| dc.relation | [1] S. Shimpalee, V. Lilavivat, J.W. Van Zee, H. McCrabb, A. Lozano-Morales,
Understanding the effect of channel tolerances on performance of PEMFCs, Int. J.
Hydrogen Energy 36 (2011) 12512–12523.
[2] C. Mahjoubi, J. Olivier, S. Skander-mustapha, M. Machmoum, I. Slama-belkhodja,
An improved thermal control of open cathode proton exchange membrane fuel cell,
Int. J. Hydrogen Energy 44 (2018) 11332–11345.
[3] J. Zhao, Q. Jian, L. Luo, B. Huang, S. Cao, Z. Huang, Dynamic behavior study on
voltage and temperature of proton exchange membrane fuel cells, Appl. Therm.
Eng. 145 (2018) 343–351.
[4] T. Sutharssan, D. Montalvao, Y.K. Chen, W.-C. Wang, C. Pisac, H. Elemara, A review
on prognostics and health monitoring of proton exchange membrane fuel cell,
Renew. Sustain. Energy Rev. 75 (2017) 440–450.
[5] J. Qi, Y. Zhai, J. St-Pierre, Effect of contaminant mixtures in air on proton exchange
membrane fuel cell performance, J. Power Sources 413 (2019) 86–97.
[6] S. Elakkiya, G. Arthanareeswaran, K. Venkatesh, J. Kweon, ScienceDirect
Enhancement of fuel cell properties in polyethersulfone and sulfonated poly ( ether
ether ketone ) membranes using metal oxide nanoparticles for proton exchange
membrane fuel cell, Int. J. Hydrogen Energy 43 (2018) 21750–21759.
[7] Kraytsberg Alexander, Yair Ein-Eli, Review of Advanced Materials for Proton
Exchange Membrane Fuel Cells, Energy fuel. 28 (2014).
[8] H. Shao, D. Qiu, L. Peng, P. Yi, X. Lai, In-situ measurement of temperature and
humidity distribution in gas channels for commercial-size proton exchange
membrane fuel cells, J. Power Sources 412 (2019) 717–724.
[9] A.R. Vijay Babu, P. Manoj Kumar, G. Srinivasa Rao, Parametric study of the proton
exchange membrane fuel cell for investigation of enhanced performance used in
fuel cell vehicles, Alexandria Eng. J. 57 (2018) 3953–3958.
[10] B.H. Lim, E.H. Majlan, W.R.W. Daud, M.I. Rosli, T. Husaini, Three-dimensional
study of stack on the performance of the proton exchange membrane fuel cell,
Energy 169 (2019) 338–343.
[11] F. Barbir, PEM Fuel cells, second ed., 2013.
[12] P. Pei, X. Jia, H. Xu, P. Li, Z. Wu, Y. Li, P. Ren, D. Chen, S. Huang, The recovery
mechanism of proton exchange membrane fuel cell in micro- current operation,
Appl. Energy 226 (2018) 1–9.
[13] M.Liebrech, EBRD Sustainable Energy Finance Facilities, Blomb. New Energy
Financ. (n.d.).
[14] M.A. Hickner, P.A. Kohl, A.R. Kucernak, W.E. Mustain, K. Nijmeijer, K. Scott,
L. Zhuang, Anion-exchange membranes in electrochemical energy systems, Energy
Environ. Sci. 7 (2014) 3135–3191.
[15] D.R. Dekel, Review of cell performance in anion exchange membrane fuel cells,
J. Power Sources 375 (2018) 158–169.
[16] V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and
manufacturing, J. Power Sources 114 (2003) 32–53.
[17] D. Cheddie, N. Munroe, Review and comparison of approaches to proton exchange
membrane fuel cell modeling, J. Power Sources 147 (2005) 72–84.
[18] X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, Z.S. Liu, H. Wang, J. Shen,
A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and
mitigation, J. Power Sources 165 (2007) 739–756.
[19] H. Tawfik, Y. Hung, D. Mahajan, Metal bipolar plates for PEM fuel cell-A review,
J. Power Sources 163 (2007) 755–767.
[20] W. Yan, C. Chen, Y. Jhang, Y. Chang, P. Amani, Performance evaluation of a multistage plate-type membrane humidi fi er for proton exchange membrane fuel cell,
Energy Convers. Manag. 176 (2018) 123–130.
[21] C.W.B. Bezerra, L. Zhang, H. Liu, K. Lee, A.L.B. Marques, E.P. Marques, H. Wang,
J. Zhang, A review of heat-treatment effects on activity and stability of PEM fuel cell
catalysts for oxygen reduction reaction, J. Power Sources 173 (2007) 891–908.
[22] S. Zhang, X. Yuan, H. Wang, W. M erida, H. Zhu, J. Shen, S. Wu, J. Zhang, A review
of accelerated stress tests of MEA durability in PEM fuel cells, Int. J. Hydrogen
Energy 34 (2009) 388–404.
[23] X. Guo, H. Zhang, J. Zhao, F. Wang, J. Wang, H. Miao, J. Yuan, Performance
evaluation of an integrated high-temperature proton exchange membrane fuel cell
and absorption cycle system for power and heating/cooling cogeneration, Energy
Convers. Manag. 181 (2019) 292–301.
[24] I. Alaefour, S. Shahgaldi, A. Ozden, X. Li, F. Hamdullahpur, The role of flow-field
layout on the conditioning of a proton exchange membrane fuel cell, Fuel 230
(2018) 98–103.
[25] Y. Kajikawa, J. Yoshikawa, Y. Takeda, K. Matsushima, Tracking emerging
technologies in energy research: toward a roadmap for sustainable energy, Technol.
Forecast. Soc. Change 75 (2008) 771–782.
[26] B. Verspagen, Mapping technological trajectories as patent citation networks: a
study on the history of fuel cell research, Adv. Complex Syst. 10 (2007) 93–115.
[27] L. Caicedo, G. Valencia, Y. Cardenas, A scientometric analysis of the investigation of
biomass gasification environmental impacts from 2001 to 2017, Int. J. of Energy
Economics and Policy IJEEP 8 (2018) 223–229. ISSN: 2146-4553.
[28] C. Chen, Science mapping: a systematic review of the literature, Journal of Data and
Information Science, J. Data Inf. Sci. 2 (2017) 1–40.
[29] G. Ortolano, L. Zappala, P. Mazzoleni, X-Ray Map Analyser: a new ArcGIS (R) based
tool for the quantitative statistical data handling of X-ray maps (Geo- and materialscience applications), Comput. Geosci. 72 (2014).
[30] Y. Li, C.M. Onasch, Y. Guo, GIS-based detection of grain boundaries, J. Struct. Geol.
30 (2008) 431–443.
[31] J.A. Guimar~aes, C.R. Carlini, Most cited papers in Toxicon, Toxicon 44 (2004)
345–359.
[32] Nobelprize Organization, The Nobel Prize in Chemistry 2007, 2018.
[33] T. Zhongfu, Z. Chen, L. Pingkuo, B. Reed, Z. Jiayao, Focus on fuel cell systems in
China, Renew. Sustain. Energy Rev. 47 (2015) 912–923.
[34] Euler Hermes, Economic Outlook no. 1210, The Global Automative Market, 2014.
[35] Y.S. Li, L. L., G.H. Ding, N. Feng, M.H. Wang, Ho, Global stem cell research trend:
bibliometric analysis as a tool for mapping of trends from 1991 to 2006,
Scientometrics 80 (1) (2009) 39–58.
[36] T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, Polymer electrolyte fuel cell model,
J. Electrochem. Soc. 138 (1991) 2334–2342.
[37] H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and
requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs,
Appl. Catal. B Environ. 56 (2005) 9–35.
[38] R. Borup, J. Meyers, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers,
M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski,
J. Boncella, J.E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi,
S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K. Kimijima,
N. Iwashita, Scientific aspects of polymer electrolyte fuel cell durability and
degradation, Chem. Rev. 107 (2007) 3904–3951.
[39] L. J, Fuel Cell Systems Explained, second ed., 2003.
[40] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer
electrolyte membrane fuel cells: technology, applications, and needs on
fundamental research, Appl. Energy 88 (2011) 981–1007.
[41] K.A. Mauritz, R.B. Moore, State of understanding of nafion, Chem. Rev. 104 (2004)
4535–4586.
[42] F. Barbir, Sustain world ser, in: F. Barbir (Ed.), PEM Fuel Cells, Academic Press,
Burlington, 2005, pp. 1–16.
[43] M.A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, J.E. McGrath, Alternative
polymer systems for proton exchange membranes (PEMs), Chem. Rev. 104 (2004)
4587–4612.
[44] B. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature 414 (2001)
435–452.
[45] J. Wu, X.Z. Yuan, J.J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, W. Merida,
A review of PEM fuel cell durability: degradation mechanisms and mitigation
strategies, J. Power Sources 184 (2008) 104–119.
[46] K.D. Kreuer, On the development of proton conducting polymer membranes for
hydrogen and methanol fuel cells, J. Membr. Sci. 185 (2001) 29–39.
[47] J.H. Nam, M. Kaviany, Effective diffusivity and water-saturation distribution in
single- and two-layer PEMFC diffusion medium, Int. J. Heat Mass Transf. 46 (2003)
4595–4611.
[48] H. Li, Y. Tang, Z. Wang, Z. Shi, S. Wu, D. Song, J. Zhang, K. Fatih, J. Zhang,
H. Wang, Z. Liu, R. Abouatallah, A. Mazza, A review of water flooding issues in the
proton exchange membrane fuel cell, J. Power Sources 178 (2008) 103–117.
[49] J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, T. Navessin, Z. Shi, D. Song, H. Wang,
D.P. Wilkinson, Z.-S. Liu, S. Holdcroft, High temperature PEM fuel cells, J. Power
Sources 160 (2006) 872–891.
[50] Q. Li, R. He, J.O. Jensen, N.J. Bjerrum, Approaches and recent development of
polymer electrolyte membranes for fuel cells operating above 100 C, Chem. Mater.
15 (2003) 4896–4915.
[51] Q. Li, J.O. Jensen, R.F. Savinell, N.J. Bjerrum, High temperature proton exchange
membranes based on polybenzimidazoles for fuel cells, Prog. Polym. Sci. 34 (2009)
449–477.
[52] K. Tüber, D. Pocza, C. Hebling, Visualization of water buildup in the cathode of a
transparent PEM fuel cell, J. Power Sources 124 (2003) 403–414.
[53] Y. Shao, G. Yin, Y. Gao, Understanding and approaches for the durability issues of
Pt-based catalysts for PEM fuel cell, J. Power Sources 171 (2007) 558–566.
[54] C.-Y. Wang, Fundamental models for fuel cell engineering, Chem. Rev. 104 (2004)
4727–4766.
[55] E. Ojeda-Camargo, C.-B.J. Ediwn, J.I. Silva-Ortega, Solar and wind energy potential
characterization to integrate sustainable projects in native communities in La
guajira Colombia, Espacios 38 (2017) 1–15.
[56] A. Ospino-Castro, An alisis del potencial energ etico solar en la Region Caribe para el
diseno de un sistema fotovoltaico, INGECUC 6 (2010) 0 ~ –8.
[57] E. Ojeda Camargo, H. Hern andez Riano, L. Bedoya Valencia, A. Barrios Sarmiento, ~
J. Candelo Becerra, Strategies applied for renewable energy source adoption in
indigenous communities of La guajira, Colombia, Int. J. Eng. Technol. 8 (2016)
2689–2695.
[58] E. Ojeda Camargo, J.E. Candelo, J. Silva-Ortega, Perspectives of native community
in La guajira facing sustainable development and energy supply, Rev. Espac. 38
(2017) 26. | |