dc.creatorUrieles Guerrero, Alejandro
dc.creatorOrtega, María José
dc.creatorRamírez, William
dc.creatorVega, Samuel
dc.date2020-01-10T19:08:04Z
dc.date2020-01-10T19:08:04Z
dc.date2019-09-17
dc.date.accessioned2023-10-03T19:12:16Z
dc.date.available2023-10-03T19:12:16Z
dc.identifier0420-1213
dc.identifier2391-4661
dc.identifierhttp://hdl.handle.net/11323/5799
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9168859
dc.descriptionThis paper aims to show new algebraic properties from the q-generalized Bernoulli polynomials B[m−1]n(x;q) of level m, as well as some others identities which connect this polynomial class with the q-generalized Bernoulli polynomials of level m, as well as the q-gamma function, and the q-Stirling numbers of the second kind and the q-Bernstein polynomials.
dc.formatapplication/pdf
dc.languageeng
dc.publisherDemonstratio Mathematica
dc.relationhttps://doi.org/10.1515/dema-2019-0039
dc.relation[1] Natalini P., Bernardini A., A generalization of the Bernoulli polynomials, J. Appl. Math., 2003, 3, 155–163
dc.relation[2] Carlitz L., q-Bernoulli numbers and polynomials, Duke Math., 1948, 15, 987–1000
dc.relation[3] Choi J., Anderson P., Srivastava H. M., Carlitz’s q-Bernoulli and q-Euler numbers and polynomials and a class of q-Hurwitz zeta functions, Appl. Math. Comput., 2009, 215, 1185–1208
dc.relation[4] Ernst T., q-Bernoulli and q-Euler polynomials, an umbral approach, Int. J. Difference Equ., 2006, 1, 31–80
dc.relation[5] Hegazi A. S., Mansour M., A note on q-Bernoulli numbers and polynomials, J. Nonlinear Math. Phys., 2006, 13(1), 9–18
dc.relation[6] Kim D., Kim M.-S., A note on Carlitz q-Bernoulli numbers and polynomials, Adv. Difference Equ., 2012, 2012:44
dc.relation[7] Quintana Y., Ramírez W., Urieles A., Generalized Apostol-type polynomials matrix and its algebraic properties, Math. Rep., 2019, 21, 249–264
dc.relation[8] Ryoo C. S., A note on q-Bernoulli numbers and polynomials, Appl. Math. Lett, 2017, 20(5), 524–531
dc.relation[9] Garg M., Alha S., A new class of q-Apostol-Bernoulli polynomials of order α, Revi. Tecn. URU, 2014, 6, 67–76
dc.relation[10] Hernandes P., Quintana Y., Urieles A., About extensions of generalized Apostol-type polynomials, Res. Math., 2015, 68, 203–225
dc.relation[11] KurtB.,AfurthergeneralizationoftheBernoullipolynomialsandonthe2D-Bernoullipolynomials B2n(x, y),Appl.Math.Sci., 2010, 4(47), 2315–2322
dc.relation[12] KurtB.,SomerelationshipsbetweenthegeneralizedApostol-BernoulliandApostol-Eulerpolynomials,Turk.Jou.Ana.Num. The., 2013, 1(1), 54–58
dc.relation[13] LuoQ.-M.,GuoB.-N.,QiF.,DebnathL.,GeneralizationsofBernoullinumbersandpolynomials,Int.J.Math.Math.Sci.,2003, 59, 3769–3776
dc.relation[14] Mahmudov N. I., On a class of q-Bernoulli and q-Euler polynomials, Adv. Difference Equ., 2013, 1, 108–125
dc.relation[15] Ramírez W., Castilla L., Urieles A., An extended generalized q-extensions for the Apostol type polynomials, Abstr. Appl. Anal., 2018, Article ID 2937950, DOI: 10.1155/2018/2937950
dc.relation[16] Tremblay R., Gaboury S., Fugere J., A further generalization of Apostol-Bernoulli polynomials and related polynomials, Hon. Math. Jou., 2012, 34, 311–326
dc.relation[17] Quintana Y., Ramírez W., Urieles A., On an operational matrix method based on generalized Bernoulli polynomials of level m, Calcolo, 2018, 55, 30
dc.relation[18] Mahmudov N. I., Eini Keleshteri M., q-extensions for the Apostol type polynomials, J. Appl. Math., 2014, Article ID 868167, http://dx.doi.org/10.1155/2014/868167
dc.relation[19] Ernst T., The history of q-calculus and a new method, Licentiate Thesis, Dep. Math. Upps. Unive., 2000
dc.relation[20] Gasper G., Rahman M., Basic Hypergeometric Series, Cambr. Univ. Press, 2004
dc.relation[21] Kac V., Cheung P., Quantum Calculus, Springer-Verlag New York, 2002
dc.relation[22] Araci S., Duran U., Acikgoz M., (p, q)-Volkenborn integration, J. Number Theory, 2017, 171, 18–30
dc.relation[23] Araci S., Duran U., Acikgoz M., Srivastava H. M., A certain (p, q)-derivative operator and associated divided differences, J. Ineq. Appl., 2016, 2016:301, DOI: 10.1186/s13660-016-1240-8
dc.relation[24] Srivastava H. M., Choi J., Zeta and q-zeta functions and associated series and integrals, Editorial Elsevier, Boston, 2012, DOI: 10.1016/C2010-0-67023-4
dc.relation[25] Sharma S., Jain R., On some properties of generalized q-Mittag Leffler, Math. Aeterna, 2014, 4(6), 613–619
dc.relation[26] Ernst T., A comprehensive treatment of q-calculus, Birkhäuser, 2012
dc.relation[27] Ostrovska S., q-Bernstein polynomials and their iterates, J. Approx. Theory, 2003, 123(2), 232–255
dc.rightsCC0 1.0 Universal
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subjectq-generalized Bernoulli polynomials
dc.subjectq-gamma function
dc.subjectq-Stirling numbers
dc.subjectq-Bernstein poly-nomials
dc.titleNew results on the q-generalized Bernoulli polynomials of level m
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución