dc.creatorAcwin Dwijendra, Ngakan Ketut
dc.creatorRahardja, Untung
dc.creatorBharath Kumar, Narukullapati
dc.creatorPatra, Indrajit
dc.creatorMaher, Musaddak
dc.creatorFinogenova, Yulia
dc.creatorGrimaldo Guerrero, John William
dc.creatorEmad Izzat, Samar
dc.creatorAlawsi, Taif
dc.date2023-01-17T14:20:11Z
dc.date2023-01-17T14:20:11Z
dc.date2022-11-01
dc.date.accessioned2023-10-03T19:13:38Z
dc.date.available2023-10-03T19:13:38Z
dc.identifierDwijendra, N.K.A.; Rahardja, U.; Kumar, N.B.; Patra, I.; Zahra, M.M.A.; Finogenova, Y.; Guerrero, J.W.G.; Izzat, S.E.; Alawsi, T. An Analysis of Urban Block Initiatives Influencing Energy Consumption and Solar Energy Absorption. Sustainability 2022, 14, 14273. https://doi.org/10.3390/su142114273
dc.identifierhttps://hdl.handle.net/11323/9770
dc.identifier10.3390/su142114273
dc.identifier2071-1050
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9169049
dc.descriptionPopulation growth and urbanization cause developing-country cities to create energy-intensive buildings. Building energy efficiency can be improved through active and passive solar design to reduce energy consumption, increase equipment efficiency, and utilize renewable energy, converting renewable energy into thermal energy or electricity. In this study, passive architecture was evaluated for both urban block and building energy usage. When reliable information and analysis of signs and parameters impacting energy consumption are available, designers and architects can evaluate and passively design a building with higher precision and an accurate picture of its energy consumption in the early stages of the design process. This article compares the location of Baku’s building mass to six climate-related scenarios. Three methodologies are used to determine how much solar energy the models utilize and the difference between annual heating and cooling energy consumption. The structure’s rotation has little effect on the energy utilized in most forms. Only east-west linear designs employ 6 to 4 kWh/m2 of area and are common. Most important is the building’s increased energy consumption, which can take several forms. The building’s westward rotation may be its most important feature. Any westward revolution requires more energy. Building collections together offers many benefits, including the attention designers and investors provide to all places. Having an integrated collection and a sense of community affects inhabitants’ later connections. Dictionary and encyclopedia entries include typology discoveries. These findings will inform future research and investigations. An architect must know a variety of qualities and organizations to define and segregate the environment because architecture relies heavily on the environment. This research involves analyzing the current situation to gain knowledge for future estimations. The present will determine the future.
dc.format14 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherMDPI AG
dc.publisherSwitzerland
dc.relationSustainability
dc.relation1. Molajou, A.; Pouladi, P.; Afshar, A. Incorporating Social System into Water-Food-Energy Nexus. Water Resour. Manag. 2021, 35, 4561–4580. [CrossRef]
dc.relation2. Molajou, A.; Afshar, A.; Khosravi, M.; Soleimanian, E.; Vahabzadeh, M.; Variani, H.A. A New Paradigm of Water, Food, and Energy Nexus. Environ. Sci. Pollut. Res. 2021, 1–11. [CrossRef] [PubMed]
dc.relation3. Afshar, A.; Soleimanian, E.; Akbari Variani, H.; Vahabzadeh, M.; Molajou, A. The Conceptual Framework to Determine Interrelations and Interactions for Holistic Water, Energy, and Food Nexus. Environ. Dev. Sustain. 2022, 24, 10119–10140. [CrossRef]
dc.relation4. Mijatovi´c, M.D.; Uzelac, O.; Stoiljkovi´c, A. Effects of Human Resources Management on the Manufacturing Firm Performance: Sustainable Development Approach. Int. J. Ind. Eng. Manag. 2020, 11, 205–212. [CrossRef]
dc.relation5. Rafiei, A.; Loni, R.; Mahadzir, S.B.; Najafi, G.; Sadeghzadeh, M.; Mazlan, M.; Ahmadi, M.H. Hybrid Solar Desalination System for Generation Electricity and Freshwater with Nanofluid Application: Energy, Exergy, and Environmental Aspects. Sustain. Energy Technol. Assess. 2022, 50, 101716. [CrossRef]
dc.relation6. Salek, F.; Eshghi, H.; Zamen, M.; Ahmadi, M.H. Energy and Exergy Analysis of an Atmospheric Water Generator Integrated with the Compound Parabolic Collector with Storage Tank in Various Climates. Energy Rep. 2022, 8, 2401–2412. [CrossRef]
dc.relation7. Karimi, G.; Moradi, Y. Buffer Insertion for Delay Minimization in RLC Interconnects Using Cuckoo Optimization Algorithm. Analog. Integr. Circuits Signal Process. 2019, 99, 111–121. [CrossRef]
dc.relation8. Fianko, S.K.; Amoah, N.; Jnr, S.A.; Dzogbewu, T.C. Green Supply Chain Management and Environmental Performance: The Moderating Role of Firm Size. Int. J. Ind. Eng. Manag. 2021, 12, 163–173. [CrossRef]
dc.relation9. Jalili, M.; Ghasempour, R.; Ahmadi, M.H.; Chitsaz, A.; Holagh, S.G. An Integrated CCHP System Based on Biomass and Natural Gas Co-Firing: Exergetic and Thermo-Economic Assessments in the Framework of Energy Nexus. Energy Nexus 2022, 5, 100016. [CrossRef]
dc.relation10. Chen, T.C.; Zahar, M.; Voronkova, O.Y.; Khoruzhy, V.I.; Morozov, I.V.; Esfahani, M.J. Providing a Framework Based on DecisionMaking Methods to Assess Safety Risk in Construction Projects. Int. J. Ind. Eng. Manag. 2022, 13, 8–17. [CrossRef]
dc.relation11. Novas, N.; Garcia, R.M.; Camacho, J.M.; Alcayde, A. Advances in Solar Energy towards Efficient and Sustainable Energy. Sustainability 2021, 13, 6295. [CrossRef]
dc.relation12. Heffron, R.; Halbrügge, S.; Körner, M.F.; Obeng-Darko, N.A.; Sumarno, T.; Wagner, J.; Weibelzahl, M. Justice in Solar Energy Development. Sol. Energy 2021, 218, 68–75. [CrossRef]
dc.relation13. Agbo, E.P.; Edet, C.O.; Magu, T.O.; Njok, A.O.; Ekpo, C.M.; Louis, H. Solar Energy: A Panacea for the Electricity Generation Crisis in Nigeria. Heliyon 2021, 7, e07016. [CrossRef] [PubMed]
dc.relation14. Vo, T.T.E.; Ko, H.; Huh, J.H.; Park, N. Overview of Solar Energy for Aquaculture: The Potential and Future Trends. Energies 2021, 14, 6923. [CrossRef]
dc.relation15. Heng, Y.; Lu, C.L.; Yu, L.; Gao, Z. The Heterogeneous Preferences for Solar Energy Policies among US Households. Energy Policy 2020, 137, 111187. [CrossRef]
dc.relation16. Güney, T. Solar Energy, Governance and CO2 Emissions. Renew. Energy 2022, 184, 791–798. [CrossRef]
dc.relation17. Javadi, M.A.; Khalili Abhari, M.; Ghasemiasl, R.; Ghomashi, H. Energy, Exergy and Exergy-Economic Analysis of a New Multigeneration System Based on Double-Flash Geothermal Power Plant and Solar Power Tower. Sustain. Energy Technol. Assess. 2021, 47, 101536. [CrossRef]
dc.relation18. Bassam, N. El Solar Energy. In Distributed Renewable Energies for Off-Grid Communities: Empowering A Sustainable, Competitive, and Secure Twenty-First Century; Elsevier: Amsterdam, The Netherlands, 2021; pp. 123–147. ISBN 9780128216057.
dc.relation19. Banin, U.; Waiskopf, N.; Hammarström, L.; Boschloo, G.; Freitag, M.; Johansson, E.M.J.; Sá, J.; Tian, H.; Johnston, M.B.; Herz, L.M.; et al. Nanotechnology for Catalysis and Solar Energy Conversion. Nanotechnology 2020, 32, 042003. [CrossRef]
dc.relation20. Irfan, M.; Elavarasan, R.M.; Hao, Y.; Feng, M.; Sailan, D. An Assessment of Consumers’ Willingness to Utilize Solar Energy in China: End-Users’ Perspective. J. Clean. Prod. 2021, 292, 126008. [CrossRef]
dc.relation21. Satharasinghe, A.; Hughes-Riley, T.; Dias, T. A Review of Solar Energy Harvesting Electronic Textiles. Sensors 2020, 20, 5938. [CrossRef]
dc.relation22. Chiemelu, N.E.; Anejionu, O.C.D.; Ndukwu, R.I.; Okeke, F.I. Assessing the Potentials of Largescale Generation of Solar Energy in Eastern Nigeria with Geospatial Technologies. Sci. Afr. 2021, 12, e00771. [CrossRef]
dc.relation23. Sharif, A.; Meo, M.S.; Chowdhury, M.A.F.; Sohag, K. Role of Solar Energy in Reducing Ecological Footprints: An Empirical Analysis. J. Clean. Prod. 2021, 292, 126028. [CrossRef]
dc.relation24. Shi, Z.; Fonseca, J.A.; Schlueter, A. A Parametric Method Using Vernacular Urban Block Typologies for Investigating Interactions between Solar Energy Use and Urban Design. Renew. Energy 2021, 165, 823–841. [CrossRef]
dc.relation25. Vaka, M.; Walvekar, R.; Rasheed, A.K.; Khalid, M. A Review on Malaysia’s Solar Energy Pathway towards Carbon-Neutral Malaysia beyond Covid’19 Pandemic. J. Clean. Prod. 2020, 273, 122834. [CrossRef]
dc.relation26. Almutairi, K.; Alhuyi Nazari, M.; Salem, M.; Rashidi, M.M.; El Haj Assad, M.; Padmanaban, S. A Review on Applications of Solar Energy for Preheating in Power Plants. Alex. Eng. J. 2022, 61, 5283–5294. [CrossRef]
dc.relation27. Behar, O.; Peña, R.; Kouro, S.; Kracht, W.; Fuentealba, E.; Moran, L.; Sbarbaro, D. The Use of Solar Energy in the Copper Mining Processes: A Comprehensive Review. Clean. Eng. Technol. 2021, 4, 100259. [CrossRef]
dc.relation28. Al-Shahri, O.A.; Ismail, F.B.; Hannan, M.A.; Lipu, M.S.H.; Al-Shetwi, A.Q.; Begum, R.A.; Al-Muhsen, N.F.O.; Soujeri, E. Solar Photovoltaic Energy Optimization Methods, Challenges and Issues: A Comprehensive Review. J. Clean. Prod. 2021, 284, 125465. [CrossRef]
dc.relation29. David, T.M.; Silva Rocha Rizol, P.M.; Guerreiro Machado, M.A.; Buccieri, G.P. Future Research Tendencies for Solar Energy Management Using a Bibliometric Analysis, 2000–2019. Heliyon 2020, 6, e04452. [CrossRef]
dc.relation30. Pandey, A.; Pandey, P.; Tumuluru, J.S. Solar Energy Production in India and Commonly Used Technologies—An Overview. Energies 2022, 15, 500. [CrossRef]
dc.relation31. Gulaliyev, M.G.; Mustafayev, E.R.; Mehdiyeva, G.Y. Assessment of Solar Energy Potential and Its Ecological-Economic Efficiency: Azerbaijan Case. Sustainability 2020, 12, 1116. [CrossRef]
dc.relation32. Satharasinghe, A.; Hughes-Riley, T.; Dias, T. An Investigation of a Wash-Durable Solar Energy Harvesting Textile. Prog. Photovolt. Res. Appl. 2020, 28, 578–592. [CrossRef]
dc.relation33. Amo-Aidoo, A.; Hensel, O.; Korese, J.K.; Abunde Neba, F.; Sturm, B. A Framework for Optimization of Energy Efficiency and Integration of Hybridized-Solar Energy in Agro-Industrial Plants: Bioethanol Production from Cassava in Ghana. Energy Rep. 2021, 7, 1501–1519. [CrossRef]
dc.relation34. Kim, S.Y.; Ganesan, K.; Dickens, P.; Panda, S. Public Sentiment toward Solar Energy—Opinion Mining of Twitter Using a Transformer-Based Language Model. Sustainability 2021, 13, 2673. [CrossRef]
dc.relation35. Reyes-Belmonte, M.A. Quo Vadis Solar Energy Research? Appl. Sci. 2021, 11, 3015. [CrossRef]
dc.relation36. Fountoulakis, I.; Kosmopoulos, P.; Papachristopoulou, K.; Raptis, I.P.; Mamouri, R.E.; Nisantzi, A.; Gkikas, A.; Witthuhn, J.; Bley, S.; Moustaka, A.; et al. Effects of Aerosols and Clouds on the Levels of Surface Solar Radiation and Solar Energy in Cyprus. Remote Sens. 2021, 13, 2319. [CrossRef]
dc.relation37. Mohammad, S.T.; Al-Kayiem, H.H.; Aurybi, M.A.; Khlief, A.K. Measurement of Global and Direct Normal Solar Energy Radiation in Seri Iskandar and Comparison with Other Cities of Malaysia. Case Stud. Therm. Eng. 2020, 18, 100591. [CrossRef]
dc.relation38. Walston, L.J.; Li, Y.; Hartmann, H.M.; Macknick, J.; Hanson, A.; Nootenboom, C.; Lonsdorf, E.; Hellmann, J. Modeling the Ecosystem Services of Native Vegetation Management Practices at Solar Energy Facilities in the Midwestern United States. Ecosyst. Serv. 2021, 47, 101227. [CrossRef]
dc.relation39. Yu, H.; Helland, H.; Yu, X.; Gundersen, T.; Sin, G. Optimal Design and Operation of an Organic Rankine Cycle (ORC) System Driven by Solar Energy with Sensible Thermal Energy Storage. Energy Convers. Manag. 2021, 244, 114494. [CrossRef]
dc.relation40. Karayel, G.K.; Javani, N.; Dincer, I. Green Hydrogen Production Potential for Turkey with Solar Energy. Int. J. Hydrog. Energy 2022, 47, 19354–19364. [CrossRef]
dc.relation41. Pandey, A.K.; Reji Kumar, R.; Kalidasan, B.; Laghari, I.A.; Samykano, M.; Kothari, R.; Abusorrah, A.M.; Sharma, K.; Tyagi, V.V. Utilization of Solar Energy for Wastewater Treatment: Challenges and Progressive Research Trends. J. Environ. Manag. 2021, 297, 113300. [CrossRef]
dc.relation42. Ozoegwu, C.G.; Akpan, P.U. A Review and Appraisal of Nigeria’s Solar Energy Policy Objectives and Strategies against the Backdrop of the Renewable Energy Policy of the Economic Community of West African States. Renew. Sustain. Energy Rev. 2021, 143, 110887. [CrossRef]
dc.relation43. Azis, S.S.A.; Zulkifli, N.A.A. Green Roof for Sustainable Urban Flash Flood Control via Cost Benefit Approach for Local Authority. Urban For. Urban Green. 2021, 57, 126876. [CrossRef]
dc.relation44. Ahmad, M.; Javaid, N.; Niaz, I.A.; Almogren, A.; Radwan, A. A Bio-Inspired Heuristic Algorithm for Solving Optimal Power Flow Problem in Hybrid Power System. IEEE Access 2021, 9, 159809–159826. [CrossRef]
dc.relation45. Goulart, E.V.; Reis, N.C.; Lavor, V.F.; Castro, I.P.; Santos, J.M.; Xie, Z.T. Local and Non-Local Effects of Building Arrangements on Pollutant Fluxes within the Urban Canopy. Build. Environ. 2019, 147, 23–34. [CrossRef]
dc.relation46. Carrasco, L.; Giam, X.; Pape¸s, M.; Sheldon, K.S. Metrics of Lidar-Derived 3D Vegetation Structure Reveal Contrasting Effects of Horizontal and Vertical Forest Heterogeneity on Bird Species Richness. Remote Sens. 2019, 11, 743. [CrossRef]
dc.relation47. Pani, L.; Francesconi, L.; Rombi, J.; Mistretta, F.; Sassu, M.; Stochino, F. Effect of Parent Concrete on the Performance of Recycled Aggregate Concrete. Sustainability 2020, 12, 9399. [CrossRef]
dc.relation48. Sineglazov, V.; Karabetsky, D.; Chumachenko, O. Multicriteria Optimization in the Problem of Computeraided Design of Hybrid Solar Energy Systems. East. Eur. J. Enterp. Technol. 2021, 3, 67–78. [CrossRef]
dc.relation49. Kuznetsov, S.V.; Siswanto, W.A.; Sabirova, F.M.; Pustokhina, I.G.; Melnikova, L.A.; Zakieva, R.R.; Nomani, M.Z.M.; Rahman, F.F.; Husein, I.; Thangavelu, L. Emotional Artificial Neural Network (EANN)-Based Prediction Model of Maximum A-Weighted Noise Pressure Level. Noise Mapp. 2022, 9, 1–9. [CrossRef]
dc.relation14
dc.relation1
dc.relation21
dc.relation14
dc.rights© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://www.mdpi.com/2071-1050/14/21/14273
dc.subjectSolar energy
dc.subjectMaximum energy efficiency
dc.subjectEnergy consumption reduction
dc.titleAn analysis of urban block initiatives influencing energy consumption and solar energy absorption
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_2df8fbb1
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_970fb48d4fbd8a85


Este ítem pertenece a la siguiente institución