dc.creatorSagastume, Alexis
dc.creatorMENDOZA FANDIÑO, JORGE MARIO
dc.creatorCabello Eras, Juan José
dc.creatorSOFAN GERMAN, STIVEN JAVIER
dc.date2022-03-08T16:13:09Z
dc.date2022-03-08T16:13:09Z
dc.date2022
dc.date.accessioned2023-10-03T19:13:10Z
dc.date.available2023-10-03T19:13:10Z
dc.identifier2352-7285
dc.identifierhttps://hdl.handle.net/11323/9054
dc.identifierhttps://doi.org/10.1016/j.deveng.2022.100093
dc.identifier10.1016/j.deveng.2022.100093
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9168989
dc.descriptionModern energy services are essential to replace the extensive use of traditional biomass fuels driving several environmental, health, and social issues affecting the welfare of low-income citizens. Particularly, in Colombia, 11% of the households rely on inefficient firewood cooking systems, while two million people have either intermittent access or no access to electricity. This is particularly important in the department of Cordoba, where an average of 32% of the households relies on firewood for cooking, increasing to 66% of the households in rural areas. Furthermore, 20% of the rural population lack access to electricity. Therefore, this study aims at defining the biogas-based energy potential of the available agricultural and manure wastes in the department. To this end, governmental data is used to estimate the demand for firewood for cooking, the resulting GHG emissions, and the available agricultural and manure wastes. Overall, there are around 1.2 million t of agricultural wastes and 2.2 million t of manure yearly available in the department, representing an energy potential of 6687 TJ. Using 26% of the biogas-based energy potential identified suffices to support the 1334 TJ of biogas needed to replace cooking firewood and to supply the 390 TJ needed for household electricity generation. The use of biogas can reduce GHG emissions to 11% of the emissions resulting from cooking firewood. Polyethylene tubular digesters appear as the most indicated household technology, contrasted to geomembrane tubular digesters that need 2.4 times the initial capital investment while fixed dome digesters need 7.9 times the initial capital investment. Implementing household digesters to support the energy demand for cooking in the department, necessitates a minimum of 18 million USD, while the implementation of ‘digester + electric generator’ needs between 1.7 and 5.7 million USDdepending on the monthly demand of electricity of 60 kWh or 187 kWh.
dc.format15 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherElsevier Ltd.
dc.publisherUnited Kingdom
dc.relationDevelopment Engineering
dc.relationAdeoti et al., 2014 O. Adeoti, T.A. Ayelegun, S.O. Osho Nigeria biogas potential from livestock manure and its estimated climate value Renew. Sustain. Energy Rev. (2014), 10.1016/j.rser.2014.05.005
dc.relationBao et al., 2019 W. Bao, Y. Yang, T. Fu, G.H. Xie Estimation of Livestock Excrement and its Biogas Production Potential in China (2019), 10.1016/j.jclepro.2019.05.059
dc.relationBedi et al., 2017 A.S. Bedi, R. Sparrow, L. Tasciotti The impact of a household biogas programme on energy use and expenditure in East Java Energy Econ., 68 (2017), pp. 66-76, 10.1016/j.eneco.2017.09.006
dc.relationBhat et al., 2001 P.R. Bhat, H.N. Chanakya, N.H. Ravindranath Biogas plant dissemination: success story of Sirsi, India Energy Sustain. Dev., 5 (2001), pp. 39-46, 10.1016/S0973-0826(09)60019-3
dc.relationBISON, 2021 BISON Biogas generator [WWW document] URL https://www.alibaba.com/product-detail/Biogas-Generator-1kw-BISON-CHINA-Small_1600341334722.html?spm=a2700.7724857.normal_offer.d_image.3a1f5a776lhaPR&s=p (2021), Accessed 18th Nov 2021
dc.relationBond and Templeton, 2011 T. Bond, M.R. Templeton History and future of domestic biogas plants in the developing world Energy Sustain. Dev. (2011), 10.1016/j.esd.2011.09.003
dc.relationBruun et al., 2014 S. Bruun, L.S. Jensen, V.T. Khanh Vu, S. Sommer Small-scale household biogas digesters: an option for global warming mitigation or a potential climate bomb? Renew. Sustain. Energy Rev., 33 (2014), pp. 736-741, 10.1016/j.rser.2014.02.033
dc.relationCarranza and Gutiérrez, 2012 J.Q. Carranza, C.C. Gutiérrez El fogón abierto de tres piedras en la península de Yucatán: tradición y transferencia tecnológica Rev. Pueblos y Front., 7 (2012), pp. 270-301
dc.relationCastro et al., 2017 L. Castro, H. Escalante, J. Jaimes-Estévez, L.J. Díaz, K. Vecino, G. Rojas, L. Mantilla Low cost digester monitoring under realistic conditions: rural use of biogas and digestate quality Bioresour. Technol., 239 (2017), pp. 311-317, 10.1016/j.biortech.2017.05.035
dc.relationChakravarty and Tavoni, 2013 S. Chakravarty, M. Tavoni Energy poverty alleviation and climate change mitigation: is there a trade off? Energy Econ., 40 (2013), pp. 67-73, 10.1016/j.eneco.2013.09.022
dc.relationCML - Department of Industrial Ecology, 2016 CML - Department of Industrial Ecology CML-IA Characterisation Factors [WWW Document]. C. is a database that Contain. characterisation factors life cycle impact Assess. is easily read by C. Softw. program (2016)
dc.relationConsorcio Estrategia Rural Sostenible, 2019 Consorcio Estrategia Rural Sostenible Plan de sustitución progresiva de leña Bogotá, Colombia (2019)
dc.relationCornejo and Wilkie, 2010 C. Cornejo, A.C. Wilkie Greenhouse gas emissions and biogas potential from livestock in Ecuador Energy Sustain. Dev., 14 (2010), pp. 256-266, 10.1016/j.esd.2010.09.008
dc.relationDANE, 2018 DANE Resultados del censo nacional de población y vivienda 2018 (2018) [WWW Document]. URL https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018, Accessed 9th Nov 2020
dc.relationDelgado et al., 2020 R. Delgado, T.B. Wild, R. Arguello, L. Clarke, G. Romero Options for Colombia's mid-century deep decarbonization strategy Energy Strateg. Rev., 32 (2020), p. 100525, 10.1016/j.esr.2020.100525
dc.relationDeng et al., 2020 L. Deng, Y. Liu, W. Wang Biogas Technology, Biogas Technology Springer, Singapore (2020), 10.1007/978-981-15-4940-3
dc.relationDhingra et al., 2011 R. Dhingra, E.R. Christensen, Y. Liu, B. Zhong, C.-F. Wu, M.G. Yost, J.V. Remais Greenhouse gas emission reductions from domestic anaerobic digesters linked with sustainable sanitation in rural China Environ. Sci. Technol., 45 (2011), pp. 2345-2352, 10.1021/es103142y
dc.relationDing et al., 2012 W. Ding, H. Niu, J. Chen, J. Du, Y. Wu Influence of household biogas digester use on household energy consumption in a semi-arid rural region of northwest China Appl. Energy, 97 (2012), pp. 16-23, 10.1016/j.apenergy.2011.12.017
dc.relationDong et al., 2018 J. Dong, Y. Tang, A. Nzihou, Y. Chi, E. Weiss-Hortala, M. Ni Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: theoretical analysis and case study of commercial plants Sci. Total Environ. J., 626 (2018), pp. 744-753, 10.1016/j.scitotenv.2018.01.151
dc.relationFan et al., 2011 J. Fan, Y. tian Liang, A. jun Tao, K. rong Sheng, H.L. Ma, Y. Xu, C.S. Wang, W. Sun Energy policies for sustainable livelihoods and sustainable development of poor areas in China Energy Pol., 39 (2011), pp. 1200-1212, 10.1016/j.enpol.2010.11.048
dc.relationFAO, 2021 FAO Biogas Systems in Rwanda. A Critical Review FAO, Rome (2021), 10.4060/cb3409en
dc.relationFerrer-Martí et al., 2018 L. Ferrer-Martí, I. Ferrer, E. Sánchez, M. Garfí A multi-criteria decision support tool for the assessment of household biogas digester programmes in rural areas. A case study in Peru Renew. Sustain. Energy Rev., 95 (2018), pp. 74-83, 10.1016/j.rser.2018.06.064
dc.relationFigueroa et al., 2017 A. Figueroa, F. Boshell, L. Velzen van, A. Anisie Biogas for Domestic Cooking: Technology Brief (2017) Abu Dhabi
dc.relationFlesch et al., 2011 T.K. Flesch, R.L. Desjardins, D. Worth Fugitive methane emissions from an agricultural biodigester Biomass Bioenergy, 35 (2011), pp. 3927-3935, 10.1016/j.biombioe.2011.06.009
dc.relationGaona et al., 2015 E.E. Gaona, C.L. Trujillo, J.A. Guacaneme Rural microgrids and its potential application in Colombia Renew. Sustain. Energy Rev., 51 (2015), pp. 125-137, 10.1016/j.rser.2015.04.176
dc.relationGarfí et al., 2014 M. Garfí, E. Cadena, I. Pérez, I. Ferrer Technical, economic and environmental assessment of household biogas digesters for rural communities Renew. Energy, 62 (2014), pp. 313-318, 10.1016/j.renene.2013.07.017
dc.relationGarfí et al., 2019 M. Garfí, L. Castro, N. Montero, H. Escalante, I. Ferrer Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: a life cycle assessment Bioresour. Technol., 274 (2019), pp. 541-548, 10.1016/j.biortech.2018.12.007
dc.relationGarfí et al., 2012 M. Garfí, L. Ferrer-Martí, E. Velo, I. Ferrer Evaluating benefits of low-cost household digesters for rural Andean communities Renew. Sustain. Energy Rev., 16 (2012), pp. 575-581, 10.1016/j.rser.2011.08.023
dc.relationGASNOVA, 2018 GASNOVA Reemplazar el consumo de leña , mediante la ampliación de la cobertura de gas licuado de petróleo (GLP) (2018)
dc.relationGómez-Navarro and Ribó-Pérez, 2018 T. Gómez-Navarro, D. Ribó-Pérez Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia Renew. Sustain. Energy Rev., 90 (2018), pp. 131-141, 10.1016/j.rser.2018.03.015
dc.relationGonzález-Eguino, 2015 M. González-Eguino Energy poverty: an overview Renew. Sustain. Energy Rev., 47 (2015), pp. 377-385, 10.1016/j.rser.2015.03.013
dc.relationGonzalez-Salazar et al., 2014a M.A. Gonzalez-Salazar, M. Morini, M. Pinelli, P.R. Spina, M. Venturini, M. Finkenrath, W.R. Poganietz Methodology for estimating biomass energy potential and its application to Colombia Appl. Energy, 136 (2014), pp. 781-796, 10.1016/j.apenergy.2014.07.004
dc.relationGonzalez-Salazar et al., 2014b M.A. Gonzalez-Salazar, M. Morini, M. Pinelli, P.R. Spina, M. Venturini, M. Finkenrath, W.R. Poganietz Methodology for biomass energy potential estimation: projections of future potential in Colombia Renew. Energy, 69 (2014), pp. 488-505, 10.1016/j.renene.2014.03.056
dc.relationGunnerson and Stuckey, 1986 C. Gunnerson, D. Stuckey Integrated Resource Recovery-Anaerobic digestion Principles and Practices for Biogas Systems (1986) Washington DC
dc.relationHijazi et al., 2019 O. Hijazi, S. Mettenleiter, M. Samer, E. Abdelsalam, J.G. Wiecha, K.L. Ziegler, H. Bernhardt Life cycle assessment of biogas production in small-scale in Columbia 2019 ASABE Annual International Meeting, ASABE, Boston (2019), pp. 2-9, 10.13031/aim.201900099
dc.relationHoffmann et al., 2018 C. Hoffmann, J.R. García Márquez, T. Krueger A local perspective on drivers and measures to slow deforestation in the Andean-Amazonian foothills of Colombia Land Use Pol., 77 (2018), pp. 379-391, 10.1016/j.landusepol.2018.04.043
dc.relationHountalas and Mavropoulos, 2010 D. Hountalas, G. Mavropoulos Potential for improving HD diesel truck engine fuel consumption using exhaust heat recovery techniques New Trends in Technologies: Devices, Computer, Communication and Industrial Systems (2010), 10.5772/10428
dc.relationIDEAM, 2016 IDEAM Inventario nacional y departamental de gases efecto invernadero. Colombia Bogotá, Colombia (2016)
dc.relationIDEAM, PNUD, 2016 IDEAM, PNUD Inventario nacional y departamental de gases efecto invernadero -Colombia Bogotá, Colombia (2016)
dc.relationIoannou-Ttofa et al., 2021 L. Ioannou-Ttofa, S. Foteinis, A. Seifelnasr Moustafa, E. Abdelsalam, M. Samer, D. Fatta-Kassinos Life cycle assessment of household biogas production in Egypt: influence of digester volume, biogas leakages, and digestate valorization as biofertilizer J. Clean. Prod., 286 (2021), p. 125468
dc.relationJegede et al., 2019 A.O. Jegede, G. Zeeman, H. Bruning A review of mixing, design and loading conditions in household anaerobic digesters Crit. Rev. Environ. Sci. Technol., 49 (2019), pp. 2117-2153, 10.1080/10643389.2019.1607441
dc.relationJelínek et al., 2021 M. Jelínek, J. Mazancová, D. Van Dung, L.D. Phung, J. Banout, H. Roubík Quantification of the impact of partial replacement of traditional cooking fuels by biogas on global warming: evidence from Vietnam J. Clean. Prod., 292 (2021), p. 126007, 10.1016/J.JCLEPRO.2021.126007
dc.relationKamalimeera and Kirubakaran, 2021 N. Kamalimeera, V. Kirubakaran Prospects and restraints in biogas fed SOFC for rural energization: a critical review in indian perspective Renew. Sustain. Energy Rev., 143 (2021), p. 110914, 10.1016/j.rser.2021.110914
dc.relationKatuwal and Bohara, 2009 H. Katuwal, A.K. Bohara Biogas: a promising renewable technology and its impact on rural households in Nepal Renew. Sustain. Energy Rev. (2009), 10.1016/j.rser.2009.05.002
dc.relationKhan and Martin, 2016 E.U. Khan, A.R. Martin Review of biogas digester technology in rural Bangladesh Renew. Sustain. Energy Rev. (2016), 10.1016/j.rser.2016.04.044
dc.relationKi-moon and Yumkella, 2010 B. Ki-moon, K.K. Yumkella Energy for a Sustainable Future (2010) New York
dc.relationKurchania et al., 2010 A.K. Kurchania, N.L. Panwar, S.D. Pagar Design and performance evaluation of biogas stove for community cooking application Int. J. Sustain. Energy, 29 (2010), pp. 116-123, 10.1080/14786460903497391org/10.1080/14786460903497391
dc.relationLi et al., 2016 F. Li, S. Cheng, H. Yu, D. Yang Waste from livestock and poultry breeding and its potential assessment of biogas energy in rural China J. Clean. Prod., 126 (2016), pp. 451-460, 10.1016/j.jclepro.2016.02.104
dc.relationLtodo et al., 2007 I.N. Ltodo, G.E. Agyo, P. Yusuf Performance evaluation of a biogas stove for cooking in Nigeria J. Energy South Afr., 18 (2007), pp. 14-18, 10.17159/2413-3051/2007/v18i4a3391
dc.relationLwiza et al., 2017 F. Lwiza, J. Mugisha, P.N. Walekhwa, J. Smith, B. Balana Dis-adoption of household biogas technologies in Central Uganda Energy Sustain. Dev., 37 (2017), pp. 124-132, 10.1016/j.esd.2017.01.006
dc.relationMandal et al., 2018 S. Mandal, B.K. Das, N. Hoque Optimum sizing of a stand-alone hybrid energy system for rural electrification in Bangladesh J. Clean. Prod., 200 (2018), pp. 12-27, 10.1016/j.jclepro.2018.07.257
dc.relationMayer et al., 2019 F. Mayer, R. Bhandari, S. Gäth Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies Sci. Total Environ., 672 (2019), pp. 708-721, 10.1016/j.scitotenv.2019.03.449
dc.relationMengistu et al., 2015 M.G. Mengistu, B. Simane, G. Eshete, T.S. Workneh A review on biogas technology and its contributions to sustainable rural livelihood in Ethiopia Renew. Sustain. Energy Rev., 48 (2015), pp. 306-316, 10.1016/j.rser.2015.04.026
dc.relationMINAGRICULTURA, 2021 MINAGRICULTURA Área, producción, rendimiento y participación municipal en el departamento por cultivo (2021) [WWW Document]
dc.relationMINAGRICULTURA, 2017 MINAGRICULTURA Anuario estadístico del sector agropecuario 2016 Bogotá, Colombia (2017)
dc.relationMinenergía, 2019 Minenergía Grupo de gestión de la información y servicio al ciudadano. lnforme documento en discusión Bogotá, Colombia (2019)
dc.relationMulinda et al., 2013 C. Mulinda, Q. Hu, K. Pan Dissemination and problems of African biogas technology Energy Power Eng., 5 (2013), pp. 506-512, 10.4236/epe.2013.58055
dc.relationMwirigi et al., 2014 J. Mwirigi, B.B. Balana, J. Mugisha, P. Walekhwa, R. Melamu, S. Nakami, P. Makenzi Socio-economic hurdles to widespread adoption of small-scale biogas digesters in Sub-Saharan Africa: a review Biomass Bioenergy, 70 (2014), pp. 17-25, 10.1016/j.biombioe.2014.02.018
dc.relationNguyen et al., 2019 D. Nguyen, S. Nitayavardhana, C. Sawatdeenarunat, K.C. Surendra, S.K. Khanal Biogas production by anaerobic digestion: status and perspectives Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (second ed.), Elsevier Inc (2019), 10.1016/B978-0-12-816856-1.00031-2
dc.relationNi and Nyns, 1996 J.Q. Ni, E.J. Nyns New concept for the evaluation of rural biogas management in developing countries Energy Convers. Manag., 37 (1996), pp. 1525-1534, 10.1016/0196-8904(95)00354-1
dc.relationNoorollahi et al., 2015 Y. Noorollahi, M. Kheirrouz, H. Farabi-Asl, H. Yousefi, A. Hajinezhad Biogas production potential from livestock manure in Iran Renew. Sustain. Energy Rev. (2015), 10.1016/j.rser.2015.04.190
dc.relationOrskov et al., 2014 E.R. Orskov, K. Yongabi Anchang, M. Subedi, J. Smith Overview of holistic application of biogas for small scale farmers in Sub-Saharan Africa Biomass Bioenergy, 70 (2014), pp. 4-16, 10.1016/j.biombioe.2014.02.028
dc.relationPizarro-Loaiza et al., 2021 C.A. Pizarro-Loaiza, A. Anton, M. Torrellas, P. Torres-Lozada, J. Palatsi, A. Bonmatí Environmental, social and health benefits of alternative renewable energy sources. Case study for household biogas digesters in rural areas J. Clean. Prod., 126722 (2021), 10.1016/j.jclepro.2021.126722
dc.relationPöschl et al., 2010 M. Pöschl, S. Ward, P. Owende Evaluation of energy efficiency of various biogas production and utilization pathways Appl. Energy, 87 (2010), pp. 3305-3321, 10.1016/j.apenergy.2010.05.011
dc.relationRahut et al., 2019 D.B. Rahut, A. Ali, K.A. Mottaleb, J.P. Aryal Wealth, education and cooking-fuel choices among rural households in Pakistan Energy Strateg. Rev., 24 (2019), pp. 236-243, 10.1016/j.esr.2019.03.005
dc.relationRamírez et al., 2018 R. Ramírez, J.C. Arce, C. Jeréz, Y. Puertas, L. Gómez, J. Riaño, O. Diaz Boletín estadístico de minas y energía 2018 Bogotá, Colombia (2018)
dc.relationSagastume et al., 2020 A. Sagastume, J.J. Cabello Eras, L. Hens, C. Vandecasteele The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia J. Clean. Prod., 122317 (2020), 10.1016/j.jclepro.2020.122317
dc.relationSarkodie and Adams, 2020 S.A. Sarkodie, S. Adams Electricity access and income inequality in South Africa: evidence from Bayesian and NARDL analyses Energy Strateg. Rev., 29 (2020), p. 100480, 10.1016/j.esr.2020.100480
dc.relationShen et al., 2018 G. Shen, M.D. Hays, K.R. Smith, C. Williams, J.W. Faircloth, J.J. Jetter Evaluating the performance of household liquefied petroleum gas cookstoves Environ. Sci. Technol., 52 (2018), pp. 904-915, 10.1021/acs.est.7b05155
dc.relationSmith and Avery, 2014 J. Smith, L. Avery The Potential for Small-Scale Biogas Digesters in Sub-SaharanAfrica to Improve Sustainable Rural Livelihoods Biomass and Bioenergy (2014), 10.1016/j.biombioe.2014.09.001
dc.relationSubedi et al., 2014 M. Subedi, R.B. Matthews, M. Pogson, A. Abegaz, B.B. Balana, J. Oyesiku-Blakemore, J. Smith Can biogas digesters help to reduce deforestation in Africa? Biomass Bioenergy, 70 (2014), pp. 87-98, 10.1016/j.biombioe.2014.02.029
dc.relationSuperservicios, 2017 Superservicios Zonas no interconectadas- ZNI. Diagnóstico de la prestación del servicio de energía eléctrica 2017 Bogotá, Colombia (2017)
dc.relationSurendra et al., 2014 K.C. Surendra, D. Takara, A.G. Hashimoto, S.K. Khanal Biogas as a sustainable energy source for developing countries: opportunities and challenges Renew. Sustain. Energy Rev. (2014), 10.1016/j.rser.2013.12.015
dc.relationThomsen et al., 2014 S.T. Thomsen, H. Spliid, H. Østergård Statistical prediction of biomethane potentials based on the composition of lignocellulosic biomass Bioresour. Technol., 154 (2014), pp. 80-86, 10.1016/j.biortech.2013.12.029
dc.relationUNDP, 2019 UNDP Córdoba. Retos y desafíos para el Desarrollo Sostenible (2019)
dc.relationUPME, 2020a UPME Plan Energetico Nacional 2020-2050 Bogotá, Colombia (2020)
dc.relationUPME, 2020b UPME Sistema de información eléctrico Colombiano Informes de cobertura [WWW Document]. Minist. Minas y energía. (2020) URL http://www.siel.gov.co/Inicio/CoberturadelSistemaIntercontecadoNacional/ConsultasEstadisticas/tabid/81/Default.aspx, Accessed 20th Nov 2020
dc.relationUPME, 2016a UPME Boletín Estadístico de Minas y energía 2012 – 2016, Boletín Estadístico de Minas y energía. Bogotá, Colombia (2016), 10.1017/CBO9781107415324.004
dc.relationUPME, 2016b UPME Calculadora de emisiones [WWW Document] (2016)
dc.relationUPME, 2012 UPME Caracterización energética del sector residencial urbano y rural en Colombia Bogotá, Colombia (2012)
dc.relationUPME, 2011 UPME Determinación del consumo básico de subsistencia en el sector residencial y del consumo básico en los sectores industrial, comercial y hotelero en los departamentos de Guainía Vichada y Choco. Bogotá, Colombia (2011)
dc.relationWang et al., 2016 C. Wang, Y. Zhang, L. Zhang, M. Pang Alternative policies to subsidize rural household biogas digesters Energy Pol., 93 (2016), pp. 187-195, 10.1016/j.enpol.2016.03.007
dc.relationWang et al., 2018 S. Wang, U. Jena, K.C. Das Biomethane production potential of slaughterhouse waste in the United States Energy Convers. Manag., 173 (2018), pp. 143-157, 10.1016/j.enconman.2018.07.059
dc.relationWorld Bank, 2014 World Bank Towards Sustainable Peace, Poverty Eradication, and Shared Prosperity (2014) Washington DC
dc.relationYasar et al., 2017 A. Yasar, S. Nazir, R. Rasheed, A.B. Tabinda, M. Nazar Economic review of different designs of biogas plants at household level in Pakistan Renew. Sustain. Energy Rev., 74 (2017), pp. 221-229, 10.1016/J.RSER.2017.01.128
dc.relationYepes et al., 2011 A. Yepes, D.A. Navarrete, J.F. Phillips, A.J. Duque, E. Cabrera, G. Galindo, D. Vargas, M. García, M.F. Ordoñez Estimación de las emisiones de dióxido de carbono generadas por deforestación durante el periodo 2005-2010 Bogotá, Colombia (2011)
dc.relationYu et al., 2008 L. Yu, K. Yaoqiu, H. Ningsheng, W. Zhifeng, X. Lianzhong Popularizing household-scale biogas digesters for rural sustainable energy development and greenhouse gas mitigation Renew. Energy, 33 (2008), pp. 2027-2035, 10.1016/j.renene.2007.12.004
dc.relationZhang et al., 2013 L.X. Zhang, C.B. Wang, B. Song Carbon emission reduction potential of a typical household biogas system in rural China J. Clean. Prod., 47 (2013), pp. 415-421, 10.1016/j.jclepro.2012.06.021
dc.relation15
dc.relation1
dc.relation7
dc.rights© 2022 The Authors. Published by Elsevier Ltd.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S2352728522000021
dc.subjectRenewable energy
dc.subjectAnaerobic digestion
dc.subjectBiomass wastes
dc.subjectFirewood
dc.titlePotential of livestock manure and agricultural wastes to mitigate the use of firewood for cooking in rural areas. The case of the department of Cordoba (Colombia)
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.coverageCórdoba
dc.coverageColombia


Este ítem pertenece a la siguiente institución