dc.creator | Urieles Guerrero, Alejandro | |
dc.creator | Ortega, María José | |
dc.creator | Ramírez, William | |
dc.creator | Vega, Samuel | |
dc.date | 2020-01-10T19:08:04Z | |
dc.date | 2020-01-10T19:08:04Z | |
dc.date | 2019-09-17 | |
dc.date.accessioned | 2023-10-03T19:12:16Z | |
dc.date.available | 2023-10-03T19:12:16Z | |
dc.identifier | 0420-1213 | |
dc.identifier | 2391-4661 | |
dc.identifier | http://hdl.handle.net/11323/5799 | |
dc.identifier | Corporación Universidad de la Costa | |
dc.identifier | REDICUC - Repositorio CUC | |
dc.identifier | https://repositorio.cuc.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/9168859 | |
dc.description | This paper aims to show new algebraic properties from the q-generalized Bernoulli polynomials B[m−1]n(x;q) of level m, as well as some others identities which connect this polynomial class with the q-generalized Bernoulli polynomials of level m, as well as the q-gamma function, and the q-Stirling numbers of the second kind and the q-Bernstein polynomials. | |
dc.format | application/pdf | |
dc.language | eng | |
dc.publisher | Demonstratio Mathematica | |
dc.relation | https://doi.org/10.1515/dema-2019-0039 | |
dc.relation | [1] Natalini P., Bernardini A., A generalization of the Bernoulli polynomials, J. Appl. Math., 2003, 3, 155–163 | |
dc.relation | [2] Carlitz L., q-Bernoulli numbers and polynomials, Duke Math., 1948, 15, 987–1000 | |
dc.relation | [3] Choi J., Anderson P., Srivastava H. M., Carlitz’s q-Bernoulli and q-Euler numbers and polynomials and a class of q-Hurwitz zeta functions, Appl. Math. Comput., 2009, 215, 1185–1208 | |
dc.relation | [4] Ernst T., q-Bernoulli and q-Euler polynomials, an umbral approach, Int. J. Difference Equ., 2006, 1, 31–80 | |
dc.relation | [5] Hegazi A. S., Mansour M., A note on q-Bernoulli numbers and polynomials, J. Nonlinear Math. Phys., 2006, 13(1), 9–18 | |
dc.relation | [6] Kim D., Kim M.-S., A note on Carlitz q-Bernoulli numbers and polynomials, Adv. Difference Equ., 2012, 2012:44 | |
dc.relation | [7] Quintana Y., Ramírez W., Urieles A., Generalized Apostol-type polynomials matrix and its algebraic properties, Math. Rep., 2019, 21, 249–264 | |
dc.relation | [8] Ryoo C. S., A note on q-Bernoulli numbers and polynomials, Appl. Math. Lett, 2017, 20(5), 524–531 | |
dc.relation | [9] Garg M., Alha S., A new class of q-Apostol-Bernoulli polynomials of order α, Revi. Tecn. URU, 2014, 6, 67–76 | |
dc.relation | [10] Hernandes P., Quintana Y., Urieles A., About extensions of generalized Apostol-type polynomials, Res. Math., 2015, 68, 203–225 | |
dc.relation | [11] KurtB.,AfurthergeneralizationoftheBernoullipolynomialsandonthe2D-Bernoullipolynomials B2n(x, y),Appl.Math.Sci., 2010, 4(47), 2315–2322 | |
dc.relation | [12] KurtB.,SomerelationshipsbetweenthegeneralizedApostol-BernoulliandApostol-Eulerpolynomials,Turk.Jou.Ana.Num. The., 2013, 1(1), 54–58 | |
dc.relation | [13] LuoQ.-M.,GuoB.-N.,QiF.,DebnathL.,GeneralizationsofBernoullinumbersandpolynomials,Int.J.Math.Math.Sci.,2003, 59, 3769–3776 | |
dc.relation | [14] Mahmudov N. I., On a class of q-Bernoulli and q-Euler polynomials, Adv. Difference Equ., 2013, 1, 108–125 | |
dc.relation | [15] Ramírez W., Castilla L., Urieles A., An extended generalized q-extensions for the Apostol type polynomials, Abstr. Appl. Anal., 2018, Article ID 2937950, DOI: 10.1155/2018/2937950 | |
dc.relation | [16] Tremblay R., Gaboury S., Fugere J., A further generalization of Apostol-Bernoulli polynomials and related polynomials, Hon. Math. Jou., 2012, 34, 311–326 | |
dc.relation | [17] Quintana Y., Ramírez W., Urieles A., On an operational matrix method based on generalized Bernoulli polynomials of level m, Calcolo, 2018, 55, 30 | |
dc.relation | [18] Mahmudov N. I., Eini Keleshteri M., q-extensions for the Apostol type polynomials, J. Appl. Math., 2014, Article ID 868167, http://dx.doi.org/10.1155/2014/868167 | |
dc.relation | [19] Ernst T., The history of q-calculus and a new method, Licentiate Thesis, Dep. Math. Upps. Unive., 2000 | |
dc.relation | [20] Gasper G., Rahman M., Basic Hypergeometric Series, Cambr. Univ. Press, 2004 | |
dc.relation | [21] Kac V., Cheung P., Quantum Calculus, Springer-Verlag New York, 2002 | |
dc.relation | [22] Araci S., Duran U., Acikgoz M., (p, q)-Volkenborn integration, J. Number Theory, 2017, 171, 18–30 | |
dc.relation | [23] Araci S., Duran U., Acikgoz M., Srivastava H. M., A certain (p, q)-derivative operator and associated divided differences, J.
Ineq. Appl., 2016, 2016:301, DOI: 10.1186/s13660-016-1240-8 | |
dc.relation | [24] Srivastava H. M., Choi J., Zeta and q-zeta functions and associated series and integrals, Editorial Elsevier, Boston, 2012, DOI: 10.1016/C2010-0-67023-4 | |
dc.relation | [25] Sharma S., Jain R., On some properties of generalized q-Mittag Leffler, Math. Aeterna, 2014, 4(6), 613–619 | |
dc.relation | [26] Ernst T., A comprehensive treatment of q-calculus, Birkhäuser, 2012 | |
dc.relation | [27] Ostrovska S., q-Bernstein polynomials and their iterates, J. Approx. Theory, 2003, 123(2), 232–255 | |
dc.rights | CC0 1.0 Universal | |
dc.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.subject | q-generalized Bernoulli polynomials | |
dc.subject | q-gamma function | |
dc.subject | q-Stirling numbers | |
dc.subject | q-Bernstein poly-nomials | |
dc.title | New results on the q-generalized Bernoulli polynomials of level m | |
dc.type | Artículo de revista | |
dc.type | http://purl.org/coar/resource_type/c_6501 | |
dc.type | Text | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | http://purl.org/redcol/resource_type/ART | |
dc.type | info:eu-repo/semantics/acceptedVersion | |
dc.type | http://purl.org/coar/version/c_ab4af688f83e57aa | |