dc.creator | Hadechni Bonett, Samir | |
dc.creator | Ramírez Parra, Jhon | |
dc.creator | Escobar Davidson, Leonardo | |
dc.creator | Coll Velasquez, Jean | |
dc.creator | BELEÑO SAENZ, KELVIN | |
dc.creator | Jiménez-Cabas, Javier | |
dc.creator | Díaz Saenz, Carlos | |
dc.date | 2021-03-12T17:32:58Z | |
dc.date | 2021-03-12T17:32:58Z | |
dc.date | 2020-07 | |
dc.date.accessioned | 2023-10-03T19:14:25Z | |
dc.date.available | 2023-10-03T19:14:25Z | |
dc.identifier | 0453-2198 | |
dc.identifier | https://hdl.handle.net/11323/7998 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9169173 | |
dc.description | Control systems receive input signals to execute a process, resulting in an output. Based on
this sequence, the computational tool has the function of detecting and diagnosing anomalies in the
system. The oscillation diagnosis of the system is based on the analysis of the oscillations generated by any disturbance, whether internal or external. The most appropriate form of detection is through noninvasive methods, therefore, there are some specialized in system improvements such as; detection of peaks in the power spectrum (FFT), the method based on time domain criteria and the absolute error integral (IAE) and the method based on the autocovariance function (ACF). The computational tool aims to detect oscillations of closed-loop control systems, through the 'IAE', 'ACF' and 'FFT' method. | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Corporación Universidad de la Costa | |
dc.relation | [1]. Thornhill, NF and Horch, A. (2007). Advances and new directions in the detection and diagnosis of
disturbances throughout the plant. Control Engineering Practice, 15 (10), 1196-1206. | |
dc.relation | [2]. C. PRYOR, “Autocovariance and Power Spectrum Analysis Derive New Information from Process
Data.,” Control Eng, vol. V 29, no. N 11, pp. 103–106, 1982. | |
dc.relation | [3]. Thornhill, NF and Hugglund, T. (1997). Oscillation detection and diagnostics in control loops.
Control Engineering Practice, 5(10), 1343-1354. | |
dc.relation | [4]. Verification, validation, and testing: MATLAB and Simulink solutions. (s. f.). MATLAB &
Simulink. Retrieved 10 March 2020, from https://la.mathworks.com/solutions/verificationvalidation.html. | |
dc.relation | [5]. M. Jelali, Control Performance Management in Industrial Automation. London: Springer, 2013. | |
dc.relation | [6]. Hadechni Bonett, S. J., Ramirez Parra, J. M., Diaz Saenz, C., & Jimenez Cabas, J. (2020, May).
Computational Tool for The Detection and Diagnosis of Oscillations in A Control System. Universidad
Autónoma del Caribe. | |
dc.relation | [7] J. P. Shunta, Achieving World Class Manufacturing Through Process Control, 1st ed. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 1997. | |
dc.relation | [8]. Thornhill, NF and Horch, A. (2007). Advances and new directions in the detection and diagnosis of
disturbances throughout the plant. Control Engineering Practice, 15 (10), 1196-1206. | |
dc.relation | [9]. N. F. Thornhill and T. Hägglund, “Detection and diagnosis of oscillation in control loops,” Control
Eng. Pract., vol. 5, no. 10, pp. 1343–1354, 1997. | |
dc.relation | [10]. E. Naghoos, "Oscillation Detection and Causality Analysis of Control Systems",
Era.library.ualberta.ca, 2016. [Online]. Available: https://era.library.ualberta.ca/items/57ba6990-7ddc4b58-8555-b9ea5ec4b79d/view/b06afee3-316c-48e6-b8b6-
f08c3d7a9ae4/Naghoosi_Elham_201607_PhD.pdf. [Accessed: 31- Aug- 2019]. | |
dc.relation | [11] Lishner, M., Akselrod, S., Avi, V. M., Oz, O., Divon, M., & Ravid, M. (1987). Spectral analysis of
heart rate fluctuations. A non-invasive, sensitive method for the early diagnosis of autonomic neuropathy
in diabetes mellitus. Journal of the autonomic nervous system, 19(2), 119-125. | |
dc.relation | [12]. Takahashi, S., Tachibana, K., & Saito, T. (1991). U.S. Patent No. 5,043,862. Washington, DC: U.S.
Patent and Trademark Office. | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.source | Technology Reports of Kansai University | |
dc.source | https://www.researchgate.net/publication/343615821_Behavior_Computational_Tool_for_Detection_and_Diagnosis_Oscillations_in_a_Control_Systems | |
dc.subject | Control system | |
dc.subject | Oscillating disturbances | |
dc.subject | Integral absolute error | |
dc.subject | Fast fourier transform | |
dc.subject | Autocovariance function | |
dc.title | Behavior computational tool for detection and diagnosis oscillations in a control systems | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |