dc.creator | Ortiz Barrios, Miguel Angel | |
dc.creator | Arias Fonseca, Sebastian | |
dc.creator | Ishizaka, Alessio | |
dc.creator | Barbati, Maria | |
dc.creator | Avendano-Collante, Betty | |
dc.creator | Navarro Jiménez, Eduardo | |
dc.date | 2023-09-06T14:09:32Z | |
dc.date | 2026 | |
dc.date | 2023-09-06T14:09:32Z | |
dc.date | 2023 | |
dc.date.accessioned | 2023-10-03T19:13:53Z | |
dc.date.available | 2023-10-03T19:13:53Z | |
dc.identifier | Miguel Ortiz-Barrios, Sebastián Arias-Fonseca, Alessio Ishizaka, Maria Barbati, Betty Avendaño-Collante, Eduardo Navarro-Jiménez, Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study, Journal of Business Research, Volume 160, 2023, 113806, ISSN 0148-2963, https://doi.org/10.1016/j.jbusres.2023.113806 | |
dc.identifier | 0148-2963 | |
dc.identifier | https://hdl.handle.net/11323/10447 | |
dc.identifier | 10.1016/j.jbusres.2023.113806 | |
dc.identifier | 1873-7978 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9169083 | |
dc.description | The Covid-19 pandemic has pushed the Intensive Care Units (ICUs) into significant operational disruptions. The rapid evolution of this disease, the bed capacity constraints, the wide variety of patient profiles, and the imbalances within health supply chains still represent a challenge for policymakers. This paper aims to use Artificial Intelligence (AI) and Discrete-Event Simulation (DES) to support ICU bed capacity management during Covid-19. The proposed approach was validated in a Spanish hospital chain where we initially identified the predictors of ICU admission in Covid-19 patients. Second, we applied Random Forest (RF) to predict ICU admission likelihood using patient data collected in the Emergency Department (ED). Finally, we included the RF outcomes in a DES model to assist decision-makers in evaluating new ICU bed configurations responding to the patient transfer expected from downstream services. The results evidenced that the median bed waiting time declined between 32.42 and 48.03 min after intervention. | |
dc.format | 22 páginas | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Elsevier Inc. | |
dc.publisher | United States | |
dc.relation | Journal of Business Research | |
dc.relation | Abdalkareem, Z. A., Amir, A., Al-Betar, M. A., Ekhan, P., & Hammouri, A. I. (2021).
Healthcare scheduling in optimization context: A review. Health and Technology, 11
(3), 445–469. | |
dc.relation | Agrawal, R., Wankhede, V. A., Kumar, A., Upadhyay, A., & Garza-Reyes, J. A. (2021).
Nexus of circular economy and sustainable business performance in the era of
digitalization. International Journal of Productivity and Performance Management, 71
(3), 748–774. | |
dc.relation | Ahmad, J., Iqbal, J., Ahmad, I., Khan, Z. A., Tiwana, M. I., & Khan, K. (2020).
A simulation based study for managing hospital resources by reducing patient
waiting time. IEEE Access, 8, 193523–193531. https://doi.org/10.1109/
ACCESS.2020.3032760 | |
dc.relation | Akhavan, A. R., Habboushe, J. P., Gulati, R., Iheagwara, O., Watterson, J., Thomas, S., …
Lee, D. C. (2020). Risk stratification of covid-19 patients using ambulatory oxygen
saturation in the emergency department. Western Journal of Emergency Medicine, 21
(6). https://doi.org/10.5811/WESTJEM.2020.8.48701 | |
dc.relation | Alakus, T. B., & Turkoglu, I. (2020). Comparison of deep learning approaches to predict
COVID-19 infection. Chaos, Solitons and Fractals, 140. https://doi.org/10.1016/j.
chaos.2020.110120 | |
dc.relation | Alballa, N., & Al-Turaiki, I. (2021). Machine learning approaches in COVID-19 diagnosis,
mortality, and severity risk prediction: A review. Informatics in Medicine Unlocked,
24, Article 100564. https://doi.org/10.1016/j.imu.2021.100564 | |
dc.relation | Albitar, O., Ballouze, R., Ooi, J. P., & Sheikh Ghadzi, S. M. (2020). Risk factors for
mortality among COVID-19 patients. Diabetes Research and Clinical Practice, 166,
Article 108293. https://doi.org/10.1016/j.diabres.2020.108293 | |
dc.relation | Almeida, A., & Vales, J. (2020). The impact of primary health care reform on hospital
emergency department overcrowding: Evidence from the portuguese reform.
International Journal of Health Planning and Management, 35(1), 368–377. https://doi.
org/10.1002/hpm.2939 | |
dc.relation | Aly, M. H., Rahman, S. S., Ahmed, W. A., Alghamedi, M. H., Al Shehri, A. A.,
Alkalkami, A. M., & Hassan, M. H. (2020). Indicators of critical illness and predictors
of mortality in COVID-19 patients. Infection and Drug Resistance, 13, 1995–2000.
https://doi.org/10.2147/IDR.S261159 | |
dc.relation | Amantea, I. A., Di Leva, A., & Sulis, E. (2020). A simulation-driven approach to decision
support in process reorganization: A case study in healthcare. Lecture Notes in
Information Systems and Organisation, 33, 223–235. https://doi.org/10.1007/978-3-
030-23665-6_16 | |
dc.relation | Assaf, D., Gutman, Y., Neuman, Y., Segal, G., Amit, S., Gefen-Halevi, S., … Tirosh, A.
(2020). Utilization of machine-learning models to accurately predict the risk for
critical COVID-19. Internal and Emergency Medicine, 15(8), 1435–1443. https://doi.
org/10.1007/s11739-020-02475-0 | |
dc.relation | Aznar-Gimeno, R., Esteban, L. M., Labata-Lezaun, G., Del-Hoyo-alonso, R., AbadiaGallego, D., Pano-Pardo, ˜ J. R., Esquillor-Rodrigo, M. J., Lanas, A., ´ & Serrano, M. T.
(2021). A clinical decision web to predict ICU admission or death for patients
hospitalised with COVID-19 using machine learning algorithms. International Journal
of Environmental Research and Public Health, 18(16). https://doi.org/10.3390/
ijerph18168677 | |
dc.relation | Banerjee, A., Ray, S., Vorselaars, B., Kitson, J., Mamalakis, M., Weeks, S., …
Mackenzie, L. S. (2020). Use of machine learning and artificial intelligence to predict
SARS-CoV-2 infection from full blood counts in a population. International
Immunopharmacology, 86, Article 106705. https://doi.org/10.1016/j.
intimp.2020.106705 | |
dc.relation | Barrios, M. A. O., Caballero, J. E., & Sanchez, ´ F. S. (2015). A methodology for the creation
of integrated service networks in outpatient internal medicine. doi: 10.1007/978-3-319-
26508-7_24. | |
dc.relation | Batista, G. E. A. P. A., & Monard, M. C. (2003). An analysis of four missing data treatment
methods for supervised learning. Applied Artificial Intelligence, 17(5–6), 519–533.
https://doi.org/10.1080/713827181 | |
dc.relation | Behl, A., Gaur, J., Pereira, V., Yadav, R., & Laker, B. (2022). Role of big data analytics
capabilities to improve sustainable competitive advantage of MSME service firms
during COVID-19–A multi-theoretical approach. Journal of Business Research, 148,
378–389. | |
dc.relation | Belgiu, M., & Dragut ˘ ¸, L. (2016). Random forest in remote sensing: A review of
applications and future directions. ISPRS Journal of Photogrammetry and Remote
Sensing, 114, 24–31. | |
dc.relation | Bihri, H., Hsaini, S., Nejjari, R., Azzouzi, S., & Charaf M.E.H. (2022). Missing data
analysis in the healthcare field: COVID-19 case study. In Networking, intelligent
systems and security. Smart innovation, systems and technologies (Vol. 237). Ssingapore:
Springer. doi: 10.1007/978-981-16-3637-0_61. | |
dc.relation | Birkmeyer, J. D., Barnato, A., Birkmeyer, N., Bessler, R., & Skinner, J. (2020). The impact
of the COVID-19 pandemic on hospital admissions in the United States: Study
examines trends in US hospital admissions during the COVID-19 pandemic. Health
Affairs, 39(11), 2010–2017. https://doi.org/10.1377/hlthaff.2020.00980 | |
dc.relation | Bohr, A., & Memarzadeh, K. (2020). The rise of artificial intelligence in healthcare
applications. In Artificial intelligence in healthcare (pp. 25–60). Academic Press. | |
dc.relation | Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/
10.1023/A:1010933404324 | |
dc.relation | Brennan, A., Chick, S. E., & Davies, R. (2006). A taxonomy of model structures for
economic evaluation of health technologies. Health economics, 15(12), 1295–1310. | |
dc.relation | Caillon, A., Zhao, K., Klein, K. O., Greenwood, C. M. T., Lu, Z., Paradis, P., &
Schiffrin, E. L. (2021). High systolic blood pressure at hospital admission is an
important risk factor in models predicting outcome of COVID-19 patients. American
Journal of Hypertension, 34(3), 282–290. https://doi.org/10.1093/ajh/hpaa225 | |
dc.relation | Caro, J. J., Moller, ¨ J., & Getsios, D. (2010). Discrete event simulation: The preferred
technique for Health Economic Evaluations? Value in Health, 13(8), 1056–1060.
https://doi.org/10.1111/j.1524-4733.2010.00775.x | |
dc.relation | Caro, J. J., Moller, ¨ J., Santhirapala, V., Gill, H., Johnston, J., El-Boghdadly, K.,
Santhirapala, R., Kelly, P., & McGuire, A. (2021). Predicting hospital resource use
during COVID-19 surges: A simple but flexible discretely integrated condition event
simulation of individual patient-hospital trajectories. Value in Health, 24(11),
1570–1577. https://doi.org/10.1016/j.jval.2021.05.023 | |
dc.relation | Casier, G., Casier, K., Van Ooteghem, J., & Verbrugge, S. (2015). Application of a discrete
event simulator for healthcare processes. In BMSD 2015 - Proceedings of the 5th
international symposium on business modeling and software design. https://doi.org/
10.5220/0005887702410246 | |
dc.relation | Casiraghi, E., Malchiodi, D., Trucco, G., Frasca, M., Cappelletti, L., Fontana, T., …
Valentini, G. (2020). Explainable machine learning for early assessment of COVID-19
risk prediction in emergency departments. IEEE Access, 8, 196299–196325. https://
doi.org/10.1109/ACCESS.2020.3034032 | |
dc.relation | Castanheira-Pinto, A., Gonçalves, B. S., Lima, R. M., & Dinis-Carvalho, J. (2021).
Modeling, assessment and design of an emergency department of a public hospital
through discrete-event simulation. Applied Sciences (Switzerland), 11(2), 1–25.
https://doi.org/10.3390/app11020805 | |
dc.relation | Chakravorty, T., Jha, K., & Barthwal, S. (2018). Digital technologies as enablers of carequality and performance: A conceptual review of hospital supply chain network. IUP
Journal of Supply Chain Management, 15(3), 7–25. | |
dc.relation | Chatterjee, S., Chaudhuri, R., & Vrontis, D. (2021). Does data-driven culture impact
innovation and performance of a firm? An empirical examination. Annals of
Operations Research, 1–26. | |
dc.relation | Chen, M., & Decary, M. (2020). Artificial intelligence in healthcare: An essential guide
for health leaders. In Healthcare management forum (Vol. 33, No. 1, pp. 10–18). Los
Angeles, CA: SAGE Publications. | |
dc.relation | Cheng, F. Y., Joshi, H., Tandon, P., Freeman, R., Reich, D. L., Mazumdar, M., Kohli-seth,
R., Levin, M., Timsina, P., & Kia, A. (2020). Using machine learning to predict ICU
transfer in hospitalized COVID-19 patients. Journal of Clinical Medicine, 9(6). doi:
10.3390/jcm9061668. | |
dc.relation | Cheng, A., Hu, L., Wang, Y., Huang, L., Zhao, L., Zhang, C., … Liu, Q. (2020). Diagnostic
performance of initial blood urea nitrogen combined with D-dimer levels for
predicting in-hospital mortality in COVID-19 patients. International Journal of
Antimicrobial Agents, 56(3). https://doi.org/10.1016/j.ijantimicag.2020.106110 | |
dc.relation | Choi, Y., Lee, H., & Irani, Z. (2018). Big data-driven fuzzy cognitive map for prioritising
IT service procurement in the public sector. Annals of Operations Research, 270(1–2),
75–104. https://doi.org/10.1007/s10479-016-2281-6 | |
dc.relation | Choron, R. L., Butts, C. A., Bargoud, C., Krumrei, N. J., Teichman, A. L., Schroeder, M. E.,
Bover Manderski, M. T., Cai, J., Song, C., Rodricks, M. B., Lissauer, M., & Gupta, R. (2021). Fever in the ICU: A Predictor of Mortality in Mechanically Ventilated COVID19 Patients. Journal of Intensive Care Medicine, 36(4), 484–493. https://doi.org/
10.1177/0885066620979622 | |
dc.relation | Chowdhury, M., Cervantes, E. G., Chan, W. Y., & Seitz, D. P. (2021). Use of machine
learning and artificial intelligence methods in geriatric mental health research
involving electronic health record or administrative claims data: A systematic
review. Frontiers Psychiatry, 12(September). https://doi.org/10.3389/
fpsyt.2021.738466 | |
dc.relation | Corro Ramos, I., Hoogendoorn, M., & Rutten-van Molken, ¨ M. P. M. H. (2020). How to
address uncertainty in health economic discrete-event simulation models: An
illustration for chronic obstructive pulmonary disease. Medical Decision Making, 40
(5), 619–632. https://doi.org/10.1177/0272989X20932145 | |
dc.relation | Currie, C. S. M., Fowler, J. W., Kotiadis, K., Monks, T., Onggo, B. S., Robertson, D. A., &
Tako, A. A. (2020). How simulation modelling can help reduce the impact of COVID19. Journal of Simulation, 14(2), 83–97. https://doi.org/10.1080/
17477778.2020.1751570 | |
dc.relation | Davis, Z., Zobel, C. W., Khansa, L., & Glick, R. E. (2020). Emergency department
resilience to disaster-level overcrowding: A component resilience framework for
analysis and predictive modeling. Journal of Operations Management, 66(1–2), 54–66.
https://doi.org/10.1002/joom.1017 | |
dc.relation | De Santis, A., Giovannelli, T., Lucidi, S., Messedaglia, M., & Roma, M. (2021).
Determining the optimal piecewise constant approximation for the nonhomogeneous
Poisson process rate of emergency department patient arrivals. Flexible Services and
Manufacturing Journal, 1–34. https://doi.org/10.1007/s10696-021-09408-9 | |
dc.relation | Dergaa, I., Abubaker, M., Souissi, A., Mohammed, A. R., Varma, A., Musa, S., Al Naama,
A., Mkaouer, B., & Saad, H. B. (2022). Age and clinical signs as predictors of COVID19 symptoms and cycle threshold value. Libyan Journal of Medicine, 17(1). doi:
10.1080/19932820.2021.2010337. | |
dc.relation | Di Castelnuovo, A., Bonaccio, M., Costanzo, S., Gialluisi, A., Antinori, A., Berselli, N., …
COVID, T. (2020). Common cardiovascular risk factors and in-hospital mortality in
3,894 patients with COVID-19: Survival analysis and machine learning-based
findings from the multicentre Italian CORIST study. Nutrition, Metabolism and
Cardiovascular Diseases, 30(11), 1899–1913. doi:10.1016/j.numecd.2020.07.031. | |
dc.relation | Doneda, M., Yalçındag, ˘ S., Marques, I., & Lanzarone, E. (2021). A discrete-event
simulation model for analysing and improving operations in a blood donation centre.
Vox Sanguinis, 116(10), 1060–1075. https://doi.org/10.1111/vox.13111 | |
dc.relation | Donthu, N., & Gustafsson, A. (2020). Effects of COVID-19 on business and research.
Journal of Business Research, 117, 284–289. https://doi.org/10.1016/j.
jbusres.2020.06.008 | |
dc.relation | Drewry, A. M., Hotchkiss, R., & Kulstad, E. (2020). Response to “body temperature
correlates with mortality in COVID-19 patients”. Critical Care, 24(1). https://doi.
org/10.1186/s13054-020-03186-w | |
dc.relation | Ellahham, S., Ellahham, N., & Simsekler, M. C. E. (2020). Application of artificial
intelligence in the health care safety context: Opportunities and challenges. American
Journal of Medical Quality, 35(4), 341–348. https://doi.org/10.1177/
1062860619878515 | |
dc.relation | Famiglini, L., Campagner, A., Carobene, A., & Cabitza, F. (2022). A robust and
parsimonious machine learning method to predict ICU admission of COVID-19
patients. Medical and Biological Engineering and Computing. , Article 0123456789.
https://doi.org/10.1007/s11517-022-02543-x | |
dc.relation | Fawagreh, K., & Gaber, M. M. (2020). Resource-efficient fast prediction in healthcare
data analytics: A pruned Random Forest regression approach. Computing, 102(5),
1187–1198. | |
dc.relation | Feng, C., Kephart, G., & Juarez-Colunga, E. (2021). Predicting COVID-19 mortality risk in
Toronto, Canada: A comparison of tree-based and regression-based machine learning
methods. BMC Medical Research Methodology, 21(1), 1–14. https://doi.org/10.1186/
s12874-021-01441-4 | |
dc.relation | Fernandes, F. T., de Oliveira, T. A., Teixeira, C. E., Batista, A. F. de M., Dalla Costa, G., &
Chiavegatto Filho, A. D. P. (2021). A multipurpose machine learning approach to
predict COVID-19 negative prognosis in S˜
ao Paulo, Brazil. Scientific Reports, 11(1),
1–7. doi: 10.1038/s41598-021-82885-y. | |
dc.relation | Figliozzi, S., Masci, P. G., Ahmadi, N., Tondi, L., Koutli, E., Aimo, A., …
Georgiopoulos, G. (2020). Predictors of adverse prognosis in COVID-19: A systematic
review and meta-analysis. European Journal of Clinical Investigation, 50(10). https://
doi.org/10.1111/eci.13362 | |
dc.relation | Forbes (2022). AI for health and hope: How machine learning is being used in hospitals.
Available at: https://www.forbes.com/sites/forbestechcouncil/2022/02/16/ai
-for-health-and-hope-how-machine-learning-is-being-used-in-hospitals/ (Accessed:
10-10-2022). | |
dc.relation | Frid-Adar, M., Amer, R., Gozes, O., Nassar, J., & Greenspan, H. (2021). COVID-19 in CXR:
From detection and severity scoring to patient disease monitoring. IEEE Journal of
Biomedical and Health Informatics, 25(6), 1892–1903. https://doi.org/10.1109/
JBHI.2021.3069169 | |
dc.relation | Gallo Marin, B., Aghagoli, G., Lavine, K., Yang, L., Siff, E. J., Chiang, S. S., …
Michelow, I. C. (2021). Predictors of COVID-19 severity: A literature review. Reviews
in Medical Virology, 31(1), 1–10. https://doi.org/10.1002/rmv.2146 | |
dc.relation | Garcia-Vicuna, ˜ D., Esparza, L., & Mallor, F. (2021). Hospital preparedness during
epidemics using simulation: The case of COVID-19. Central European Journal of
Operations Research. https://doi.org/10.1007/s10100-021-00779-w | |
dc.relation | Garcia-Vicuna, D., Mallor, F., & Esparza, L. (2020). Planning ward and intensive care
unit beds for COVID-19 patients using a discrete event simulation model. In Paper
presented at the proceedings - winter simulation conference, 2020-December (pp.
759–770). doi: 10.1109/WSC48552.2020.9383939. | |
dc.relation | Gillespie, J., McClean, S., Garg, L., Barton, M., Scotney, B., & Fullerton, K. (2016).
A multi-phase DES modelling framework for patient-centred care. Journal of the
Operational Research Society, 67(10), 1239–1249. https://doi.org/10.1057/
jors.2015.114 | |
dc.relation | Gok, ¨ E. C., & Olgun, M. O. (2021). SMOTE-NC and gradient boosting imputation based
random forest classifier for predicting severity level of covid-19 patients with blood
samples. Neural Computing and Applications, 33(22), 15693–15707. https://doi.org/
10.1007/s00521-021-06189-y | |
dc.relation | Gopinath, N. (2021). Artificial intelligence: Potential tool to subside SARS-CoV-2
pandemic. Process Biochemistry, 110(August), 94–99. https://doi.org/10.1016/j.
procbio.2021.08.001 | |
dc.relation | Gorunescu, F., McClean, S. I., & Millard, P. H. (2002). A queueing model for bedoccupancy management and planning of hospitals. Journal of the Operational
Research Society, 53(1), 19–24. | |
dc.relation | Govindan, K., Mina, H., & Alavi, B. (2020). A decision support system for demand
management in healthcare supply chains considering the epidemic outbreaks: A case
study of coronavirus disease 2019 (COVID-19). Transportation Research Part E:
Logistics and Transportation Review, 138, Article 101967. | |
dc.relation | Griffin, D. O., Griffin, D. O., Jensen, A., Khan, M., Chin, J., Chin, K., … Patel, D. (2020).
Pulmonary embolism and increased levels of D-dimer in patients with coronavirus
disease. Emerging Infectious Diseases, 26(8), 1941–1943. https://doi.org/10.3201/
eid2608.201477 | |
dc.relation | Gul, M., & Guneri, A. F. (2012). A computer simulation model to reduce patient length of
stay and to improve resource utilization rate in an emergency department service
system. International Journal of Industrial Engineering, 19(5), 221–231. 10.23055/ij
ietap.2012.19.5.793. | |
dc.relation | Gumaei, A., Ismail, W. N., Rafiul Hassan, M., Hassan, M. M., Mohamed, E., Alelaiwi, A.,
& Fortino, G. (2022). A decision-level fusion method for COVID-19 patient health
prediction. Big Data Research, 27, Article 100287. https://doi.org/10.1016/j.
bdr.2021.100287 | |
dc.relation | Günal, M. M., & Pidd, M. (2010). Discrete event simulation for performance modelling in
health care: A review of the literature. Journal of Simulation, 4, 42–51. https://doi.
org/10.1057/jos.2009.25 | |
dc.relation | Guo, T., Fan, Y., Chen, M., Xiaoyan, W.u., Zhang, L., He, T., Wang, H., Wan, J., Wang, X.,
& Zhibing, L.u. (2020). Cardiovascular implications of fatal outcomes of patients
with coronavirus disease 2019 (COVID-19). JAMA Cardiology, 5(7), 811–888.
https://doi.org/10.1001/jamacardio.2020.1017 | |
dc.relation | Gupta, V. K., Gupta, A., Kumar, D., & Sardana, A. (2021). Prediction of COVID-19
confirmed, death, and cured cases in india using random forest model. Big Data
Mining and Analytics, 4(2), 116–123. https://doi.org/10.26599/
BDMA.2020.9020016 | |
dc.relation | Heineke, J. (1995). Strategic operations management decisions and professional
performance in US HMOs. Journal of Operations Management, 13(4), 255–272. | |
dc.relation | Heldt, F. S., Vizcaychipi, M. P., Peacock, S., Cinelli, M., McLachlan, L., Andreotti, F., …
Khan, R. T. (2021). Early risk assessment for COVID-19 patients from emergency
department data using machine learning. Scientific Reports, 11(1), 1–13. doi:
10.1038/s41598-021-83784-y. | |
dc.relation | Hosmer, D. W. Jr., Lemeshow, S., Sturdivant, R.X. (2013). Applied logistic regression (Vol.
398). New York, NY: John Wiley & Sons. | |
dc.relation | Hou, W., Zhao, Z., Chen, A., Li, H., & Duong, T. Q. (2021). Machining learning predicts
the need for escalated care and mortality in covid-19 patients from clinical variables.
International Journal of Medical Sciences, 18(8), 1739–1745. doi: 10.7150/
ijms.51235. | |
dc.relation | Hsu, J., Hung, P., Lin, H., & Hsieh, C. (2015). Applying under-sampling techniques and
cost-sensitive learning methods on risk assessment of breast cancer. Journal of
Medical Systems, 39(4) doi: 10.1007/s10916-015-0210-x. | |
dc.relation | Hu, J., Zhou, J., Dong, F., Tan, J., Wang, S., Li, Z., … Huang, T. (2020). Combination of
serum lactate dehydrogenase and sex is predictive of severe disease in patients with
COVID-19. Medicine, 99(42), e22774. | |
dc.relation | Huang, H. F., Liu, Y., Li, J. X., Dong, H., Gao, S., Huang, Z. Y., Fu, S. Z., Yang, L. Y.,
Lu, H. Z., Xia, L. Y., Cao, S., Gao, Y., & Yu, X. X. (2021). Validated tool for early
prediction of intensive care unit admission in COVID-19 patients. World Journal of
Clinical Cases, 9(28), 8388–8403. 10.12998/wjcc.v9.i28.8388. | |
dc.relation | Huang, S., Yang, J., Fong, S., & Zhao, Q. (2021). Artificial intelligence in the diagnosis of
COVID-19: Challenges and perspectives. International Journal of Biological Sciences,
17(6), 1581. https://doi.org/10.7150/ijbs.58855 | |
dc.relation | Ikemura, K., Bellin, E., Yagi, Y., Billett, H., Saada, M., Simone, K., … Gil, M. R. (2021).
Using automated machine learning to predict the mortality of patients with COVID19: Prediction model development study. Journal of Medical Internet Research, 23(2).
https://doi.org/10.2196/23458 | |
dc.relation | Irvine, N., Anderson, G., Sinha, C., McCabe, H., & Van der Meer, R. (2021). Collaborative
critical care prediction and resource planning during the COVID-19 pandemic using
computer simulation modelling: Future urgent planning lessons. Future Healthcare
Journal, 8(2), e317–e321. https://doi.org/10.7861/fhj.2020-0194 | |
dc.relation | Islam, S., & Amin, S. H. (2020). Prediction of probable backorder scenarios in the supply
chain using Distributed Random Forest and Gradient Boosting Machine learning
techniques. Journal of Big Data, 7(1), 1–22. | |
dc.relation | Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and
industry 4.0 on the ripple effect and supply chain risk analytics. International Journal
of Production Research, 57(3), 829–846. https://doi.org/10.1080/
00207543.2018.1488086 | |
dc.relation | Iwendi, C., Bashir, A. K., Peshkar, A., Sujatha, R., Chatterjee, J. M., Pasupuleti, S.,
Mishra, R., Pillai, S., & Jo, O. (2020). COVID-19 patient health prediction using
boosted random forest algorithm. Frontiers in Public Health, 8(July), 1–9. https://doi.
org/10.3389/fpubh.2020.00357 | |
dc.relation | Iyengar, K. P., Vaishya, R., Bahl, S., & Vaish, A. (2020). Impact of the coronavirus
pandemic on the supply chain in healthcare. British Journal of Healthcare
Management, 26(6), 1–4. | |
dc.relation | Jack, E. P., & Powers, T. L. (2009). A review and synthesis of demand management,
capacity management and performance in health-care services. International Journal
of Management Reviews, 11, 149–174. https://doi.org/10.1111/j.1468-
2370.2008.00235.x | |
dc.relation | Jadhav, S., Kasar, R., Lade, N., Patil, M., & Kolte, S. (2017). Disease prediction by
machine learning from healthcare communities. International Journal of Scientific
Research in Science and Technology, 29–35. 10.32628/ijsrst19633. | |
dc.relation | Jarrett, M., Schultz, S., Lyall, J., Wang, J., Stier, L., de Geronimo, M., & Nelson, K.
(2020). Clinical mortality in a large COVID-19 cohort: Observational study. Journal
of Medical Internet Research, 22(9). https://doi.org/10.2196/23565 | |
dc.relation | Jraisat, L., Jreissat, M., Upadhyay, A., & Kumar, A. (2022). Blockchain technology: The
role of integrated reverse supply chain networks in sustainability. In Supply chain
forum: An international journal (pp. 1–14). Taylor & Francis. | |
dc.relation | Jun, J. B., Jacobson, S. H., & Swisher, J. R. (1999). Application of discrete-event
simulation in health care clinics: A survey. Journal of the Operational Research Society,
50(2), 109–123. https://doi.org/10.1057/palgrave.jors.2600669 | |
dc.relation | Kabir, G., Tesfamariam, S., Hemsing, J., & Sadiq, R. (2020). Handling incomplete and
missing data in water network database using imputation methods. Sustainable and
Resilient Infrastructure, 5(6), 365–377. https://doi.org/10.1080/
23789689.2019.1600960 | |
dc.relation | Kadri, F., Harrou, F., Chaabane, S., & Tahon, C. (2014). Time series modelling and
forecasting of emergency department overcrowding. Journal of Medical Systems, 38
(9), 1–20. | |
dc.relation | Khalilia, M., Chakraborty, S., & Popescu, M. (2011). Predicting disease risks from highly
imbalanced data using random forest. BMC Medical Informatics and Decision Making,
11(1), 1–13. | |
dc.relation | Kim, J., Lim, H., Ahn, J. H., Lee, K. H., Lee, K. S., & Koo, K. C. (2021). Optimal triage for
COVID-19 patients under limited health care resources with a parsimonious machine
learning prediction model and threshold optimization using discrete-event
simulation: Development study. JMIR Medical Informatics, 9(11), e32726. | |
dc.relation | Klassen, K. J., & Rohleder, T. R. (2001). Combining operations and marketing to manage
capacity and demand in services. Service Industries Journal, 21(2), 1–30. | |
dc.relation | Kochan, C., Nowicki, D. R., Sauser, B., & Randall, W. S. (2018). Impact of cloud-based
information sharing on hospital supply chain performance: A system dynamics
framework. International Journal of Production Economics, 195, 168–185. https://doi.
org/10.1016/j.ijpe.2017.10.008 | |
dc.relation | Kortbeek, N., Braaksma, A., Smeenk, F. H., Bakker, P. J., & Boucherie, R. J. (2015).
Integral resource capacity planning for inpatient care services based on bed census
predictions by hour. Journal of the Operational Research Society, 66(7), 1061–1076. | |
dc.relation | Kumar, A., & Mo, J. (2010). Models for bed occupancy management of a hospital in
Singapore. In Proceedings of the 2010 international conference on industrial engineering
and operations management (pp. 1–6). IIEOM & cosponsored by INFORMS. | |
dc.relation | Lalmuanawma, S., Hussain, J., & Chhakchhuak, L. (2020). Applications of machine
learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review.
Chaos, Solitons & Fractals, 139, Article 110059. https://doi.org/10.1016/j.
chaos.2020.110059 | |
dc.relation | Le Lay, J., Augusto, V., Xie, X., Alfonso-Lizarazo, E., Bongue, B., Celarier, T., …
Masmoudi, M. (2020). Impact of covid-19 epidemics on bed requirements in a
healthcare center using data-driven discrete-event simulation. In 2020 Winter
simulation conference (WSC) (pp. 771–781). IEEE. doi: 10.1109/
WSC48552.2020.9384093. | |
dc.relation | Leung, C. (2020). Risk factors for predicting mortality in elderly patients with COVID-19:
A review of clinical data in china. Mechanisms of Ageing and Development, 188.
https://doi.org/10.1016/j.mad.2020.111255 | |
dc.relation | Li, X., Ge, P., Zhu, J., Li, H., Graham, J., Singer, A., Richman, P. S., & Duong, T. Q.
(2020). Deep learning prediction of likelihood of ICU admission and mortality in
COVID-19 patients using clinical variables. PeerJ, 8(December 2019), 1–19. https://
doi.org/10.7717/peerj.10337 | |
dc.relation | Lin, G., Feng, X., Guo, W., Cui, X., Liu, S., Jin, W., … Ding, Y. (2021). Electricity theft
detection based on stacked autoencoder and the undersampling and resampling
based random forest algorithm. IEEE Access, 9, 124044–124058. https://doi.org/
10.1109/ACCESS.2021.3110510 | |
dc.relation | Long, B., Brady, W. J., Bridwell, R. E., Ramzy, M., Montrief, T., Singh, M., & Gottlieb, M.
(2021). Electrocardiographic manifestations of COVID-19. American Journal of
Emergency Medicine, 41, 96–103. https://doi.org/10.1016/j.ajem.2020.12.060 | |
dc.relation | Lotfi, R., Kargar, B., Rajabzadeh, M., Hesabi, F., & Ozceylan, ¨ E. (2022). Hybrid fuzzy and
data-driven robust optimization for resilience and sustainable health care supply
chain with vendor-managed inventory approach. International Journal of Fuzzy
Systems, 24(2), 1216–1231. | |
dc.relation | Lu, Y., Guan, Y., Zhong, X., Fishe, J. N., & Hogan, T. (2021). Hospital beds planning and
admission control policies for COVID-19 pandemic: A hybrid computer simulation
approach. In IEEE international conference on automation science and engineering, 2021-
Augus (pp. 956–961). doi: 10.1109/CASE49439.2021.9551589. | |
dc.relation | Luo, L., Luo, L., Zhang, X., & He, X. (2017). Hospital daily outpatient visits forecasting
using a combinatorial model based on ARIMA and SES models. BMC Health Services
Research, 17(1), 1–13. | |
dc.relation | Marwaha, J. S., Beaulieu-Jones, B. R., Kennedy, C. J., Nathanson, L. A., Robinson, K.,
Tandon, M., & Brat, G. A. (2022). Design, implementation, and clinical impact of a
machine learning-assisted intervention bundle to improve opioid prescribing. NEJM
Catalyst Innovations in Care Delivery, 3(4), CAT-21. | |
dc.relation | Mauer, E., Lee, J., Choi, J., Zhang, H., Hoffman, K. L., Easthausen, I. J., … Banerjee, S.
(2021). A predictive model of clinical deterioration among hospitalized COVID-19
patients by harnessing hospital course trajectories. Journal of Biomedical Informatics,
118, Article 103794. https://doi.org/10.1016/j.jbi.2021.103794 | |
dc.relation | McGlothlin, J. P., Vedire, S., Srinivasan, H., Madugula, A., Rajagopalan, S., & Khan, L.
(2018). Predicting hospital capacity and efficiency. In HEALTHINF 2018 - 11th international conference on health informatics, proceedings; part of 11th international
joint conference on biomedical engineering systems and technologies, BIOSTEC 2018, 5
(Biostec) (pp. 562–570). doi: 10.5220/0006658905620570. | |
dc.relation | Mehmood, R., Meriton, R., Graham, G., Hennelly, P., & Kumar, M. (2017). Exploring the
influence of big data on city transport operations: A markovian approach.
International Journal of Operations and Production Management, 37(1), 75–104.
https://doi.org/10.1108/IJOPM-03-2015-0179 | |
dc.relation | Mehrabadi, M. A., Aqajari, S. A. H., Azimi, I., Downs, C. A., Dutt, N., & Rahmani, A. M.
(2021). Detection of COVID-19 using heart rate and blood pressure: Lessons learned
from patients with ARDS. In Paper presented at the proceedings of the annual
international conference of the IEEE engineering in medicine and biology society, EMBS
(pp. 2140–2143). doi: 10.1109/EMBC46164.2021.9629794. | |
dc.relation | Meijboom, B., Schmidt-Bakx, S., & Westert, G. (2011). Supply chain management
practices for improving patient-oriented care. Supply Chain Management, 16(3),
166–175. https://doi.org/10.1108/13598541111127155 | |
dc.relation | Mejía, F., Medina, C., Cornejo, E., Morello, E., Vasquez, ´ S., Alave, J., … Malaga, ´ G.
(2020). Oxygen saturation as a predictor of mortality in hospitalized adult patients
with COVID-19 in a public hospital in Lima, Peru. PLoS ONE, 15(12 December) doi:
10.1371/journal.pone.0244171. | |
dc.relation | Melman, G. J., Parlikad, A. K., & Cameron, E. A. B. (2021). Balancing scarce hospital
resources during the COVID-19 pandemic using discrete-event simulation. Health
Care Management Science, 19, 356–374. https://doi.org/10.1007/s10729-021-
09548-2 | |
dc.relation | Mercatelli, D., Formaggio, F., Caprini, M., Holding, A., & Giorgi, F. M. (2021). Detection
of subtype-specific breast cancer surface protein biomarkers via a novel
transcriptomics approach. Bioscience Reports, 41(12). https://doi.org/10.1042/
BSR20212218 | |
dc.relation | Mesas, A. E., Cavero-Redondo, I., Alvarez-Bueno, ´ C., Cabrera, M. A. S., de Andrade, S. M.,
Sequí-Dominguez, I., & Martínez-Vizcaíno, V. (2020). Predictors of in-hospital
COVID-19 mortality: A comprehensive systematic review and meta-analysis
exploring differences by age, sex and health conditions. PLoS ONE, 15(11
November). doi: 10.1371/journal.pone.0241742. | |
dc.relation | Moledina, S. M., Maini, A. A., Gargan, A., Harland, W., Jenney, H., Phillips, G.,
Thomas, K., Chauhan, D., & Fertleman, M. (2020). Clinical characteristics and
predictors of mortality in patients with COVID-19 infection outside intensive care.
International Journal of General Medicine, 13, 1157–1165. https://doi.org/10.2147/
IJGM.S271432 | |
dc.relation | More, A. S., & Rana, D. P. (2017). Review of random forest classification techniques to
resolve data imbalance. In 2017 1st International conference on intelligent systems and
information management (ICISIM) (pp. 72–78). | |
dc.relation | Mudatsir, M., Fajar, J. K., Wulandari, L., Soegiarto, G., Ilmawan, M., Purnamasari, Y., …
Harapan, H. (2021). Predictors of COVID-19 severity: A systematic review and metaanalysis [version 2; peer review: 2 approved]. F1000Research, 9, 1–26. doi:
10.12688/F1000RESEARCH.26186.2. | |
dc.relation | Muhammad, N., Upadhyay, A., Kumar, A., & Gilani, H. (2022). Achieving operational
excellence through the lens of lean and Six Sigma during the COVID-19 pandemic.
The International Journal of Logistics Management. | |
dc.relation | Mukhuty, S., Upadhyay, A., & Rothwell, H. (2022). Strategic sustainable development of
Industry 4.0 through the lens of social responsibility: The role of human resource
practices. Business Strategy and the Environment.
Naymagon, L., Zubizarreta, N., Feld, J., van Gerwen, M., Alsen, M., Thibaud, S., Kessler,
A., Venugopal, S., Makki, I., Qin, Q., Dharmapuri, S., Jun, T., Bhalla, S., Berwick, S.,
Christian, K., Mascarenhas, J., Dembitzer, F., Moshier, E., & Tremblay, D. (2020).
Admission D-dimer levels, D-dimer trends, and outcomes in COVID-19. Thrombosis
Research, 196(June), 99–105. doi: 10.1016/j.thromres.2020.08.032. | |
dc.relation | Mukhuty, S., Upadhyay, A., & Rothwell, H. (2022). Strategic sustainable development of Industry 4.0 through the lens of social responsibility: The role of human resource practices. Business Strategy and the Environment. | |
dc.relation | Naymagon, L., Zubizarreta, N., Feld, J., van Gerwen, M., Alsen, M., Thibaud, S., Kessler, A., Venugopal, S., Makki, I., Qin, Q., Dharmapuri, S., Jun, T., Bhalla, S., Berwick, S., Christian, K., Mascarenhas, J., Dembitzer, F., Moshier, E., & Tremblay, D. (2020). Admission D-dimer levels, D-dimer trends, and outcomes in COVID-19. Thrombosis Research, 196(June), 99–105. doi: 10.1016/j.thromres.2020.08.032. | |
dc.relation | Nazir, A., & Ampadu, H. K. (2022). Interpretable deep learning for the prediction of ICU
admission likelihood and mortality of COVID-19 patients. PeerJ Computer Science, 8
(January 2020), e889. | |
dc.relation | NHS (2022). AI Skunkworks projects. Available at: https://transform.england.nhs.uk/ai-la
b/ai-lab-programmes/skunkworks/ai-skunkworks-projects/ (Accessed: 12-10-2022).
Nijman, S., Leeuwenberg, A., Beekers, I., Verkouter, I., Jacobs, J., Bots, M., Asselbergs, F., | |
dc.relation | Moons, K., & Debray, T. (2022). Missing data is poorly handled and reported in
prediction model studies using machine learning: A literature review. Journal of
Clinical Epidemiology, 142, 218–229. https://doi.org/10.1016/j.jclinepi.2021.11.023 | |
dc.relation | Oala, L., Murchison, A. G., Balachandran, P., Choudhary, S., Fehr, J., Leite, A. W., …
Wiegand, T. (2021). Machine learning for health: Algorithm auditing & quality
control. Journal of Medical Systems, 45(12). https://doi.org/10.1007/s10916-021-
01783-y | |
dc.relation | Ordu, M., Demir, E., Tofallis, C., & Gunal, M. M. (2021). A novel healthcare resource
allocation decision support tool: A forecasting-simulation-optimization approach.
Journal of the Operational Research Society, 72(3), 485–500. https://doi.org/10.1080/
01605682.2019.1700186 | |
dc.relation | Ortíz-Barrios, M. A., & Alfaro-Saíz, J. (2020). Methodological approaches to support
process improvement in emergency departments: A systematic review. International
Journal of Environmental Research and Public Health, 17(8). https://doi.org/10.3390/
ijerph17082664 | |
dc.relation | Ortiz-Barrios, M., & Alfaro-Saiz, J. (2020). An integrated approach for designing in-time
and economically sustainable emergency care networks: A case study in the public
sector. PLoS ONE, 15(6 June). doi: 10.1371/journal.pone.0234984. | |
dc.relation | Ortíz-Barrios, M. A., Coba-Blanco, D. M., Alfaro-Saíz, J. J., & Stand-Gonz´
alez, D. (2021).
Process improvement approaches for increasing the response of emergency
departments against the COVID-19 pandemic: A systematic review. International
Journal of Environmental Research and Public Health, 18(16), 8814. https://doi.org/
10.3390/ijerph18168814 | |
dc.relation | Patel, D., Kher, V., Desai, B., Lei, X., Cen, S., Nanda, N., Gholamrezanezhad, A.,
Duddalwar, V., Varghese, B., & Oberai, A. A. (2021). Machine learning based predictors for COVID-19 disease severity. Scientific Reports, 11(1), 1–7. https://doi.
org/10.1038/s41598-021-83967-7 | |
dc.relation | Petrilli, C. M., Jones, S. A., Yang, J., Rajagopalan, H., O’Donnell, L., Chernyak, Y., …
Horwitz, L. I. (2020). Factors associated with hospital admission and critical illness
among 5279 people with coronavirus disease 2019 in New York City: Prospective
cohort study. BMJ, 369. https://doi.org/10.1136/bmj.m1966 | |
dc.relation | Pezoulas, V. C., Kourou, K. D., Mylona, E., Papaloukas, C., Liontos, A., Biros, D.,
Milionis, O. I., Kyriakopoulos, C., Kostikas, K., Milionis, H., & Fotiadis, D. I. (2022).
ICU admission and mortality classifiers for COVID-19 patients based on subgroups of
dynamically associated profiles across multiple timepoints. Computers in Biology and
Medicine, 141(November 2021), Article 105176. https://doi.org/10.1016/j.
compbiomed.2021.105176 | |
dc.relation | Piccialli, F., di Cola, V. S., Giampaolo, F., & Cuomo, S. (2021). The role of artificial
intelligence in fighting the COVID-19 pandemic. Information Systems Frontiers, 23(6),
1467–1497. https://doi.org/10.1007/s10796-021-10131-x
Possik, J., Asgary, A., Solis, A. O., Zacharewicz, G., Shafiee, M. A., Najafabadi, M. M., … | |
dc.relation | Wu, J. (2022). An agent-based modeling and virtual reality application using
distributed simulation: Case of a COVID-19 intensive care unit. IEEE Transactions on
Engineering Management, 1–13. https://doi.org/10.1109/TEM.2022.3195813 | |
dc.relation | Pourhomayoun, M., & Shakibi, M. (2021). Predicting mortality risk in patients with
COVID-19 using machine learning to help medical decision-making. Smart Health,
20, Article 100178. https://doi.org/10.1016/j.smhl.2020.100178 | |
dc.relation | Privett, N., & Gonsalvez, D. (2014). The top ten global health supply chain issues:
Perspectives from the field. Operations Research for Health Care, 3(4), 226–230. | |
dc.relation | Rahman, N. A. A., Ahmi, A., Jraisat, L., & Upadhyay, A. (2022). Examining the trend of
humanitarian supply chain studies: Pre, during and post COVID-19 pandemic.
Journal of Humanitarian Logistics and Supply Chain Management (ahead-of-print). | |
dc.relation | Raj, A., Mukherjee, A. A., de Sousa Jabbour, A. B. L., & Srivastava, S. K. (2022). Supply
chain management during and post-COVID-19 pandemic: Mitigation strategies and
practical lessons learned. Journal of Business Research, 142, 1125–1139. | |
dc.relation | Rees, E. M., Nightingale, E. S., Jafari, Y., Waterlow, N. R., Clifford, S., Carl, C. A.,
Group, C. W., Jombart, T., Procter, S. R., & Knight, G. M. (2020). COVID-19 length of
hospital stay: A systematic review and data synthesis. BMC Medicine, 18(1). https://
doi.org/10.1186/s12916-020-01726-3 | |
dc.relation | Restrepo, M. I., Rousseau, L. M., & Vall´ee, J. (2020). Home healthcare integrated staffing
and scheduling. Omega, 95, Article 102057. | |
dc.relation | Robinson, S. (2002). General concepts of quality for discrete-event simulation. European
Journal of Operational Research, 138(1), 103–117. | |
dc.relation | Robinson, S. (2005). Discrete-event simulation: From the pioneers to the present, what
next? Journal of the Operational Research Society, 56(6), 619–629. | |
dc.relation | Roßmann, B., Canzaniello, A., von der Gracht, H., & Hartmann, E. (2018). The future and
social impact of big data analytics in supply chain management: Results from a
Delphi study. Technological Forecasting and Social Change, 130, 135–149. https://doi.
org/10.1016/j.techfore.2017.10.005 | |
dc.relation | Rostami, M., & Mansouritorghabeh, H. (2020). D-dimer level in COVID-19 infection: A
systematic review. Expert Review of Hematology, 13(11), 1265–1275. https://doi.org/
10.1080/17474086.2020.1831383 | |
dc.relation | Sage Growth Report (2021). The state of healthcare automation. Available at: http://go.
sage-growth.com/healthcare-automation-success-030921-ms (Accessed: 10-10-
2022). | |
dc.relation | Sala, F., Quarto, M., & D’urso, G. (2022). Simulation study of the impact of COVID-19
policies on the efficiency of a smart clinic MRI service. Healthcare (Switzerland), 10
(4) doi: 10.3390/healthcare10040619. | |
dc.relation | Sawangarreerak, S., & Thanathamathee, P. (2020). Random forest with sampling
techniques for handling imbalanced prediction of university student depression.
Information, 11(11), 1–13. https://doi.org/10.3390/info11110519 | |
dc.relation | Schwab, P., Schütte, A. D. M., Dietz, B., & Bauer, S. (2020). Clinical predictive models for
COVID-19: Systematic study. Journal of Medical Internet Research, 22(10). https://
doi.org/10.2196/21439 | |
dc.relation | Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., & Biancone, P. (2021). The role
of artificial intelligence in healthcare: A structured literature review. BMC Medical
Informatics and Decision Making, 21(1), 1–23. | |
dc.relation | Shanbehzadeh, M., Nopour, R., & Kazemi-Arpanahi, H. (2022). Using decision tree
algorithms for estimating ICU admission of COVID-19 patients. Informatics in
Medicine Unlocked, 30(February), Article 100919. https://doi.org/10.1016/j.
imu.2022.100919 | |
dc.relation | Sharma, M., Kumar, A., Luthra, S., Joshi, S., & Upadhyay, A. (2022). The impact of
environmental dynamism on low-carbon practices and digital supply chain networks
to enhance sustainable performance: An empirical analysis. Business Strategy and the
Environment. | |
dc.relation | Sharma, G., Volgman, A. S., & Michos, E. D. (2020). Sex differences in mortality from
COVID-19 pandemic: Are men vulnerable and women protected? JACC: Case Reports,
2(9), 1407–1410. https://doi.org/10.1016/j.jaccas.2020.04.027 | |
dc.relation | Sheng, J., Amankwah-Amoah, J., Khan, Z., & Wang, X. (2021). COVID-19 pandemic in
the new era of big data analytics: Methodological innovations and future research
directions. British Journal of Management, 32(4), 1164–1183. https://doi.org/
10.1111/1467-8551.12441 | |
dc.relation | Simsekler, M. C. E., Alhashmi, N. H., Azar, E., King, N., Luqman, R. A. M. A., & Al
Mulla, A. (2021). Exploring drivers of patient satisfaction using a random forest
algorithm. BMC Medical Informatics and Decision Making, 21(1), 1–9. https://doi.org/
10.1186/s12911-021-01519-5 | |
dc.relation | Simsekler, M. C. E., Qazi, A., Alalami, M. A., Ellahham, S., & Ozonoff, A. (2020).
Evaluation of patient safety culture using a random forest algorithm. Reliability
Engineering and System Safety, 204(April), Article 107186. https://doi.org/10.1016/j.
ress.2020.107186 | |
dc.relation | Sitepu, S., Mawengkang, H., & Husein, I. (2018). Optimization model for capacity
management and bed scheduling for hospital. In IOP conference series: Materials
science and engineering (Vol. 300, No. 1, p. 012016). IOP Publishing. | |
dc.relation | Soni, M., Gopalakrishnan, R., Vaishya, R., & Prabu, P. (2020). D-dimer level is a useful
predictor for mortality in patients with COVID-19: Analysis of 483 cases. Diabetes
and Metabolic Syndrome: Clinical Research and Reviews, 14(6), 2245–2249. https://
doi.org/10.1016/j.dsx.2020.11.007 | |
dc.relation | Srivastava, D. K., Kumar, V., Ekren, B. Y., Upadhyay, A., Tyagi, M., & Kumari, A. (2022).
Adopting Industry 4.0 by leveraging organisational factors. Technological Forecasting
and Social Change, 176, Article 121439. | |
dc.relation | Standfield, L., Comans, T., & Scuffham, P. (2014). Markov modeling and discrete event
simulation in health care: A systematic comparison. International Journal of
Technology Assessment in Health Care, 30(2), 165–172. | |
dc.relation | St ˇ ˇep´
ankov´
a, O., Aubrecht, P., Kouba, Z., & Mikˇsovský, P. (2003). Preprocessing for data
mining and decision support. In Data mining and decision support (pp. 107–117).
Boston, MA: Springer. https://doi.org/10.1007/978-1-4615-0286-9_9. | |
dc.relation | Sujatha, R., Venkata Siva Krishna, B., Chatterjee, J. M., Naidu, P. R., Jhanjhi, N. Z.,
Charita, C., Mariya, E. N., & Baz, M. (2022). Prediction of suitable candidates for
covid-19 vaccination. Intelligent Automation and Soft Computing, 32(1), 525–541. doi:
10.32604/iasc.2022.021216. | |
dc.relation | Sumari, S., Ibrahim, R., Zakaria, N. H., & Ab Hamid, A. H. (2013). Comparing three
simulation model using taxonomy: System dynamic simulation, discrete event
simulation and agent based simulation. International Journal of Management
Excellence, 1(3), 54–59. | |
dc.relation | Sun, T. Q. (2021). Adopting artificial intelligence in public healthcare: The effect of
social power and learning algorithms. International Journal of Environmental Research
and Public Health, 18(23). https://doi.org/10.3390/ijerph182312682 | |
dc.relation | Sun, L., Song, F., Shi, N., Liu, F., Li, S., Li, P., … Shi, Y. (2020). Combination of four
clinical indicators predicts the severe/critical symptom of patients infected COVID19. Journal of Clinical Virology, 128, Article 104431. https://doi.org/10.1016/j.
jcv.2020.104431 | |
dc.relation | Tavakoli, M., Tavakkoli-Moghaddam, R., Mesbahi, R., Ghanavati-Nejad, M., & Tajally, A.
(2022). Simulation of the COVID-19 patient flow and investigation of the future
patient arrival using a time-series prediction model: A real-case study. Medical &
Biological Engineering & Computing, 1–22. https://doi.org/10.1007/s11517-022-
02525-z | |
dc.relation | Thakur, R., Hsu, S. H. Y., & Fontenot, G. (2012). Innovation in healthcare: Issues and
future trends. Journal of Business Research, 65(4), 562–569. https://doi.org/
10.1016/j.jbusres.2011.02.022 | |
dc.relation | Tharakan, S., Nomoto, K., Miyashita, S., & Ishikawa, K. (2020). Body temperature
correlates with mortality in COVID-19 patients. Critical Care, 24(1). https://doi.org/
10.1186/s13054-020-03045-8 | |
dc.relation | Upadhyay, A., Hernandez, M. J. P., & Balodi, K. C. (2022). Covid-19 Disaster relief
projects management: An exploratory study of critical success factors. Operations
Management Research, 1–12. | |
dc.relation | Vazquez-Serrano, ´ J. I., Peimbert-García, R. E., & C´
ardenas-Barron, ´ L. E. (2021). Discreteevent simulation modeling in healthcare: A comprehensive review. International
Journal of Environmental Research and Public Health, 18(22). https://doi.org/
10.3390/ijerph182212262 | |
dc.relation | Verity, R., Okell, L. C., Dorigatti, I., Winskill, P., Whittaker, C., Imai, N., …
Ferguson, N. M. (2020). Estimates of the severity of coronavirus disease 2019: A
model-based analysis. The Lancet Infectious Diseases, 20(6), 669–677. https://doi.
org/10.1016/S1473-3099(20)30243-7 | |
dc.relation | Vickers, A. J., Cronin, A. M., & Begg, C. B. (2011). One statistical test is sufficient for
assessing new predictive markers. BMC Medical Research Methodology, 11(1), 1–7.
https://doi.org/10.1186/1471-2288-11-13 | |
dc.relation | Vijiyakumar, K., Lavanya, B., Nirmala, I., & Sofia Caroline, S. (2019). Random forest
algorithm for the prediction of diabetes. In Paper presented at the 2019 IEEE
international conference on system, computation, automation and networking. https://
doi.org/10.1109/ICSCAN.2019.8878802 | |
dc.relation | Wang, R. Y., Guo, T. Q., Li, L. G., Jiao, J. Y., & Wang, L. Y. (2020). Predictions of COVID19 infection severity based on co-associations between the SNPs of co-morbid
diseases and COVID-19 through machine learning of genetic data. In 2020 IEEE 8th
International conference on computer science and network technology (ICCSNT) (pp.
92–96). IEEE. doi: 10.1109/ICCSNT50940.2020.9304990. | |
dc.relation | Wang, Z., Upadhyay, A., & Kumar, A. (2022). A real options approach to growth
opportunities and resilience aftermath of the COVID-19 pandemic. Journal of
Modelling in Management (ahead-of-print). | |
dc.relation | Wang, K., Gheblawi, M., & Oudit, G. Y. (2020). Angiotensin converting enzyme 2: A
double-edged sword. Circulation, 142(5), 426–428. https://doi.org/10.1161/
CIRCULATIONAHA.120.047049 | |
dc.relation | Wang, T., Tang, R., Ruan, H., Chen, R., Zhang, Z., Sang, L., & China Medical Treatment
Expert Group for COVID-19. (2021). Predictors of fatal outcomes among hospitalized
COVID-19 patients with pre-existing hypertension in china. Clinical Respiratory
Journal, 15(8), 915–924. https://doi.org/10.1111/crj.13382 | |
dc.relation | Wang, Y., Wang, Z., Tse, G., Zhang, L., Wan, E. Y., Guo, Y., Lip, G. Y. H., Li, G., Lu, Z., &
Liu, T. (2020). Cardiac arrhythmias in patients with COVID-19. Journal of
Arrhythmia, 36(5), 827–836. https://doi.org/10.1002/joa3.12405 | |
dc.relation | Whitworth, J. (2020). COVID-19: A fast evolving pandemic. Transactions of the Royal
Society of Tropical Medicine and Hygiene, 114(4), 227–228. https://doi.org/10.1093/
trstmh/traa025 | |
dc.relation | Wood, R. M., McWilliams, C. J., Thomas, M. J., Bourdeaux, C. P., & Vasilakis, C. (2020).
COVID-19 scenario modelling for the mitigation of capacity-dependent deaths in
intensive care. Health Care Management Science, 23(3), 315–324. https://doi.org/
10.1007/s10729-020-09511-7 | |
dc.relation | Xie, Q., Chen, Y., Hu, Y., Zeng, F., Wang, P., Xu, L., … Zeng, F. (2022). Development and
validation of a machine learning-derived radiomics model for diagnosis of
osteoporosis and osteopenia using quantitative computed tomography. BMC Medical
Imaging, 22(1). https://doi.org/10.1186/s12880-022-00868-5 | |
dc.relation | Yang, P., Yang, G., Qi, J., Sheng, B., Yang, Y., Zhang, S., … Mao, X. (2021). The effect of
multiple interventions to balance healthcare demand for controlling COVID-19
outbreaks: A modelling study. Scientific Reports, 11(1), 1–13. https://doi.org/
10.1038/s41598-021-82170-y | |
dc.relation | Yu, K.-H., Beam, A. L., & Kohane, I. S. (2018). Artificial intelligence in healthcare. Nature
Biomedical Engineering, 2(10), 719–731. https://doi.org/10.1038/s41551-018-0305-
z | |
dc.relation | Yusriza, F. A., Abdul Rahman, N. A., Jraisat, L., & Upadhyay, A. (2022). Airline catering
supply chain performance during pandemic disruption: A bayesian network
modelling approach. International Journal of Quality and Reliability Management.
https://doi.org/10.1108/IJQRM-01-2022-0027 | |
dc.relation | Zhang, X. (2018). Application of discrete event simulation in health care: A systematic
review. BMC Health Services Research, 18(1), 1–11. https://doi.org/10.1186/s12913-
018-3456-4 | |
dc.relation | Zhang, L., Yan, X., Fan, Q., Liu, H., Liu, X., Liu, Z., & Zhang, Z. (2020). D-dimer levels on
admission to predict in-hospital mortality in patients with covid-19. Journal of
Thrombosis and Haemostasis, 18(6), 1324–1329. https://doi.org/10.1111/jth.14859 | |
dc.relation | Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X.,
Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H., & Cao, B. (2020).
Clinical course and risk factors for mortality of adult inpatients with COVID-19 in
Wuhan, China: A retrospective cohort study. The Lancet, 395(10229), 1054–1062.
https://doi.org/10.1016/S0140-6736(20)30566-3 | |
dc.relation | Zhu, Z., Hen, B. H., & Teow, K. L. (2012). Estimating ICU bed capacity using discrete
event simulation. International Journal of Health Care Quality Assurance, 25(2),
134–144. https://doi.org/10.1108/09526861211198290 | |
dc.relation | 22 | |
dc.relation | 1 | |
dc.relation | 160 | |
dc.rights | © 2023 Elsevier Inc. All rights reserved. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/embargoedAccess | |
dc.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.source | https://www.sciencedirect.com/science/article/pii/S0148296323001649 | |
dc.subject | Covid-19 | |
dc.subject | Discrete-Event Simulation (DES) | |
dc.subject | Artificial Intelligence (AI) | |
dc.subject | Random Forest (RF) | |
dc.subject | Intensive Care Unit (ICU) | |
dc.subject | Healthcare | |
dc.title | Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: a case study | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |