dc.creatorMourtakos, Stamatis
dc.creatorVassiliou, Georgia
dc.creatorKontoangelos, Konstantinos
dc.creatorPhilippou, Anastassios
dc.creatorTzavellas, Elias
dc.creatorTornero Aguilera, José Francisco
dc.creatorClemente-Suárez, Vicente Javier
dc.creatorPapageorgiou, Charalabos
dc.creatorSidossis, Labros S.
dc.creatorPapageorgiou, Christos
dc.date2022-06-21T15:38:08Z
dc.date2022-06-21T15:38:08Z
dc.date2021-12-21
dc.date.accessioned2023-10-03T19:12:06Z
dc.date.available2023-10-03T19:12:06Z
dc.identifier1661-7827
dc.identifierhttps://hdl.handle.net/11323/9274
dc.identifierhttps://doi.org/10.3390/ijerph19010028
dc.identifier10.3390/ijerph19010028
dc.identifier1660-4601
dc.identifierCorporación Universidad de la Costa
dc.identifierREDICUC - Repositorio CUC
dc.identifierhttps://repositorio.cuc.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/9168821
dc.descriptionBackground: Recent research indicates that both endocannabinoids (eCB) and heart rate variability (HRV) are associated with stress-induced experiences. However, these underlying mech-anisms are not elucidated. The present study aims to investigate whether exposure to acute and chronic stress conditions can give rise to measurable changes, both to the peripheral eCB ligands and HRV. Methods: Thirteen candidates under intense preparation for their enlistment in the Hellenic Navy SEALs (HNS) participated in the study. All subjects underwent mental state examination, while HRV variables in time and frequency domain recordings were acquired. Furthermore, at baseline and 30 days after prolonged and intensive physical exercise, hair was collected to measure eCB ligands, such as anandamide (AEA), 2-arachidonoylglycerol (2-AG), and the N-acyl ethanolamine (NAE) molecules: palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). Results: Comparing basal hair concentrations of eCB ligands before and after intense physical exercise, we found that AEA, PEA, and OEA were notably increased, whereas no differences were observed regarding the ligand 2-AG. Furthermore, there were observed associations between the concentrations of peripheral eCB ligands, both at baseline and after the prolonged physical exercise and the time and frequency domains of HRV. Conclusions: These findings suggest that endocannabinoid–HRV interrelations might share a short-term, and long-term adaptability of the changes in self-regulation associated with stress. Further studies will be required to determine the validity of peripheral eCB signaling and HRV as a biomarker for different aspects of the stress response. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
dc.format10 páginas
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.languageeng
dc.publisherFrontiers Media S.A.
dc.publisherSwitzerland
dc.relationInternational Journal of Environmental Research and Public Health
dc.relation1. Galve-Roperh, I.; Chiurchiù, V.; Díaz-Alonso, J.; Bari, M.; Guzmán, M.; Maccarrone, M. Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation. Prog. Lipid Res. 2013, 52, 633–650. [CrossRef] [PubMed]
dc.relation2. Wei, D.; Allsop, S.; Tye, K.; Piomelli, D. Endocannabinoid Signaling in the Control of Social Behavior. Trends Neurosci. 2017, 40, 385–396. [CrossRef] [PubMed]
dc.relation3. Raso, G.M.; Russo, R.; Calignano, A.; Meli, R. Palmitoylethanolamide in CNS health and disease. Pharmacol. Res. 2014, 86, 32–41. [CrossRef] [PubMed]
dc.relation4. Thabuis, C.; Tissot-Favre, D.; Bezelgues, J.B.; Martin, J.C.; Cruz-Hernandez, C.; Dionisi, F.; Destaillats, F. Biological functions and metabolism of oleoylethanolamide. Lipids 2008, 43, 887. [CrossRef] [PubMed]
dc.relation5. Ueda, N.; Tsuboi, K.; Uyama, T. Metabolism of endocannabinoids and relatedN-acylethanolamines: Canonical and alternative pathways. FEBS J. 2013, 280, 1874–1894. [CrossRef] [PubMed]
dc.relation6. Morena, M.; Patel, S.; Bains, J.; Hill, M.N. Neurobiological Interactions Between Stress and the Endocannabinoid System. Neuropsychopharmacology 2015, 41, 80–102. [CrossRef] [PubMed]
dc.relation7. Wilker, S.; Pfeiffer, A.; Elbert, T.; Ovuga, E.; Karabatsiakis, A.; Krumbholz, A.; Thieme, D.; Schelling, G.; Kolassa, I.-T. Endocannabinoid concentrations in hair are associated with PTSD symptom severity. Psychoneuroendocrinology 2016, 67, 198–206. [CrossRef]
dc.relation8. Koenig, A.M.; Gao, W.; Umlauft, M.; Schury, K.; Reister, F.; Kirschbaum, C.; Karabatsiakis, A.; Kolassa, I.T. Altered hair endocannabinoid levels in mothers with childhood maltreatment and their newborns. Biol. Psychol. 2018, 135, 93–101. [CrossRef] [PubMed]
dc.relation9. Krumbholz, A.; Anielski, P.; Reisch, N.; Schelling, G.; Thieme, D. Diagnostic Value of Concentration Profiles of Glucocorticosteroids and Endocannabinoids in Hair. Ther. Drug Monit. 2013, 35, 600–607. [CrossRef] [PubMed]
dc.relation10. Škopek, M.; Heidler, J.; Hnizdil, J.; Šulc, J. The effect of cannabidiol (CBD) on simple and complex reaction times. Trends Sport Sci. 2021, 28, 147–151.
dc.relation11. Ho, W.S.; Kelly, M.E. Cannabinoids in the cardiovascular system. Adv. Pharmacol. 2017, 80, 329–366.
dc.relation12. Dugrenot, E.; Balestra, C.; Gouin, E.; L’Her, E.; Guerrero, F. Physiological effects of mixed-gas deep sea dives using a closed-circuit rebreather: A field pilot study. Eur. J. Appl. Physiol. 2021, 121, 3323–3331. [CrossRef] [PubMed]
dc.relation13. Bustamante-Sánchez, A.; Tornero-Aguilera, J.F.; Fernández-Elías, V.E.; Hormeño-Holgado, A.J.; Dalamitros, A.A.; ClementeSuárez, V.J. Effect of Stress on Autonomic and Cardiovascular Systems in Military Population: A Systematic Review. Cardiol. Res. Pract. 2020, 2020, 7986249. [CrossRef] [PubMed]
dc.relation14. Lafère, P.; Lambrechts, K.; Germonpré, P.; Balestra, A.; Germonpré, F.L.; Marroni, A.; Cialoni, D.; Bosco, G.; Balestra, C. Heart Rate Variability During a Standard Dive: A Role for Inspired Oxygen Pressure? Front. Physiol. 2021, 12, 1060. [CrossRef] [PubMed]
dc.relation15. Järvelin-Pasanen, S.; Sinikallio, S.; Tarvainen, M.P. Heart rate variability and occupational stress—Systematic review. Ind. Health 2018, 56, 500–511. [CrossRef] [PubMed]
dc.relation16. Thayer, J.F.; Åhs, F.; Fredrikson, M.; Sollers, J.J., III; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [CrossRef]
dc.relation17. Smith, R.; Thayer, J.F.; Khalsa, S.S.; Lane, R.D. The hierarchical basis of neurovisceral integration. Neurosci. Biobehav. Rev. 2017, 75, 274–296. [CrossRef]
dc.relation18. Donias, S.; Karastergiou, A.; Manos, N. Validation of Symptom Checklist 90 R in the Greek population. Psychiatriki 1991, 2, 42–48.
dc.relation19. Sauvé, B.; Koren, G.; Walsh, G.; Tokmakejian, S.; van Uum, S.H. Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin. Investig. Med. 2007, 30, E183–E191. [CrossRef] [PubMed]
dc.relation20. Kirschbaum, C.; Tietze, A.; Skoluda, N.; Dettenborn, L. Hair as a retrospective calendar of cortisol production—Increased cortisol incorporation into hair in the third trimester of pregnancy. Psychoneuroendocrinology 2009, 34, 32–37. [CrossRef]
dc.relation21. Gao, W.; Stalder, T.; Foley, P.; Rauh, M.; Deng, H.; Kirschbaum, C. Quantitative analysis of steroid hormones in human hair using a column-switching LC–APCI–MS/MS assay. J. Chromatogr. B 2013, 928, 1–8. [CrossRef] [PubMed]
dc.relation22. Manenschijn, L.; Koper, J.W.; Lamberts, S.W.; van Rossum, E.F. Evaluation of a method to measure long term cortisol levels. Steroids 2011, 76, 1032–1036. [CrossRef]
dc.relation23. Noppe, G.; De Rijke, Y.B.; Dorst, K.; van den Akker, E.L.T.; Van Rossum, E.F.C. LC-MS/MS-based method for long-term steroid profiling in human scalp hair. Clin. Endocrinol. 2015, 83, 162–166. [CrossRef] [PubMed]
dc.relation24. Voegel, C.D.; Baumgartner, M.R.; Kraemer, T.; Wüst, S.; Binz, T.M. Simultaneous quantification of steroid hormones and endocannabinoids (ECs) in human hair using an automated supported liquid extraction (SLE) and LC-MS/MS—Insights into EC baseline values and correlation to steroid concentrations. Talanta 2021, 222, 121499. [CrossRef] [PubMed]
dc.relation25. Hill, M.N.; Miller, G.E.; Carrier, E.J.; Gorzalka, B.B.; Hillard, C.J. Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology 2009,
dc.relation26. Bluett, R.J.; Gamble-George, J.C.; Hermanson, D.J.; Hartley, N.D.; Marnett, L.J.; Patel, S. Central anandamide deficiency predicts stress-induced anxiety: Behavioral reversal through endocannabinoid augmentation. Transl. Psychiatry 2014, 4, e408. [CrossRef]
dc.relation27. Patel, S.; Cravatt, B.F.; Hillard, C.J. Synergistic Interactions between Cannabinoids and Environmental Stress in the Activation of the Central Amygdala. Neuropsychopharmacology 2004, 30, 497–507. [CrossRef] [PubMed]
dc.relation28. Hill, M.N.; Kumar, S.A.; Filipski, S.B.; Iverson, M.; Stuhr, K.L.; Keith, J.M.; Cravatt, B.F.; Hillard, C.J.; Chattarji, S.; McEwen, B.S. Disruption of fatty acid amide hydrolase activity prevents the effects of chronic stress on anxiety and amygdala microstructure. Mol. Psychiatry 2013, 18, 1125–1135. [CrossRef] [PubMed]
dc.relation29. Hohmann, A.G.; Suplita, R.L.; Bolton, N.M.; Neely, M.H.; Fegley, D.; Mangieri, R.; Krey, J.F.; Walker, J.M.; Holmes, P.V.; Crystal, J.D.; et al. An endocannabinoid mechanism for stress-induced analgesia. Nature 2005, 435, 1108–1112. [CrossRef]
dc.relation30. Morena, M.; Roozendaal, B.; Trezza, V.; Ratano, P.; Peloso, A.; Hauer, D.; Atsak, P.; Trabace, L.; Cuomo, V.; McGaugh, J.L.; et al. Endogenous cannabinoid release within prefrontal-limbic pathways affects memory consolidation of emotional training. Proc. Natl. Acad. Sci. USA 2014, 111, 18333–18338. [CrossRef] [PubMed]
dc.relation31. Gorzalka, B.B.; Hill, M.N.; Hillard, C.J. Regulation of endocannabinoid signaling by stress: Implications for stress-related affective disorders. Neurosci. Biobehav. Rev. 2008, 32, 1152–1160. [CrossRef] [PubMed]
dc.relation32. Katona, I.; Freund, T.F. Multiple Functions of Endocannabinoid Signaling in the Brain. Annu. Rev. Neurosci. 2012, 35, 529–558. [CrossRef]
dc.relation33. Mechoulam, R.; Parker, L.A. The Endocannabinoid System and the Brain. Annu. Rev. Psychol. 2013, 64, 21–47. [CrossRef] [PubMed]
dc.relation34. Gao, W.; Walther, A.; Wekenborg, M.; Penz, M.; Kirschbaum, C. Determination of endocannabinoids and N-acylethanolamines in human hair with LC-MS/MS and their relation to symptoms of depression, burnout, and anxiety. Talanta 2020, 217, 121006. [CrossRef]
dc.relation35. Davis, M.P.; Behm, B.; Mehta, Z.; Fernandez, C. The Potential Benefits of Palmitoylethanolamide in Palliation: A Qualitative Systematic Review. Am. J. Hosp. Palliat. Med. 2019, 36, 1134–1154. [CrossRef] [PubMed]
dc.relation36. Hillard, C.J. Circulating Endocannabinoids: From Whence Do They Come and Where are They Going? Neuropsychopharmacology 2018, 43, 155–172. [CrossRef] [PubMed]
dc.relation37. Battistini, L.; Maccarrone, M. The Endocannabinoid System in Peripheral Lymphocytes as a Mirror of Neuroinflammatory Diseases. Curr. Pharm. Des. 2008, 14, 2370–2382. [CrossRef]
dc.relation38. Ori, Z.; Monir, G.; Weiss, J.; Sayhouni, X.; Singer, D.H. Heart rate variability. Frequency domain analysis. Cardiol. Clin. 1992, 10, 499–533. [CrossRef]
dc.relation39. Tornero-Aguilera, J.F.; Pelarigo, J.G.; Clemente-Suárez, V.J. Psychophysiological Intervention to Improve Preparedness in Military Special Operations Forces. Aerosp. Med. Hum. Perform. 2019, 90, 953–958. [CrossRef]
dc.relation40. Hormeño-Holgado, A.J.; Nikolaidis, P.T.; Clemente-Suárez, V.J. Psychophysiological Patterns Related to Success in a Special Operation Selection Course. Front. Physiol. 2019, 10, 867. [CrossRef] [PubMed]
dc.relation41. Hormeño-Holgado, A.J.; Clemente-Suárez, V.J. Psychophysiological Monitorization in a Special Operation Selection Course. J. Med. Syst. 2019, 43, 47. [CrossRef] [PubMed]
dc.relation42. Sánchez-Molina, J.; Robles-Pérez, J.J.; Clemente-Suárez, V.J. Assessment of Psychophysiological Response and Specific Fine Motor Skills in Combat Units. J. Med. Syst. 2018, 42, 67. [CrossRef] [PubMed]
dc.relation43. Sánchez-Molina, J.; Pérez, J.J.R.; Clemente-Suárez, V.J. Effect of Parachute Jump in the Psychophysiological Response of Soldiers in Urban Combat. J. Med. Syst. 2017, 41, 99. [CrossRef] [PubMed]
dc.relation44. Aguilera, J.F.T.; Gil-Cabrera, J.; Clemente-Suárez, V.J. Determining the psychophysiological responses of military aircrew when exposed to acute disorientation stimuli. BMJ Mil. Health 2020. [CrossRef]
dc.relation28
dc.relation19
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.sourcehttps://www.mdpi.com/1660-4601/19/1/28
dc.subjectEndocannabinoids
dc.subjectHeart rate variability
dc.subjectAcute stress
dc.subjectPhysical exercise
dc.subjectSpecial forces
dc.titleEndocannabinoids and heart rate variability alterations after exposure to prolonged intensive physical exercise of the hellenic navy seals
dc.typeArtículo de revista
dc.typehttp://purl.org/coar/resource_type/c_6501
dc.typeText
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/redcol/resource_type/ART
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typehttp://purl.org/coar/version/c_ab4af688f83e57aa


Este ítem pertenece a la siguiente institución