dc.creatorAcosta Fontalvo, Luis Carlos
dc.creatorMartínez Marín, Sindy Johana
dc.creatorJiménez Barros, Miguel
dc.creatorParra Negrete, Kevin
dc.creatorCortabarria, Laura
dc.creatorOvallos, David
dc.date2022-07-14T19:41:02Z
dc.date2022-07-14T19:41:02Z
dc.date2022-01-26
dc.date.accessioned2023-10-03T19:15:07Z
dc.date.available2023-10-03T19:15:07Z
dc.identifierLuis Acosta Fontalvo, Sindy Martínez-Marín, Miguel Jiménez-Barros, Kevin Parra-Negrete, Laura Cortabarria-Castañeda, David Ovallos-Gazabon, Modeling Energy-Efficient Policies in Educational Buildings – A Literature Review, Procedia Computer Science, Volume 198, 2022, Pages 608-613, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.12.294.
dc.identifier18770509
dc.identifierhttps://hdl.handle.net/11323/9370
dc.identifierhttps://doi.org/10.1016/j.procs.2021.12.294
dc.identifier10.1016/j.procs.2021.12.294
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9169256
dc.descriptionThis work focuses on a literature review that characterizes the most prominent lines of research on energy efficiency in educational buildings, including energy use intensity (EUI); the implementation of energy efficiency measurement; the results obtained by decreasing the EUI, energy consumption, and CO2 emission; and the main relationships between energy consumption incidence variables. For these purposes, a systematic literature review is structured based on specialized databases, wherein the information is assessed using spreadsheets and visualization tools such as VOSviewer®. From the review, the authors were able to determine that the integration of energy efficiency with educational institutions is a growing line of research that offers opportunities for building an environmentally sustainable educational culture with high social impact. This paper discusses different modeling systems and policy assessment options that identifies complexity and dynamics constraints to explore new simulation methodologies, such as systems dynamics providing sustainable approaches within industry 4.0 based on the assessment of national energy efficiency policies through dynamic simulation models that allow significant savings in energy-consuming sectors.
dc.format6 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherElsevier BV
dc.publisherNetherlands
dc.relationProcedia Computer Science
dc.relation[1] Santos, A. H. Cd; Fagá, M. T. W.; Santos, E. (2013) “Md The Risks of an Energy Efficiency Policy for Buildings Based Solely on the Consumption Evaluation of Final Energy”. Int. J. Electr. Power Energy Syst., 44 (1), 70–77.
dc.relation[2] Misila, P.; Winyuchakrit, P.; Chunark, P.; Limmeechokchai, B. (2017) “GHG Mitigation Potentials of Thailand’s Energy Policies to Achieve INDC Target”. Energy Procedia, 138, 913–918.
dc.relation[3] Feng, C.; Wang, M. (2017) “Analysis of Energy Efficiency and Energy Savings Potential in China’s Provincial Industrial Sectors”. J. Clean. Prod. 164, 1531–1541. 6 Author name / Procedia Computer Science 00 (2018) 000–000
dc.relation[4] Bukarica, V.; Tomšić, Ž. (2017) “Energy Efficiency Policy Evaluation by Moving from Techno-Economic Towards Whole Society Perspective on Energy Efficiency Market. Renew”. Sustain. Energy Rev. 70, 968–975.
dc.relation[5] Bunse, K.; Vodicka, M.; Schönsleben, P.; Brülhart, M.; Ernst, F. O. (2011) “Integrating Energy Efficiency Performance in Production Management - Gap Analysis Between Industrial Needs and Scientific Literature”. J. Clean. Prod. 19 (6–7), 667–679.
dc.relation[6] Cárdenas Ardila, L. M.; Franco Cardona, C. J.; Dyner Rizonzew, I., (2016) “Plataforma para la evaluación de políticas de mitigación de gases efecto invernadero en el sector eléctrico”.
dc.relation[7] Jokar, Z.; Mokhtar, A. (2018) “Policy Making in the Cement Industry for CO2 Mitigation on the Pathway of Sustainable Development- A System Dynamics Approach”. J. Clean. Prod. 201, 142–155.
dc.relation[8] Tukulis, A.; Pakere, I.; Gravelsins, A.; Blumberga, D. (2018) “Methodology of System Dynamic Approach for Solar Energy Integration in District Heating”. Energy Procedia. 147, 130–136.
dc.relation[9] Yang, X.; Lou, F.; Sun, M.; Wang, R.; Wang, Y. (2017) “Study of the Relationship Between Greenhouse Gas Emissions and the Economic Growth of Russia Based on the Environmental Kuznets Curve”. Appl. Energy. 193, 162–173.
dc.relation[10] Cardenas, L. M.; Franco, C. J.; Dyner, I. (2016) “Assessing Emissions–Mitigation Energy Policy Under Integrated Supply and Demand Analysis: The Colombian Case”. J. Clean. Prod. 112, 3759–3773.
dc.relation[11] Blumberga, A.; Blumberga, D.; Bazbauers, G.; Zogla, G.; Laicane, I. (2014) “Sustainable Development Modelling for the Energy Sector”. J. Clean. Prod. 63, 134–142.
dc.relation[12] Bohlmann, J. A.; Inglesi-Lotz, R. (2018) “Analysing the South African Residential Sector’s Energy Profile. Renew. Sustain”. Energy Rev. 96, 240–252.
dc.relation[13] Zhou, X.; Yan, J.; Zhu, J.; Cai, P. (2013) “Survey of Energy Consumption and Energy Conservation Measures for Colleges and Universities in Guangdong Province”. Energy Build. 66, 112–118.
dc.relation[14] Emodi, N. V.; Emodi, C. C.; Murthy, G. P.; Emodi, A. S. A. (2017) “Energy Policy for Low Carbon Development in Nigeria: A LEAP Model Application. Renew. Sustain”. Energy Rev. 68, 247–261.
dc.relation[15] Wang, J.; Zhao, T.; Wang, Y. (2016) “How to Achieve the 2020 and 2030 Emissions Targets of China: Evidence from High, Mid and Low Energy-Consumption Industrial Sub-Sectors”. Atmos. Environ. 145, 280–292.
dc.relation[16] Griffin, P. W.; Hammond, G. P.; Norman, J. B. (2016) “Industrial Energy Use and Carbon Emissions Reduction: A UK Perspective”. WIREs Energy Environ. 5 (6), 684–714.
dc.relation[17] Ovallos-Gazabon, D. et al. (2019) “Using Text Min. Tool. Define Trends Territ”. Compet. Indic. 1052.
dc.relation[18] Dias Pereira, L. D.; Raimondo, D.; Corgnati, S. P.; Gameiro Da Silva, M. Energy Consumption in Schools - A Review Paper. Renew. Sustain. Energy Rev. 2014, 40, 911–922.
dc.relation[19] Wang, J. C. A. (2016) “Study on the Energy Performance of School Buildings in Taiwan”. Energy Build. 133, 810–822.
dc.relation[20] Allab, Y.; Pellegrino, M.; Guo, X.; Nefzaoui, E.; Kindinis, A. (2017) “Energy and Comfort Assessment in Educational Building: Case Study in a French University Campus”. Energy Build. 143, 202–219.
dc.relation[21] Chung, M. H.; Rhee, E. K. (2014) “Potential Opportunities for Energy Conservation in Existing Buildings on University Campus: A Field Survey in Korea”. Energy Build. 78, 176–182.
dc.relation[22] Leopold, A. (2016) “Energy Related System Dynamic Models: A Literature Review”. Cent. Eur. J. Oper. Res. 24 (1), 231–261.
dc.relation[23] May, G.; Stahl, B.; Taisch, M.; Kiritsis, D. Energy Management in Manufacturing: From Literature Review to a Conceptual Framework. J. Clean. Prod. 2016, 1–26.
dc.relation[24] Bye, B.; Fæhn, T.; Rosnes, O. (2018) “Residential Energy Efficiency Policies: Costs, Emissions and Rebound Effects”. Energy 143, 191– 201.
dc.relation[25] Kannan, R. The Development and Application of a Temporal MARKAL Energy System Model Using Flexible Time Slicing. Appl. Energy Jun. 2011, 88 (6), 2261–2272.
dc.relation[26] Sterman, J., Business Dynamics: Systems Thinking and Modeling for a Complex World, 2000.
dc.relation[27] Ansari, N.; Seifi, A. A System Dynamics Model for Analyzing Energy Consumption and CO2 Emission in Iranian Cement Industry Under Various Production and Export Scenarios. Energy Policy 2013, 58, 75–89.
dc.relation[28] Hsu, C.-W. Using a System Dynamics Model to Assess the Effects of Capital Subsidies and Feed-In Tariffs on Solar PV Installations. Appl. Energy Dec 2012, 100, 205–217.
dc.relation[29] Hu, B.; Leopold, A.; Pickl, S. Transition Towards Renewable Energy Supply—A System Dynamics Approach. In Green Growth Sustain. Dev.; Springer 2013, 217–226.
dc.relation[30] Martínez Ríos, J. R., Simulación de políticas de eficiencia energética en el sector residencial en Colombia, 2013, p 142.
dc.relation[31] Hessami, A. R.; Faghihi, V.; Kim, A.; Ford, D. N. Evaluating Planning Strategies for Prioritizing Projects in Sustainability Improvement Programs. Constr. Manag. Econ. 2019, 0 (0), 1–13.
dc.relation[32] Arroyo, F.; Miguel, L. J., Analysis of Energy Demand Scenarios in Ecuador: National Government Policy Perspectives and Global Trend to Reduce CO 2 Emissions; Vol. 9 (2), 2019, pp 364–374.
dc.relation[33] Parra-Valencia, J. A., Guerrero, C. D., & Rico-Bautista, D. (2017). IoT: Una aproximación desde ciudad inteligente a universidad inteligente. Revista Ingenio, 13(1), 9-20.
dc.relation613
dc.relation608
dc.relation198
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rights© 2021 The Authors. Published by Elsevier B.V
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S1877050921025333?pes=vor#!
dc.subjectEnergy efficiency
dc.subjectBuildings
dc.subjectEducational buildings
dc.subjectModeling
dc.subjectSystem dynamics
dc.titleModeling Energy-Efficient Policies in Educational Buildings - A Literature Review
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución