dc.creatorHadechni Bonett, Samir
dc.creatorRamírez Parra, Jhon
dc.creatorEscobar Davidson, Leonardo
dc.creatorColl Velasquez, Jean
dc.creatorBELEÑO SAENZ, KELVIN
dc.creatorJiménez-Cabas, Javier
dc.creatorDíaz Saenz, Carlos
dc.date2021-03-12T17:32:58Z
dc.date2021-03-12T17:32:58Z
dc.date2020-07
dc.date.accessioned2023-10-03T19:14:25Z
dc.date.available2023-10-03T19:14:25Z
dc.identifier0453-2198
dc.identifierhttps://hdl.handle.net/11323/7998
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9169173
dc.descriptionControl systems receive input signals to execute a process, resulting in an output. Based on this sequence, the computational tool has the function of detecting and diagnosing anomalies in the system. The oscillation diagnosis of the system is based on the analysis of the oscillations generated by any disturbance, whether internal or external. The most appropriate form of detection is through noninvasive methods, therefore, there are some specialized in system improvements such as; detection of peaks in the power spectrum (FFT), the method based on time domain criteria and the absolute error integral (IAE) and the method based on the autocovariance function (ACF). The computational tool aims to detect oscillations of closed-loop control systems, through the 'IAE', 'ACF' and 'FFT' method.
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherCorporación Universidad de la Costa
dc.relation[1]. Thornhill, NF and Horch, A. (2007). Advances and new directions in the detection and diagnosis of disturbances throughout the plant. Control Engineering Practice, 15 (10), 1196-1206.
dc.relation[2]. C. PRYOR, “Autocovariance and Power Spectrum Analysis Derive New Information from Process Data.,” Control Eng, vol. V 29, no. N 11, pp. 103–106, 1982.
dc.relation[3]. Thornhill, NF and Hugglund, T. (1997). Oscillation detection and diagnostics in control loops. Control Engineering Practice, 5(10), 1343-1354.
dc.relation[4]. Verification, validation, and testing: MATLAB and Simulink solutions. (s. f.). MATLAB & Simulink. Retrieved 10 March 2020, from https://la.mathworks.com/solutions/verificationvalidation.html.
dc.relation[5]. M. Jelali, Control Performance Management in Industrial Automation. London: Springer, 2013.
dc.relation[6]. Hadechni Bonett, S. J., Ramirez Parra, J. M., Diaz Saenz, C., & Jimenez Cabas, J. (2020, May). Computational Tool for The Detection and Diagnosis of Oscillations in A Control System. Universidad Autónoma del Caribe.
dc.relation[7] J. P. Shunta, Achieving World Class Manufacturing Through Process Control, 1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1997.
dc.relation[8]. Thornhill, NF and Horch, A. (2007). Advances and new directions in the detection and diagnosis of disturbances throughout the plant. Control Engineering Practice, 15 (10), 1196-1206.
dc.relation[9]. N. F. Thornhill and T. Hägglund, “Detection and diagnosis of oscillation in control loops,” Control Eng. Pract., vol. 5, no. 10, pp. 1343–1354, 1997.
dc.relation[10]. E. Naghoos, "Oscillation Detection and Causality Analysis of Control Systems", Era.library.ualberta.ca, 2016. [Online]. Available: https://era.library.ualberta.ca/items/57ba6990-7ddc4b58-8555-b9ea5ec4b79d/view/b06afee3-316c-48e6-b8b6- f08c3d7a9ae4/Naghoosi_Elham_201607_PhD.pdf. [Accessed: 31- Aug- 2019].
dc.relation[11] Lishner, M., Akselrod, S., Avi, V. M., Oz, O., Divon, M., & Ravid, M. (1987). Spectral analysis of heart rate fluctuations. A non-invasive, sensitive method for the early diagnosis of autonomic neuropathy in diabetes mellitus. Journal of the autonomic nervous system, 19(2), 119-125.
dc.relation[12]. Takahashi, S., Tachibana, K., & Saito, T. (1991). U.S. Patent No. 5,043,862. Washington, DC: U.S. Patent and Trademark Office.
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourceTechnology Reports of Kansai University
dc.sourcehttps://www.researchgate.net/publication/343615821_Behavior_Computational_Tool_for_Detection_and_Diagnosis_Oscillations_in_a_Control_Systems
dc.subjectControl system
dc.subjectOscillating disturbances
dc.subjectIntegral absolute error
dc.subjectFast fourier transform
dc.subjectAutocovariance function
dc.titleBehavior computational tool for detection and diagnosis oscillations in a control systems
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución