dc.creatorMárquez, Edgar
dc.creatorMora, José R.
dc.creatorPuello, Esneyder
dc.creatorRangel, Norma
dc.creatorDe Moya, Aldemar
dc.creatorTrilleras, Jorge
dc.creatorCortes, Eliceo
dc.date2019-09-25T21:39:31Z
dc.date2019-09-25T21:39:31Z
dc.date2019-06-12
dc.date.accessioned2023-10-03T19:13:52Z
dc.date.available2023-10-03T19:13:52Z
dc.identifierhttp://hdl.handle.net/11323/5301
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9169079
dc.descriptionThe interaction between three widely used antimalarial drugs chloroquine, primaquine and amodiaquine with acrylamide dimer and trimer as a hydrogel model, were studied by means of density functional theory calculation in both vacuum and water environments, using the functional wb97xd with 6-31++G(d,p) basis set and polarizable continuum model (C-PCM) of solvent. According to binding energy, around −3.15 to −11.91 kJ/mol, the interaction between antimalarial compounds and hydrogel model are exothermic in nature. The extent of interaction found is primaquine > amodiaquine > chloroquine. The natural bond orbital (NBO) calculation and application of second-order perturbation theory show strong charge transfer between the antimalarial and hydrogel model. In addition, the results suggest these interactions are polar in nature, where hydrogen bonds play a principal role in stabilization of the complex. Comparing with the gas-phase, the complexes in the water environment are also stable, with suitable values of Log P (Partition coefficient), and dipolar momentum. Consequently, these results encourage to test acrylamide hydrogels as antimalarial delivery systems.
dc.formatapplication/pdf
dc.languageeng
dc.publisherMDPI
dc.relationhttps://www.raco.cat/index.php/afinidad/article/view/359062
dc.relation1. Organisation Mondiale de la Santé. World Malaria Report 2012 WHO Global Malaria Programme; World Health Organization: Geneva, Swizerland, 2012; ISBN 978-92-4-156453-3. 2. Al Qaraghuli, M.M.; Obeid, M.A.; Aldulaimi, O.; Ferro, V.A. Control of malaria by bio-therapeutics and drug delivery systems. J. Med. Microbiol. Diagn. 2017, 6, 260. [CrossRef] 3. Liu, J.; Xiao, Y.; Allen, C. Polymer–drug compatibility: A guide to the development of delivery systems for the anticancer agent, ellipticine. J. Pharm. Sci. 2004, 93, 132–143. [CrossRef] [PubMed] 4. Tang, H.; Zhao, W.; Yu, J.; Li, Y.; Zhao, C. Recent Development of pH-Responsive Polymers for Cancer Nanomedicine. Molecules 2019, 24, 4. [CrossRef] [PubMed] 5. Yang, L.; Sun, H.; Liu, Y.; Hou, W.; Yang, Y.; Cai, R.; Cui, C.; Zhang, P.; Pan, X.; Li, X.; et al. Self-Assembled Aptamer-Grafted Hyperbranched Polymer Nanocarrier for Targeted and Photoresponsive Drug Delivery. Angew. Chem. Int. Ed. 2018, 57, 17048–17052. [CrossRef] [PubMed] 6. Externally Triggered Heat and Drug Release from Magnetically Controlled Nanocarriers|ACS Applied Polymer Materials. Available online: https://pubs.acs.org/doi/pdf/10.1021/acsapm.8b00100 (accessed on 27 May 2019). 7. Murambiwa, P.; Masola, B.; Govender, T.; Mukaratirwa, S.; Musabayane, C.T. Anti-malarial drug formulations and novel delivery systems: A review. Acta Trop. 2011, 118, 71–79. [CrossRef] [PubMed] 8. Ganji, F.; Vasheghani-Farahani, S.; Vasheghani-Farahani, E. Theoretical description of hydrogel swelling: A review. Iran. Polym. J. 2010, 19, 375–398. 9. Huang, Y.; Jin, X.; Liu, H.; Hu, Y. A molecular thermodynamic model for the swelling of thermo-sensitive hydrogels. Fluid Phase Equilibria 2008, 263, 96–101. [CrossRef] 10. Cai, S.; Suo, Z. Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels. J. Mech. Phys. Solids 2011, 59, 2259–2278. [CrossRef] 11. Du, X.; Zhou, J.; Shi, J.; Xu, B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem. Rev. 2015, 115, 13165–13307. [CrossRef] 12. Huynh, L.; Neale, C.; Pomès, R.; Allen, C. Computational approaches to the rational design of nanoemulsions, polymeric micelles, and dendrimers for drug delivery. Nanomed.: Nanotechnol. Biol. Med. 2012, 8, 20–36. [CrossRef] 13. Shen, E.; Kipper, M.J.; Dziadul, B.; Lim, M.-K.; Narasimhan, B. Mechanistic relationships between polymer microstructure and drug release kinetics in bioerodible polyanhydrides. J. Control. Release 2002, 82, 115–125. [CrossRef] 14. Park, J.; Ye, M.; Park, K. Biodegradable polymers for microencapsulation of drugs. Molecules 2005, 10, 146–161. [CrossRef] [PubMed] 15. Weiss, R.G.; Terech, P. (Eds.) Molecular Gels: Materials with Self-Assembled Fibrillar Networks; Springer: Dordrecht, The Netherlands, 2006; ISBN 978-1-4020-3352-0. 16. Zweep, N.; Hopkinson, A.; Meetsma, A.; Browne, W.R.; Feringa, B.L.; van Esch, J.H. balancing hydrogen bonding and van der waals interactions in cyclohexane-based bisamide and bisurea organogelators. Langmuir 2009, 25, 8802–8809. [CrossRef] [PubMed] 17. Hoy, R.S.; Fredrickson, G.H. Thermoreversible associating polymer networks. I. Interplay of thermodynamics, chemical kinetics, and polymer physics. J. Chem. Phys. 2009, 131, 224902. [CrossRef] [PubMed] 18. Maniruzzaman, M.; Pang, J.; Morgan, D.J.; Douroumis, D. Molecular Modeling as a Predictive Tool for the Development of Solid Dispersions. Available online: https://pubs.acs.org/doi/abs/10.1021/mp500510m (accessed on 3 November 2018). 19. Maniruzzaman, M.; Morgan, D.J.; Mendham, A.P.; Pang, J.; Snowden, M.J.; Douroumis, D. Drug–polymer intermolecular interactions in hot-melt extruded solid dispersions. Int. J. Pharm. 2013, 443, 199–208. [CrossRef] [PubMed] 20. Schmaljohann, D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 2006, 58, 1655–1670. [CrossRef] [PubMed] 21. Seiffert, S.; Sprakel, J. Physical chemistry of supramolecular polymer networks. Chem. Soc. Rev. 2012, 41, 909–930. [CrossRef] [PubMed] 22. Tanaka, F. Theoretical Study of Molecular Association and Thermoreversible Gelation in Polymers. Polym. J. 2002, 34, 479–509. [CrossRef] 23. Peppas, N.A.; Huang, Y.; Torres-Lugo, M.; Ward, J.H.; Zhang, J. Physicochemical Foundations and Structural Design of Hydrogels in Medicine and Biology. Annu. Rev. Biomed. Eng. 2000, 2, 9–29. [CrossRef] 24. Chun, B.J.; Lu, J.; Weck, M.; Jang, S.S. Characterization of molecular association of poly(2-oxazoline)s-based micelles with various epoxides and diols via the Flory–Huggins theory: A molecular dynamics simulation approach. Phys. Chem. Chem. Phys. 2015, 17, 29161–29170. [CrossRef] 25. Bahar, I.; Erbil, H.Y.; Baysal, B.M.; Erman, B. Determination of polymer-solvent interaction parameter from swelling of networks: The system poly(2-hydroxyethyl methacrylate)-diethylene glycol. Macromolecules 1987, 20, 1353–1356. [CrossRef] 26. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [CrossRef] 27. Marquez, E.; Domínguez, R.M.; Mora, J.R.; Córdova, T.; Chuchani, G. Experimental and theoretical studies of the homogeneous, unimolecular gas-phase elimination kinetics of trimethyl orthovalerate and trimethyl orthochloroacetate. J. Phys. Chem. A 2010, 114, 4203–4209. [CrossRef] [PubMed] 28. Exner, K.S.; Over, H. Kinetics of electrocatalytic reactions from first-principles: A critical comparison with the ab initio thermodynamics approach. Acc. Chem. Res. 2017, 50, 1240–1247. [CrossRef] [PubMed] 29. Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926. [CrossRef] 30. Shirota, H.; Ushiyama, H. Hydrogen-bonding dynamics in aqueous solutions of amides and acids: Monomer, dimer, trimer, and polymer. J. Phys. Chem. B 2008, 112, 13542–13551. [CrossRef] [PubMed] 31. Liu, H.; Chen, J.; Shen, Q.; Fu, W.; Wu, W. Molecular insights on the cyclic peptide nanotube-mediated transportation of antitumor drug 5-fluorouracil. Mol. Pharm. 2010, 7, 1985–1994. [CrossRef] 32. Albertorio, F.; Hughes, M.E.; Golovchenko, J.A.; Branton, D. Base dependent DNA–carbon nanotube interactions: Activation enthalpies and assembly–disassembly control. Nanotechnology 2009, 20, 395101. [CrossRef] 33. Sparks, T.C.; Lorsbach, B.A. Agrochemical Discovery—Building the Next Generation of Insect Control Agents. In ACS Symposium Series; Gross, A.D., Ozoe, Y., Coats, J.R., Eds.; American Chemical Society: Washington, DC, USA, 2017; Volume 1264, pp. 1–17. ISBN 978-0-8412-3257-0. 34. Baldi, A. Computational approaches for drug design and discovery: An overview. Syst. Rev. Pharm. 2010, 1, 99. [CrossRef] 35. Gallo, M.; Favila, A.; Glossman-Mitnik, D. DFT studies of functionalized carbon nanotubes and fullerenes as nanovectors for drug delivery of antitubercular compounds. Chem. Phys. Lett. 2007, 447, 105–109. [CrossRef] 36. Karata¸s, D.; Tekin, A.; Bahadori, F.; Çelik, M.S. Interaction of curcumin in a drug delivery system including a composite with poly(lactic-co-glycolic acid) and montmorillonite: A density functional theory and molecular dynamics study. J. Mater. Chem. B 2017, 5, 8070–8082. [CrossRef] 37. Kaur, J.; Singla, P.; Goel, N. Adsorption of oxazole and isoxazole on BNNT surface: A DFT study. Appl. Surf. Sci. 2015, 328, 632–640. [CrossRef] 38. Liu, Z.; Fan, A.C.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X.; Yang, Q.; Felsher, D.W.; Dai, H. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Ed. Engl. 2009, 48, 7668–7672. [CrossRef] [PubMed] 39. Qin, W.; Li, X.; Bian, W.-W.; Fan, X.-J.; Qi, J.-Y. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces. Biomaterials 2010, 31, 1007–1016. [CrossRef] [PubMed] 40. Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual density functional theory. Chem. Rev. 2003, 103, 1793–1874. [CrossRef] [PubMed] 41. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian16 Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. 42. Sun, H.; Kabb, C.P.; Dai, Y.; Hill, M.R.; Ghiviriga, I.; Bapat, A.P.; Sumerlin, B.S. Macromolecular metamorphosis via stimulus-induced transformations of polymer architecture. Nat. Chem. 2017, 9, 817–823. [CrossRef] [PubMed] 43. Souza, B.S.; Mora, J.R.; Wanderlind, E.H.; Clementin, R.M.; Gesser, J.C.; Fiedler, H.D.; Nome, F.; Menger, F.M. Transforming a Stable Amide into a Highly Reactive One: Capturing the Essence of Enzymatic Catalysis. Angew. Chem. Int. Ed. 2017, 56, 5345–5348. [CrossRef] [PubMed] 44. Mora, J.R.; Cervantes, C.; Marquez, E. New Insight into the Chloroacetanilide Herbicide Degradation Mechanism through a Nucleophilic Attack of Hydrogen Sulfide. Int. J. Mol. Sci. 2018, 19, 2864. [CrossRef] [PubMed] 45. McQuarrie, D.A. Statistical Mechanics; University Science Books: Sausalito, CA, USA, 2000; ISBN 978-1-891389-15-3. 46. Tan, T.T.M.; Rode, B.M. Molecular modelling of polymers, 3. Prediction of glass transition temperatures of poly(acrylic acid), poly(methacrylic acid) and polyacrylamide derivatives. Macromol. Theory Simul. 1996, 5, 467–475. [CrossRef] 47. Scaranto, J.; Mallia, G.; Harrison, N.M. An efficient method for computing the binding energy of an adsorbed molecule within a periodic approach. The application to vinyl fluoride at rutile TiO2(110) surface. Comput. Mater. Sci. 2011, 50, 2080–2086. [CrossRef] 48. Chunsrivirot, S.; Trout, B.L. Free Energy of Binding of a Small Molecule to an Amorphous Polymer in a Solvent. Langmuir 2011, 27, 6910–6919. [CrossRef] [PubMed] 49. Gutowski, M.; Van Lenthe, J.H.; Verbeek, J.; Van Duijneveldt, F.B.; Chałasinski, G. The basis set superposition error in correlated electronic structure calculations. Chem. Phys. Lett. 1986, 124, 370–375. [CrossRef] 50. Kruse, H.; Grimme, S. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. J. Chem. Phys. 2012, 136, 154101. [CrossRef] [PubMed] 51. Ghose, A.K.; Crippen, G.M. Atomic Physicochemical Parameters for Three-Dimensional Structure-Directed Quantitative Structure-Activity Relationships I. Partition Coefficients as a Measure of Hydrophobicity. J. Comput. Chem. 1986, 7, 565–577. [CrossRef] 52. Zheng, Y.-Z.; Zhou, Y.; Liang, Q.; Chen, D.-F.; Guo, R.; Lai, R.-C. Hydrogen-bonding Interactions between Apigenin and Ethanol/Water: A Theoretical Study. Sci. Rep. 2016, 6, 34647. [CrossRef] [PubMed] 53. Magdaline, J.D.; Chithambarathanu, T. Natural bond orbital analysis and vibrational spectroscopic studies of 2-furoic acid using density functional theory. Appl. Phys. 2012, 50, 7. 54. Niklasson, A.M.N.; Challacombe, M. Density Matrix Perturbation Theory. Phys. Rev. Lett. 2004, 92. [CrossRef] [PubMed]
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectPlasmodium falciparum
dc.subjectHydrogen bond
dc.subjectHydrogel
dc.subjectComputational modeling
dc.subjectBinding energy
dc.subjectDrug-delivery system
dc.titleTheoretical study of the adsorption process of antimalarial drugs into acrylamide-base hydrogel model using dft methods: the first approach to the rational design of a controlled drug delivery system
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/submittedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución