. K. Gurgi, “Harmonic reduction for grid-connected photovoltaic system based on multilevel inverter,” Australian Journal of Basic and Applied Sciences, 2018, doi: 10.22587/ajbas.2018.12.9.23.
dc.relation[7] A. S. Shirbhate and S. D. Jawale, “Power quality improvement in PV grid connected system by using active filter,” 2016 International Conference on Energy Efficient Technologies for Sustainability, ICEETS 2016, pp. 388–395, 2016, doi: 10.1109/ICEETS.2016.7583786.
dc.relation[8] Y. Zhao, A. An, Y. Xu, Q. Wang, and M. Wang, “Model predictive control of grid-connected PV power generation system considering optimal MPPT control of PV modules,” Protection and Control of Modern Power Systems, vol. 6, no. 1, 2021, doi: 10.1186/s41601-021-00210-1.
dc.relation[9] F. R. Badal, P. Das, S. K. Sarker, and S. K. Das, “A survey on control issues in renewable energy integration and microgrid,” Protection and Control of Modern Power Systems, vol. 4, no. 1, 2019, doi: 10.1186/s41601-019-0122-8.
dc.relation[10] R. Dugan, M. McGranaghan, S. Santoso, and H. W. Beaty, “Electrical power systems quality,” Choice Reviews Online, vol. 34, no. 01, pp. 34-0322-34–0322, Sep. 1996, doi: 10.5860/CHOICE.34-0322.
dc.relation[11] M. A. Mantilla, J. F. Petit, and G. Ordóñez, “Control of multi-functional grid-connected PV systems with load compensation under distorted and unbalanced grid voltages,” Electric Power Systems Research, vol. 192, 2021, doi: 10.1016/j.epsr.2020.106918.
dc.relation[12] M. Kaczmarek, “The effect of distorted input voltage harmonics rms values on the frequency characteristics of ratio error and phase displacement of a wideband voltage divider,” Electric Power Systems Research, vol. 167, pp. 1–8, 2019, doi: 10.1016/j.epsr.2018.10.013.
dc.relation[13] E. Karami, G. B. Gharehpetian, M. Madrigal, and J. De Jesus Chavez, “Dynamic phasor-based analysis of unbalanced three-phase systems in presence of harmonic distortion,” IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 6642–6654, 2018, doi: 10.1109/TPWRS.2018.2835820.
dc.relation[14] R. Luhtala, H. Alenius, T. Messo, and T. Roinila, “Online frequency response measurements of grid-connected systems in presence of grid harmonics and unbalance,” IEEE Transactions on Power Electronics, vol. 35, no. 4, pp. 3343–3347, 2020, doi: 10.1109/TPEL.2019.2943711.
dc.relation[15] S. Dutta, P. K. Sadhu, M. Jaya Bharata Reddy, and D. K. Mohanta, “Shifting of research trends in islanding detection method - a comprehensive survey,” Protection and Control of Modern Power Systems, vol. 3, no. 1, 2018, doi: 10.1186/s41601-017-0075-8.
dc.relation[16] I. A. Marriaga-Márquez, K. Y. Gómez-Sandoval, J. W. Grimaldo-Guerrero, and J. R. Nũez-Álvarez, “Identification of critical variables in conventional transformers in distribution networks,” IOP Conference Series: Materials Science and Engineering, vol. 844, no. 1, 2020, doi: 10.1088/1757-899X/844/1/012009.
dc.relation[17] P. I. Okorie, J. Ahmadi-Farsani, and J. M. de la Rosa, “Reducing the nonlinearity and harmonic distortion in FD-SOI CMOS current-starved inverters and VCROs,” AEU - International Journal of Electronics and Communications, vol. 142, p. 153992, Dec. 2021, doi: 10.1016/j.aeue.2021.153992.
dc.relation[18] R. Gunasekaran and C. Karthikeyan, “Nonlinear transformational optimization (NTO) technique based total harmonics distortion (THD) reduction of line to line voltage for multi-level inverters,” Microprocessors and Microsystems, vol. 74, 2020, doi: 10.1016/j.micpro.2020.102998.
dc.relation[19] C. S. Yeh, O. Yu, and J. S. Lai, “Sequential waveform synthesis for multimodular SRC-unfolding inverter,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 5, pp. 5771–5780, 2021, doi: 10.1109/JESTPE.2020.3029978.
dc.relation[20] R. Nazir, Syafii, A. Pawawoi, F. Akbar, and A. Dorinza, “Differences in the impact of harmonic distortion due to the installation of electronic load controller in self-excited induction generator and synchronous generator,” International Journal of Power Electronics and Drive Systems, vol. 10, no. 1, pp. 104–116, 2019, doi: 10.11591/ijpeds.v10.i1.pp104-116.
dc.relation[21] K. Mahmoud and M. Lehtonen, “Three-level control strategy for minimizing voltage deviation and flicker in PV-rich distribution systems,” International Journal of Electrical Power and Energy Systems, vol. 120, 2020, doi: 10.1016/j.ijepes.2020.105997.
dc.relation[22] D. Lu, S. Wang, J. Yao, T. Yang, and H. Hu, “Cluster voltage regulation strategy to eliminate negative-sequence currents under unbalanced grid for star-connected cascaded h-bridge STATCOM,” IEEE Transactions on Power Electronics, vol. 34, no. 3, pp. 2193–2205, 2019, doi: 10.1109/TPEL.2018.2844544.
dc.relation[23] A. L. Kulikov, O. V. Shepovalova, P. V. Ilyushin, S. P. Filippov, and S. V. Chirkov, “Control of electric power quality indicators in distribution networks comprising a high share of solar photovoltaic and wind power stations,” Energy Reports, vol. 8, pp. 1501–1514, 2022, doi: 10.1016/j.egyr.2022.08.217.
dc.relation[24] A. Hassan, O. Bass, Y. M. Al-Abdeli, M. Masek, and M. A. S. Masoum, “A novel approach for optimal sizing of stand-alone solar PV systems with power quality considerations,” International Journal of Electrical Power and Energy Systems, vol. 144, 2023, doi: 10.1016/j.ijepes.2022.108597.
dc.relation[25] O. Pinzón-Quintero, D. Gaviria-Ospina, A. Parrado-Duque, R. Rodríguez-Velásquez, and G. Osma-Pinto, “Assessment of power quality parameters and indicators at the point of common coupling in a low voltage power grid with photovoltaic generation emulated,” Electric Power Systems Research, vol. 203, 2022, doi: 10.1016/j.epsr.2021.107679.
dc.relation[26] IEC 61000-3-2, “Electromagnetic compatibility (EMC) – Part 3-2: Limits — Limits for harmonic current emissions (equipment input current ≤ 16 A per phase),” p. 35, 2009.
dc.relation[27] Cuban Standard NC 800-1, “Cuban Electrotechnical Code (CEC).” p. 537, 2011, [Online]. Available: http://www.ncnorma.cu/.
dc.relation[28] I. 61000-2-2, “Electromagnetic compatibility {(EMC)} – Part 2-12: Compatibility levels for low-frequency conducted disturbances and signaling in public medium-voltage power supply systems,” vol. 57, 2003, [Online]. Available: https://webstore.iec.ch/publication/4133.
dc.relation[29] IEC TS 61000-3-4, “Part 3-4: Limits – Limitation of emission of harmonic currents in low-voltage power supply systems for equipment with rated current greater than 16 A Numéro,” no. 29, 1998, doi: https://webstore.iec.ch/publication/4151.
dc.relation[30] J. Ballingston - IEEE Std. 519-2014, “IEEE recommended practice and requirements for harmonic control in electric power systems,” IEEE Std. 519-2014, vol. 2014, p. 101, 2014, doi: 10.1109/IEEESTD.2014.6826459.
dc.relation[31] M. Bajaj, N. K. Sharma, M. Pushkarna, H. Malik, M. A. Alotaibi, and A. Almutairi, “Optimal design of passive power filter using multi-objective pareto-based firefly algorithm and analysis under background and load-side’s nonlinearity,” IEEE Access, vol. 9, pp. 22724–22744, 2021, doi: 10.1109/ACCESS.2021.3055774.
dc.relation[32] X. Han, Z. Ren, B. J. Leira, and S. Sævik, “Adaptive identification of lowpass filter cutoff frequency for online vessel model tuning,” Ocean Engineering, vol. 236, 2021, doi: 10.1016/j.oceaneng.2021.109483.
dc.relation[33] M. Dindar, A. Kircay, and E. Yuce, “A new 7th-order log-domain elliptic video filter using E-cell circuits approach,” ELECO 2013 - 8th International Conference on Electrical and Electronics Engineering, pp. 57–61, 2013, doi: 10.1109/eleco.2013.6713936.
dc.relation[34] J. Andramuo, E. Mendoza, J. Núez, and E. Liger, “Intelligent distributed module for local control of lighting and electrical outlets in a home,” Journal of Physics: Conference Series, vol. 1730, no. 1, 2021, doi: 10.1088/1742-6596/1730/1/012001.
dc.relation[35] R. B. Aguedo, A. L. Cervantes, J. R. N. Alvarez, and Y. L. Albuerne, “Speed control in dc and ac drives,” International Journal of Power Electronics and Drive Systems, vol. 12, no. 4, pp. 2006–2017, 2021, doi: 10.11591/ijpeds.v12.i4.pp2006-2017.
dc.relation[36] T. A. H. Alghamdi, O. T. E. Abdusalam, F. Anayi, and M. Packianather, “An artificial neural network based harmonic distortions estimator for grid- connected power converter-based applications,” Ain Shams Engineering Journal, vol. 14, no. 4, 2023, doi: 10.1016/j.asej.2022.101916.
dc.relation[37] E. Jove et al., “An intelligent system for harmonic distortions detection in wind generator power electronic devices,” Neurocomputing, vol. 456, pp. 609–621, 2021, doi: 10.1016/j.neucom.2020.07.155.
dc.relation1054
dc.relation1044
dc.relation2
dc.relation14
dc.rights© 2023 Frank Grau Merconchini, Luis Vázquez Seisdedos, Janette Cervantes Oliva, José Ricardo Núñez Alvarez, David Checa-Cervantes
dc.rightsAtribución-CompartirIgual 4.0 Internacional (CC BY-SA 4.0)
dc.rightshttps://creativecommons.org/licenses/by-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://ijpeds.iaescore.com/index.php/IJPEDS/article/view/21907
dc.subjectControl strategies
dc.subjectEnergy quality
dc.subjectHybrid system
dc.subjectPhotovoltaic generation
dc.subjectQuality indicators
dc.titleStudy of electric power quality indicators by simulating a hybrid generation system
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución